Datasets:
Tasks:
Text Retrieval
Modalities:
Text
Formats:
json
Sub-tasks:
document-retrieval
Languages:
Chinese
Size:
1K - 10K
Tags:
text-retrieval
metadata
language:
- zh
multilinguality:
- monolingual
task_categories:
- text-retrieval
source_datasets:
- https://github.com/THUIR/LeCaRDv2
task_ids:
- document-retrieval
config_names:
- corpus
tags:
- text-retrieval
dataset_info:
- config_name: default
features:
- name: query-id
dtype: string
- name: corpus-id
dtype: string
- name: score
dtype: float64
splits:
- name: test
num_examples: 3896
- config_name: corpus
features:
- name: _id
dtype: string
- name: title
dtype: string
- name: text
dtype: string
splits:
- name: corpus
num_examples: 3795
- config_name: queries
features:
- name: _id
dtype: string
- name: text
dtype: string
splits:
- name: queries
num_examples: 159
configs:
- config_name: default
data_files:
- split: test
path: qrels/test.jsonl
- config_name: corpus
data_files:
- split: corpus
path: corpus.jsonl
- config_name: queries
data_files:
- split: queries
path: queries.jsonl
LeCaRDv2
- Original link: https://github.com/THUIR/LeCaRDv2
- The task involves identifying and retrieving the case document that best matches or is most relevant to the scenario described in each of the provided queries.
- The query set contains 159 queries, each outlining a distinct situation.
- The corpus set includes 3795 candidate case documents.
Usage
import datasets
# Download the dataset
queries = datasets.load_dataset("mteb/LeCaRDv2", "queries")
documents = datasets.load_dataset("mteb/LeCaRDv2", "corpus")
pair_labels = datasets.load_dataset("mteb/LeCaRDv2", "default")