|
import pandas as pd |
|
import datasets |
|
|
|
CITATION = """ |
|
""" |
|
|
|
CSV_URL = "https://huggingface.co/datasets/mwinn99/biovdb_1000/resolve/main/biovdb_1000.csv" |
|
|
|
class Biovdb(datasets.GeneratorBasedBuilder): |
|
VERSION = datasets.Version("1.0.0") |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description="Test set of samples from GEO", |
|
citation=CITATION, |
|
homepage="", |
|
features=datasets.Features({ |
|
'metadata': {col: datasets.Value('string') for col in pd.read_csv(CSV_URL, nrows=1).columns[:40]}, |
|
'data': datasets.Sequence(datasets.Value('float32')) |
|
}), |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
data_fname = dl_manager.download(CSV_URL) |
|
data = pd.read_csv(data_fname) |
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"data": data}) |
|
] |
|
|
|
def _generate_examples(self, data): |
|
data = data.infer_objects() |
|
metadata_columns = data.columns[:40] |
|
expression_columns = data.columns[40:] |
|
|
|
for idx, row in data.iterrows(): |
|
yield idx, { |
|
"data": row[expression_columns].astype(float).values.tolist(), |
|
"metadata": row[metadata_columns].astype(str).to_dict() |
|
} |
|
|
|
if __name__ == '__main__': |
|
ds = datasets.load_dataset("./biovdb_1000.py", split='train') |
|
|
|
|