Datasets:
Upload 3 files
Browse files- README.md +28 -1
- spambase.data +0 -0
- spambase.py +127 -0
README.md
CHANGED
@@ -1,3 +1,30 @@
|
|
1 |
---
|
2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
tags:
|
5 |
+
- spambase
|
6 |
+
- tabular_classification
|
7 |
+
- binary_classification
|
8 |
+
pretty_name: Spambase
|
9 |
+
size_categories:
|
10 |
+
- 1K<n<10K
|
11 |
+
task_categories: # Full list at https://github.com/huggingface/hub-docs/blob/main/js/src/lib/interfaces/Types.ts
|
12 |
+
- tabular-classification
|
13 |
+
configs:
|
14 |
+
- spambase
|
15 |
---
|
16 |
+
# Spambase
|
17 |
+
The [Spambase dataset](https://archive.ics.uci.edu/ml/datasets/Spambase) from the [UCI ML repository](https://archive.ics.uci.edu/ml/datasets).
|
18 |
+
|
19 |
+
# Configurations and tasks
|
20 |
+
| **Configuration** | **Task** | **Description** |
|
21 |
+
|-------------------|---------------------------|------------------|
|
22 |
+
| spambase | Binary classification | Is the mail spam?|
|
23 |
+
|
24 |
+
|
25 |
+
# Usage
|
26 |
+
```python
|
27 |
+
from datasets import load_dataset
|
28 |
+
|
29 |
+
dataset = load_dataset("mstz/spambase", "spambase")["train"]
|
30 |
+
```
|
spambase.data
ADDED
The diff for this file is too large to render.
See raw diff
|
|
spambase.py
ADDED
@@ -0,0 +1,127 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Spambase: A Census Dataset"""
|
2 |
+
|
3 |
+
from typing import List
|
4 |
+
|
5 |
+
import datasets
|
6 |
+
|
7 |
+
import pandas
|
8 |
+
|
9 |
+
|
10 |
+
VERSION = datasets.Version("1.0.0")
|
11 |
+
|
12 |
+
DESCRIPTION = "Spambase dataset from the UCI ML repository."
|
13 |
+
_HOMEPAGE = "https://archive.ics.uci.edu/ml/datasets/Spambase"
|
14 |
+
_URLS = ("https://archive.ics.uci.edu/ml/datasets/Spambase")
|
15 |
+
_CITATION = """
|
16 |
+
@misc{misc_spambase_94,
|
17 |
+
author = {Hopkins,Mark, Reeber,Erik, Forman,George & Suermondt,Jaap},
|
18 |
+
title = {{Spambase}},
|
19 |
+
year = {1999},
|
20 |
+
howpublished = {UCI Machine Learning Repository},
|
21 |
+
note = {{DOI}: \\url{10.24432/C53G6X}}
|
22 |
+
}"""
|
23 |
+
|
24 |
+
# Dataset info
|
25 |
+
urls_per_split = {
|
26 |
+
"train": "https://huggingface.co/datasets/mstz/spambase/raw/main/spambase.data"
|
27 |
+
}
|
28 |
+
features_types_per_config = {
|
29 |
+
"spambase": {
|
30 |
+
"word_freq_make": datasets.Value("float64"),
|
31 |
+
"word_freq_address": datasets.Value("float64"),
|
32 |
+
"word_freq_all": datasets.Value("float64"),
|
33 |
+
"word_freq_3d": datasets.Value("float64"),
|
34 |
+
"word_freq_our": datasets.Value("float64"),
|
35 |
+
"word_freq_over": datasets.Value("float64"),
|
36 |
+
"word_freq_remove": datasets.Value("float64"),
|
37 |
+
"word_freq_internet": datasets.Value("float64"),
|
38 |
+
"word_freq_order": datasets.Value("float64"),
|
39 |
+
"word_freq_mail": datasets.Value("float64"),
|
40 |
+
"word_freq_receive": datasets.Value("float64"),
|
41 |
+
"word_freq_will": datasets.Value("float64"),
|
42 |
+
"word_freq_people": datasets.Value("float64"),
|
43 |
+
"word_freq_report": datasets.Value("float64"),
|
44 |
+
"word_freq_addresses": datasets.Value("float64"),
|
45 |
+
"word_freq_free": datasets.Value("float64"),
|
46 |
+
"word_freq_business": datasets.Value("float64"),
|
47 |
+
"word_freq_email": datasets.Value("float64"),
|
48 |
+
"word_freq_you": datasets.Value("float64"),
|
49 |
+
"word_freq_credit": datasets.Value("float64"),
|
50 |
+
"word_freq_your": datasets.Value("float64"),
|
51 |
+
"word_freq_font": datasets.Value("float64"),
|
52 |
+
"word_freq_000": datasets.Value("float64"),
|
53 |
+
"word_freq_money": datasets.Value("float64"),
|
54 |
+
"word_freq_hp": datasets.Value("float64"),
|
55 |
+
"word_freq_hpl": datasets.Value("float64"),
|
56 |
+
"word_freq_george": datasets.Value("float64"),
|
57 |
+
"word_freq_650": datasets.Value("float64"),
|
58 |
+
"word_freq_lab": datasets.Value("float64"),
|
59 |
+
"word_freq_labs": datasets.Value("float64"),
|
60 |
+
"word_freq_telnet": datasets.Value("float64"),
|
61 |
+
"word_freq_857": datasets.Value("float64"),
|
62 |
+
"word_freq_data": datasets.Value("float64"),
|
63 |
+
"word_freq_415": datasets.Value("float64"),
|
64 |
+
"word_freq_85": datasets.Value("float64"),
|
65 |
+
"word_freq_technology": datasets.Value("float64"),
|
66 |
+
"word_freq_1999": datasets.Value("float64"),
|
67 |
+
"word_freq_parts": datasets.Value("float64"),
|
68 |
+
"word_freq_pm": datasets.Value("float64"),
|
69 |
+
"word_freq_direct": datasets.Value("float64"),
|
70 |
+
"word_freq_cs": datasets.Value("float64"),
|
71 |
+
"word_freq_meeting": datasets.Value("float64"),
|
72 |
+
"word_freq_original": datasets.Value("float64"),
|
73 |
+
"word_freq_project": datasets.Value("float64"),
|
74 |
+
"word_freq_re": datasets.Value("float64"),
|
75 |
+
"word_freq_edu": datasets.Value("float64"),
|
76 |
+
"word_freq_table": datasets.Value("float64"),
|
77 |
+
"word_freq_conference": datasets.Value("float64"),
|
78 |
+
"char_freq_": datasets.Value("float64"),
|
79 |
+
"char_freq_": datasets.Value("float64"),
|
80 |
+
"char_freq_": datasets.Value("float64"),
|
81 |
+
"char_freq_": datasets.Value("float64"),
|
82 |
+
"char_freq_": datasets.Value("float64"),
|
83 |
+
"char_freq_": datasets.Value("float64"),
|
84 |
+
"capital_run_length_average": datasets.Value("float64"),
|
85 |
+
"capital_run_length_longest": datasets.Value("float64"),
|
86 |
+
"capital_run_length_total": datasets.Value("float64"),
|
87 |
+
"is_spam": datasets.ClassLabel(num_classes=2, names=("no", "yes"))
|
88 |
+
},
|
89 |
+
|
90 |
+
}
|
91 |
+
features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config}
|
92 |
+
|
93 |
+
|
94 |
+
class SpambaseConfig(datasets.BuilderConfig):
|
95 |
+
def __init__(self, **kwargs):
|
96 |
+
super(SpambaseConfig, self).__init__(version=VERSION, **kwargs)
|
97 |
+
self.features = features_per_config[kwargs["name"]]
|
98 |
+
|
99 |
+
|
100 |
+
class Spambase(datasets.GeneratorBasedBuilder):
|
101 |
+
# dataset versions
|
102 |
+
DEFAULT_CONFIG = "spambase"
|
103 |
+
BUILDER_CONFIGS = [
|
104 |
+
SpambaseConfig(name="spambase",
|
105 |
+
description="Spambase for binary classification.")
|
106 |
+
]
|
107 |
+
|
108 |
+
def _info(self):
|
109 |
+
info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE,
|
110 |
+
features=features_per_config[self.config.name])
|
111 |
+
|
112 |
+
return info
|
113 |
+
|
114 |
+
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
|
115 |
+
downloads = dl_manager.download_and_extract(urls_per_split)
|
116 |
+
|
117 |
+
return [
|
118 |
+
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]})
|
119 |
+
]
|
120 |
+
|
121 |
+
def _generate_examples(self, filepath: str):
|
122 |
+
data = pandas.read_csv(filepath)
|
123 |
+
|
124 |
+
for row_id, row in data.iterrows():
|
125 |
+
data_row = dict(row)
|
126 |
+
|
127 |
+
yield row_id, data_row
|