apolinario commited on
Commit
b8fc0b5
1 Parent(s): 72fa5d3

Add initial defaults

Browse files
dango233_princesses.cfg ADDED
@@ -0,0 +1,87 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ #This settings file can be loaded back to Latent Majesty Diffusion. If you like your setting consider sharing it to the settings library at https://github.com/multimodalart/MajestyDiffusion
3
+ [clip_list]
4
+ perceptors = ['[clip - mlfoundations - ViT-B-16--openai]', '[clip - mlfoundations - ViT-B-16--laion400m_e32]', '[clip - mlfoundations - ViT-B-32--laion2b_e16]']
5
+
6
+ [basic_settings]
7
+ #Perceptor things
8
+
9
+ #clip_prompts = ['portrait of a princess in sanctuary, hyperrealistic painting trending on artstation']
10
+ #atent_prompts = ['portrait of a princess in sanctuary, hyperrealistic painting trending on artstation']
11
+ #latent_negatives = ['']
12
+ #image_prompts = []
13
+
14
+
15
+ latent_diffusion_guidance_scale = 2
16
+ clip_guidance_scale = 5000
17
+ aesthetic_loss_scale = 200
18
+ augment_cuts=True
19
+
20
+ #Init image settings
21
+ starting_timestep = 0.9
22
+ init_scale = 0
23
+ init_brightness = 0.0
24
+ init_noise = 0.6
25
+
26
+ [advanced_settings]
27
+ #Add CLIP Guidance and all the flavors or just run normal Latent Diffusion
28
+ use_cond_fn = True
29
+
30
+ #Custom schedules for cuts. Check out the schedules documentation here
31
+ custom_schedule_setting = [[30, 900.0, 8], 'gfpgan:1', [20, 200, 6]]
32
+
33
+ #Cut settings
34
+ clamp_index = [1]*1000
35
+ cut_overview = [8]*500 + [4]*500
36
+ cut_innercut = [0]*500 + [4]*500
37
+ cut_ic_pow = 0.1
38
+ cut_icgray_p = [0.1]*300 + [0]*1000
39
+ cutn_batches = 1
40
+ range_index = [0]*1300
41
+ active_function = "softsign"
42
+ tv_scales = [1200]*1 + [600]*3
43
+ latent_tv_loss = True
44
+
45
+ #If you uncomment this line you can schedule the CLIP guidance across the steps. Otherwise the clip_guidance_scale will be used
46
+ clip_guidance_schedule = [5000]*1000
47
+
48
+ #Apply symmetric loss (force simmetry to your results)
49
+ symmetric_loss_scale = 0
50
+
51
+ #Latent Diffusion Advanced Settings
52
+ #Use when latent upscale to correct satuation problem
53
+ scale_div = 0.5
54
+ #Magnify grad before clamping by how many times
55
+ opt_mag_mul = 10
56
+ opt_ddim_eta = 1.4
57
+ opt_eta_end = 1.0
58
+ opt_temperature = 0.975
59
+
60
+ #Grad advanced settings
61
+ grad_center = False
62
+ #Lower value result in more coherent and detailed result, higher value makes it focus on more dominent concept
63
+ grad_scale=0.5
64
+
65
+ #Init image advanced settings
66
+ init_rotate=False
67
+ mask_rotate=False
68
+ init_magnitude = 0.15
69
+
70
+ #More settings
71
+ RGB_min = -0.95
72
+ RGB_max = 0.95
73
+ #How to pad the image with cut_overview
74
+ padargs = {'mode': 'constant', 'value': -1}
75
+ flip_aug=False
76
+ cc = 60
77
+ #Experimental aesthetic embeddings, work only with OpenAI ViT-B/32 and ViT-L/14
78
+ experimental_aesthetic_embeddings = False
79
+ #How much you want this to influence your result
80
+ experimental_aesthetic_embeddings_weight = 1
81
+ #9 are good aesthetic embeddings, 0 are bad ones
82
+ experimental_aesthetic_embeddings_score = 8
83
+
84
+ #Deactivating new stuff from 1.5
85
+ score_modifier = False
86
+ compress_steps = 0
87
+ punish_steps = 0
default.cfg ADDED
@@ -0,0 +1,89 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ #This settings file can be loaded back to Latent Majesty Diffusion. If you like your setting consider sharing it to the settings library at https://huggingface.co/datasets/multimodalart/latent-majesty-diffusion-settings
3
+ [basic_settings]
4
+ #Perceptor things
5
+ latent_diffusion_guidance_scale = 1.75
6
+ clip_guidance_scale = 5000
7
+ aesthetic_loss_scale = 400
8
+ augment_cuts=True
9
+
10
+ #Init image settings
11
+ starting_timestep = 0.9
12
+ init_scale = 1000
13
+ init_brightness = 0.0
14
+ init_noise = 0.57
15
+
16
+ [advanced_settings]
17
+ #Add CLIP Guidance and all the flavors or just run normal Latent Diffusion
18
+ use_cond_fn = True
19
+
20
+ #Custom schedules for cuts. Check out the schedules documentation here
21
+ custom_schedule_setting = [[50, 1000, 8], 'gfpgan:1.5', [5, 200, 5]]
22
+
23
+ #Cut settings
24
+ clamp_index = [2, 1.6]
25
+ cut_overview = [8]*500 + [4]*500
26
+ cut_innercut = [0]*500 + [4]*500
27
+ cut_blur_n = [0]*1300
28
+ cut_blur_kernel = 3
29
+ cut_ic_pow = 0.5
30
+ cut_icgray_p = [0.1]*300 + [0]*1000
31
+ cutn_batches = 1
32
+ range_index = [0]*200 + [3]*400 + [0]*1000
33
+ active_function = "softsign"
34
+ ths_method= "softsign"
35
+ tv_scales = [50]*1 + [20]*1 + [0]*2
36
+
37
+ #If you uncomment this line you can schedule the CLIP guidance across the steps. Otherwise the clip_guidance_scale will be used
38
+ clip_guidance_schedule = [5000]*1000
39
+
40
+ #Apply symmetric loss (force simmetry to your results)
41
+ symmetric_loss_scale = 0
42
+
43
+ #Latent Diffusion Advanced Settings
44
+ #Use when latent upscale to correct satuation problem
45
+ scale_div = 1
46
+ #Magnify grad before clamping by how many times
47
+ opt_mag_mul = 15
48
+ opt_ddim_eta = 1.3
49
+ opt_eta_end = 1
50
+ opt_temperature = 0.95
51
+
52
+ #Grad advanced settings
53
+ grad_center = False
54
+ #Lower value result in more coherent and detailed result, higher value makes it focus on more dominent concept
55
+ grad_scale=0.25
56
+ score_modifier = True
57
+ threshold_percentile = 0.9
58
+ threshold = 1.2
59
+ var_index = [1]*1000
60
+ var_range = 0.5
61
+ mean_index = [10]*1000
62
+ mean_range = 0.2
63
+
64
+ #Init image advanced settings
65
+ init_rotate=False
66
+ mask_rotate=False
67
+ init_magnitude = 0.15
68
+
69
+ #More settings
70
+ RGB_min = -0.95
71
+ RGB_max = 0.95
72
+ #How to pad the image with cut_overview
73
+ padargs = {'mode': 'constant', 'value': -1}
74
+ flip_aug=False
75
+
76
+ #Experimental aesthetic embeddings, work only with OpenAI ViT-B/32 and ViT-L/14
77
+ experimental_aesthetic_embeddings = True
78
+ #How much you want this to influence your result
79
+ experimental_aesthetic_embeddings_weight = 0.3
80
+ #9 are good aesthetic embeddings, 0 are bad ones
81
+ experimental_aesthetic_embeddings_score = 8
82
+
83
+ # For fun dont change except if you really know what your are doing
84
+ grad_blur = False
85
+ compress_steps = 0
86
+ compress_factor = 0.1
87
+ punish_steps = 0
88
+ punish_factor = 0.8
89
+
defaults_v1_3.cfg ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ #Optimized to run on Colab Free
3
+ #This settings file can be loaded back to Latent Majesty Diffusion. If you like your setting consider sharing it to the settings library at https://github.com/multimodalart/MajestyDiffusion
4
+ [clip_list]
5
+ perceptors = ['[clip - mlfoundations - ViT-B-16--openai]', '[clip - mlfoundations - ViT-B-32--laion2b_e16]', '[clip - mlfoundations - ViT-B-16--laion400m_e32]']
6
+
7
+ [basic_settings]
8
+ #Perceptor things
9
+
10
+ latent_diffusion_guidance_scale = 2
11
+ clip_guidance_scale = 5000
12
+ aesthetic_loss_scale = 500
13
+ augment_cuts=True
14
+
15
+ #Init image settings
16
+ starting_timestep = 0.9
17
+ init_scale = 1000
18
+ init_brightness = 0.0
19
+ init_noise = 0.6
20
+
21
+ [advanced_settings]
22
+ #Add CLIP Guidance and all the flavors or just run normal Latent Diffusion
23
+ use_cond_fn = True
24
+
25
+ #Custom schedules for cuts. Check out the schedules documentation here
26
+ custom_schedule_setting = [[200, 1000, 8], [50, 200, 5]]
27
+
28
+ #Cut settings
29
+ clamp_index = [0.8]*1000
30
+ cut_overview = [8]*500 + [4]*500
31
+ cut_innercut = [0]*500 + [4]*500
32
+ cut_ic_pow = 0.1
33
+ cut_icgray_p = [0.1]*300 + [0]*1000
34
+ cutn_batches = 1
35
+ range_index = [0]*1300
36
+ active_function = 'softsign'
37
+ tv_scales = [1200]*1 + [600]*3
38
+ latent_tv_loss = True
39
+
40
+ #If you uncomment this line you can schedule the CLIP guidance across the steps. Otherwise the clip_guidance_scale will be used
41
+ clip_guidance_schedule = [5000]*1000
42
+
43
+ #Apply symmetric loss (force simmetry to your results)
44
+ symmetric_loss_scale = 0
45
+
46
+ #Latent Diffusion Advanced Settings
47
+ #Use when latent upscale to correct satuation problem
48
+ scale_div = 0.5
49
+ #Magnify grad before clamping by how many times
50
+ opt_mag_mul = 15
51
+ opt_ddim_eta = 1.4
52
+ opt_eta_end = 1.0
53
+ opt_temperature = 0.975
54
+
55
+ #Grad advanced settings
56
+ grad_center = False
57
+ #Lower value result in more coherent and detailed result, higher value makes it focus on more dominent concept
58
+ grad_scale=0.5
59
+
60
+ #Init image advanced settings
61
+ init_rotate=False
62
+ mask_rotate=False
63
+ init_magnitude = 0.15
64
+
65
+ #More settings
66
+ RGB_min = -0.95
67
+ RGB_max = 0.95
68
+ #How to pad the image with cut_overview
69
+ padargs = {'mode': 'constant', 'value': -1}
70
+ flip_aug=False
71
+ cc = 60
72
+
73
+ #Deactivating new stuff from 1.5
74
+ score_modifier = False
75
+ compress_steps = 0
76
+ punish_steps = 0
makeitrad_defaults.cfg ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [clip_list]
2
+ perceptors = ["[clip - mlfoundations - ViT-B-16-plus-240--laion400m_e32]", "[clip - mlfoundations - ViT-B-16--openai]", "[clip - mlfoundations - ViT-B-32--openai]"]
3
+
4
+ [basic_settings]
5
+ latent_diffusion_guidance_scale = 8.85
6
+ clip_guidance_scale = 5000
7
+ aesthetic_loss_scale = 500
8
+ augment_cuts=True
9
+
10
+ [advanced_settings]
11
+ symmetric_loss_scale = 0.8
12
+ scale_div = 0.5
13
+ opt_ddim_eta = 1.2
14
+ opt_eta_end = 1.05
15
+ opt_temperature = .95
16
+ anti_jpg = 0.3
17
+ clamp_index = [.45]*1000
18
+ cut_overview = [8]*1000
19
+ cut_innercut = [2]*500 + [2]*500
20
+ cut_ic_pow = .2
21
+ cut_icgray_p = [.1]*300+[0]*1000
22
+ cutn_batches = 1
23
+ range_index = [0]*300 + [0]*1000
24
+ active_function = "softsign" # function to manipulate the gradient - help things to stablize
25
+ tv_scales = [45]*1+[20]*3
26
+
27
+ #Deactivating new stuff from 1.4
28
+ score_modifier = False
29
+ compress_steps = 0
30
+ punish_steps = 0
the_other_zippy_defaults.cfg ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #by Zippy (https://github.com/aredden or Zippy#1111 on colab - not to be mistaken with Disco Diffusion Zippy)
2
+ [clip_list]
3
+ perceptors = ['[clip - mlfoundations - ViT-B-16--openai]', '[clip - mlfoundations - ViT-L-14--openai]', '[clip - mlfoundations - ViT-B-32--openai]', '[clip - mlfoundations - ViT-B-16-plus-240--laion400m_e32]']
4
+
5
+ [basic_settings]
6
+ latent_diffusion_guidance_scale = 8.85
7
+ clip_guidance_scale = 5000
8
+ aesthetic_loss_scale = 500
9
+
10
+ [advanced_settings]
11
+ clamp_index = [.45]*1000
12
+ cut_overview = [8]*1000
13
+ cut_innercut = [2]*500 + [2]*500
14
+ cut_ic_pow = .2
15
+ cut_icgray_p = [.1]*300+[0]*1000
16
+ cutn_batches = 1
17
+ range_index = [0]*1300
18
+ active_function = "softsign"
19
+ tv_scales = [45]*1 + [20]*3
20
+ latent_tv_loss = True
21
+ symmetric_loss_scale = 0.8
22
+
23
+ #Deactivating new stuff from 1.5
24
+ score_modifier = False
25
+ compress_steps = 0
26
+ punish_steps = 0