Datasets:
mteb
/

Modalities:
Text
Formats:
json
Languages:
English
Size:
< 1K
Libraries:
Datasets
pandas
AILA_statutes / README.md
Shuang59's picture
Add
ebfcd84
|
raw
history blame
1.72 kB
metadata
language:
  - en
multilinguality:
  - monolingual
task_categories:
  - text-retrieval
source_datasets:
  - https://zenodo.org/records/4063986
task_ids:
  - document-retrieval
config_names:
  - corpus
tags:
  - text-retrieval
dataset_info:
  - config_name: default
    features:
      - name: query-id
        dtype: string
      - name: corpus-id
        dtype: string
      - name: score
        dtype: float64
    splits:
      - name: test
        num_examples: 217
  - config_name: corpus
    features:
      - name: _id
        dtype: string
      - name: title
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: corpus
        num_examples: 82
  - config_name: queries
    features:
      - name: _id
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: queries
        num_examples: 50
configs:
  - config_name: default
    data_files:
      - split: test
        path: qrels/test.jsonl
  - config_name: corpus
    data_files:
      - split: corpus
        path: corpus.jsonl
  - config_name: queries
    data_files:
      - split: queries
        path: queries.jsonl

AILA_statutes

  • Original link: https://zenodo.org/records/4063986
  • This dataset is structured for the task of identifying the most relevant statutes for a given situation.
  • The query set comprises 50 queries, each describing a specific situation.
  • The corpus set consists of the title and description of statutes.

Usage

import datasets

# Download the dataset
queries = datasets.load_dataset("mteb/AILA_statutes", "queries")
documents = datasets.load_dataset("mteb/AILA_statutes", "corpus")
pair_labels = datasets.load_dataset("mteb/AILA_statutes", "default")