|
"""Wine Dataset""" |
|
|
|
from typing import List |
|
|
|
import datasets |
|
|
|
import pandas |
|
|
|
|
|
VERSION = datasets.Version("1.0.0") |
|
_BASE_FEATURE_NAMES = [ |
|
"fixed_acidity", |
|
"volatile_acidity", |
|
"citric_acid", |
|
"residual_sugar", |
|
"chlorides", |
|
"free_sulfur_dioxide", |
|
"total_sulfur_dioxide", |
|
"density", |
|
"pH", |
|
"sulphates", |
|
"alcohol", |
|
"quality", |
|
"color" |
|
] |
|
|
|
|
|
DESCRIPTION = "Wine quality dataset." |
|
_HOMEPAGE = "https://www.kaggle.com/datasets/ghassenkhaled/wine-quality-data" |
|
_URLS = ("https://www.kaggle.com/datasets/ghassenkhaled/wine-quality-data") |
|
_CITATION = """""" |
|
|
|
|
|
urls_per_split = { |
|
"train": "https://huggingface.co/datasets/mstz/wine/raw/main/Wine_Quality_Data.csv", |
|
} |
|
features_types_per_config = { |
|
"wine": { |
|
"fixed_acidity": datasets.Value("float64"), |
|
"volatile_acidity": datasets.Value("float64"), |
|
"citric_acid": datasets.Value("float64"), |
|
"residual_sugar": datasets.Value("float64"), |
|
"chlorides": datasets.Value("float64"), |
|
"free_sulfur_dioxide": datasets.Value("float64"), |
|
"total_sulfur_dioxide": datasets.Value("float64"), |
|
"density": datasets.Value("float64"), |
|
"pH": datasets.Value("float64"), |
|
"sulphates": datasets.Value("float64"), |
|
"alcohol": datasets.Value("float64"), |
|
"quality": datasets.Value("int8"), |
|
"color": datasets.ClassLabel(num_classes=2, names=("red", "white")) |
|
} |
|
|
|
} |
|
features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config} |
|
|
|
|
|
class WineConfig(datasets.BuilderConfig): |
|
def __init__(self, **kwargs): |
|
super(WineConfig, self).__init__(version=VERSION, **kwargs) |
|
self.features = features_per_config[kwargs["name"]] |
|
|
|
|
|
class Wine(datasets.GeneratorBasedBuilder): |
|
|
|
DEFAULT_CONFIG = "wine" |
|
BUILDER_CONFIGS = [ |
|
WineConfig(name="wine", |
|
description="Binary classification."), |
|
] |
|
|
|
|
|
def _info(self): |
|
if self.config.name not in features_per_config: |
|
raise ValueError(f"Unknown configuration: {self.config.name}") |
|
|
|
info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE, |
|
features=features_per_config[self.config.name]) |
|
|
|
return info |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
downloads = dl_manager.download_and_extract(urls_per_split) |
|
|
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]}), |
|
] |
|
|
|
def _generate_examples(self, filepath: str): |
|
data = pandas.read_csv(filepath) |
|
data = self.preprocess(data, config=self.config.name) |
|
|
|
for row_id, row in data.iterrows(): |
|
data_row = dict(row) |
|
|
|
yield row_id, data_row |
|
|
|
def preprocess(self, data: pandas.DataFrame, config: str = "wine") -> pandas.DataFrame: |
|
data.loc[data.color == "red", "color"] = 0 |
|
data.loc[data.color == "white", "color"] = 1 |
|
|
|
data.columns = _BASE_FEATURE_NAMES |
|
|
|
if config == "wine": |
|
return data |
|
else: |
|
raise ValueError(f"Unknown config: {config}") |
|
|