Datasets:
Upload 3 files
Browse files
README.md
CHANGED
@@ -1,3 +1,27 @@
|
|
1 |
---
|
2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
tags:
|
5 |
+
- seeds
|
6 |
+
- tabular_classification
|
7 |
+
- binary_classification
|
8 |
+
- multiclass_classification
|
9 |
+
pretty_name: Page Blocks
|
10 |
+
size_categories:
|
11 |
+
- 1K<n<10K
|
12 |
+
task_categories: # Full list at https://github.com/huggingface/hub-docs/blob/main/js/src/lib/interfaces/Types.ts
|
13 |
+
- tabular-classification
|
14 |
+
configs:
|
15 |
+
- seeds
|
16 |
+
- seeds_binary
|
17 |
---
|
18 |
+
# Post Operative
|
19 |
+
The [Seeds dataset](https://archive-beta.ics.uci.edu/dataset/236/seeds) from the [UCI repository](https://archive-beta.ics.uci.edu/).
|
20 |
+
|
21 |
+
# Configurations and tasks
|
22 |
+
| **Configuration** | **Task** | **Description** |
|
23 |
+
|-----------------------|---------------------------|-------------------------|
|
24 |
+
| seeds | Multiclass classification.| |
|
25 |
+
| seeds_0 | Binary classification. | Is the seed of class 0? |
|
26 |
+
| seeds_1 | Binary classification. | Is the seed of class 1? |
|
27 |
+
| seeds_2 | Binary classification. | Is the seed of class 2? |
|
seeds.csv
ADDED
@@ -0,0 +1,211 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
area,perimeter,compactness,length,width,asymmetry,length_grove,class
|
2 |
+
15.26,14.84,0.871,5.763,3.312,2.221,5.22,1
|
3 |
+
14.88,14.57,0.8811,5.554,3.333,1.018,4.956,1
|
4 |
+
14.29,14.09,0.905,5.291,3.337,2.699,4.825,1
|
5 |
+
13.84,13.94,0.8955,5.324,3.379,2.259,4.805,1
|
6 |
+
16.14,14.99,0.9034,5.658,3.562,1.355,5.175,1
|
7 |
+
14.38,14.21,0.8951,5.386,3.312,2.462,4.956,1
|
8 |
+
14.69,14.49,0.8799,5.563,3.259,3.586,5.219,1
|
9 |
+
14.11,14.1,0.8911,5.42,3.302,2.7,,5,,1
|
10 |
+
16.63,15.46,0.8747,6.053,3.465,2.04,5.877,1
|
11 |
+
16.44,15.25,0.888,5.884,3.505,1.969,5.533,1
|
12 |
+
15.26,14.85,0.8696,5.714,3.242,4.543,5.314,1
|
13 |
+
14.03,14.16,0.8796,5.438,3.201,1.717,5.001,1
|
14 |
+
13.89,14.02,0.888,5.439,3.199,3.986,4.738,1
|
15 |
+
13.78,14.06,0.8759,5.479,3.156,3.136,4.872,1
|
16 |
+
13.74,14.05,0.8744,5.482,3.114,2.932,4.825,1
|
17 |
+
14.59,14.28,0.8993,5.351,3.333,4.185,4.781,1
|
18 |
+
13.99,13.83,0.9183,5.119,3.383,5.234,4.781,1
|
19 |
+
15.69,14.75,0.9058,5.527,3.514,1.599,5.046,1
|
20 |
+
14.7,14.21,0.9153,5.205,3.466,1.767,4.649,1
|
21 |
+
12.72,13.57,0.8686,5.226,3.049,4.102,4.914,1
|
22 |
+
14.16,14.4,0.8584,5.658,3.129,3.072,5.176,1
|
23 |
+
14.11,14.26,0.8722,5.52,3.168,2.688,5.219,1
|
24 |
+
15.88,14.9,0.8988,5.618,3.507,0.7651,5.091,1
|
25 |
+
12.08,13.23,0.8664,5.099,2.936,1.415,4.961,1
|
26 |
+
15.01,14.76,0.8657,5.789,3.245,1.791,5.001,1
|
27 |
+
16.19,15.16,0.8849,5.833,3.421,0.903,5.307,1
|
28 |
+
13.02,13.76,0.8641,5.395,3.026,3.373,4.825,1
|
29 |
+
12.74,13.67,0.8564,5.395,2.956,2.504,4.869,1
|
30 |
+
14.11,14.18,0.882,5.541,3.221,2.754,5.038,1
|
31 |
+
13.45,14.02,0.8604,5.516,3.065,3.531,5.097,1
|
32 |
+
13.16,13.82,0.8662,5.454,2.975,0.8551,5.056,1
|
33 |
+
15.49,14.94,0.8724,5.757,3.371,3.412,5.228,1
|
34 |
+
14.09,14.41,0.8529,5.717,3.186,3.92,5.299,1
|
35 |
+
13.94,14.17,0.8728,5.585,3.15,2.124,5.012,1
|
36 |
+
15.05,14.68,0.8779,5.712,3.328,2.129,5.36,1
|
37 |
+
16.12,15,,0.9,,5.709,3.485,2.27,5.443,1
|
38 |
+
16.2,15.27,0.8734,5.826,3.464,2.823,5.527,1
|
39 |
+
17.08,15.38,0.9079,5.832,3.683,2.956,5.484,1
|
40 |
+
14.8,14.52,0.8823,5.656,3.288,3.112,5.309,1
|
41 |
+
14.28,14.17,0.8944,5.397,3.298,6.685,5.001,1
|
42 |
+
13.54,13.85,0.8871,5.348,3.156,2.587,5.178,1
|
43 |
+
13.5,13.85,0.8852,5.351,3.158,2.249,5.176,1
|
44 |
+
13.16,13.55,0.9009,5.138,3.201,2.461,4.783,1
|
45 |
+
15.5,14.86,0.882,5.877,3.396,4.711,5.528,1
|
46 |
+
15.11,14.54,0.8986,5.579,3.462,3.128,5.18,1
|
47 |
+
13.8,14.04,0.8794,5.376,3.155,1.56,4.961,1
|
48 |
+
15.36,14.76,0.8861,5.701,3.393,1.367,5.132,1
|
49 |
+
14.99,14.56,0.8883,5.57,3.377,2.958,5.175,1
|
50 |
+
14.79,14.52,0.8819,5.545,3.291,2.704,5.111,1
|
51 |
+
14.86,14.67,0.8676,5.678,3.258,2.129,5.351,1
|
52 |
+
14.43,14.4,0.8751,5.585,3.272,3.975,5.144,1
|
53 |
+
15.78,14.91,0.8923,5.674,3.434,5.593,5.136,1
|
54 |
+
14.49,14.61,0.8538,5.715,3.113,4.116,5.396,1
|
55 |
+
14.33,14.28,0.8831,5.504,3.199,3.328,5.224,1
|
56 |
+
14.52,14.6,0.8557,5.741,3.113,1.481,5.487,1
|
57 |
+
15.03,14.77,0.8658,5.702,3.212,1.933,5.439,1
|
58 |
+
14.46,14.35,0.8818,5.388,3.377,2.802,5.044,1
|
59 |
+
14.92,14.43,0.9006,5.384,3.412,1.142,5.088,1
|
60 |
+
15.38,14.77,0.8857,5.662,3.419,1.999,5.222,1
|
61 |
+
12.11,13.47,0.8392,5.159,3.032,1.502,4.519,1
|
62 |
+
11.42,12.86,0.8683,5.008,2.85,2.7,,4.607,1
|
63 |
+
11.23,12.63,0.884,4.902,2.879,2.269,4.703,1
|
64 |
+
12.36,13.19,0.8923,5.076,3.042,3.22,4.605,1
|
65 |
+
13.22,13.84,0.868,5.395,3.07,4.157,5.088,1
|
66 |
+
12.78,13.57,0.8716,5.262,3.026,1.176,4.782,1
|
67 |
+
12.88,13.5,0.8879,5.139,3.119,2.352,4.607,1
|
68 |
+
14.34,14.37,0.8726,5.63,3.19,1.313,5.15,1
|
69 |
+
14.01,14.29,0.8625,5.609,3.158,2.217,5.132,1
|
70 |
+
14.37,14.39,0.8726,5.569,3.153,1.464,5.3,,1
|
71 |
+
12.73,13.75,0.8458,5.412,2.882,3.533,5.067,1
|
72 |
+
17.63,15.98,0.8673,6.191,3.561,4.076,6.06,2
|
73 |
+
16.84,15.67,0.8623,5.998,3.484,4.675,5.877,2
|
74 |
+
17.26,15.73,0.8763,5.978,3.594,4.539,5.791,2
|
75 |
+
19.11,16.26,0.9081,6.154,3.93,2.936,6.079,2
|
76 |
+
16.82,15.51,0.8786,6.017,3.486,4.004,5.841,2
|
77 |
+
16.77,15.62,0.8638,5.927,3.438,4.92,5.795,2
|
78 |
+
17.32,15.91,0.8599,6.064,3.403,3.824,5.922,2
|
79 |
+
20.71,17.23,0.8763,6.579,3.814,4.451,6.451,2
|
80 |
+
18.94,16.49,0.875,6.445,3.639,5.064,6.362,2
|
81 |
+
17.12,15.55,0.8892,5.85,3.566,2.858,5.746,2
|
82 |
+
16.53,15.34,0.8823,5.875,3.467,5.532,5.88,2
|
83 |
+
18.72,16.19,0.8977,6.006,3.857,5.324,5.879,2
|
84 |
+
20.2,16.89,0.8894,6.285,3.864,5.173,6.187,2
|
85 |
+
19.57,16.74,0.8779,6.384,3.772,1.472,6.273,2
|
86 |
+
19.51,16.71,0.878,6.366,3.801,2.962,6.185,2
|
87 |
+
18.27,16.09,0.887,6.173,3.651,2.443,6.197,2
|
88 |
+
18.88,16.26,0.8969,6.084,3.764,1.649,6.109,2
|
89 |
+
18.98,16.66,0.859,6.549,3.67,3.691,6.498,2
|
90 |
+
21.18,17.21,0.8989,6.573,4.033,5.78,6.231,2
|
91 |
+
20.88,17.05,0.9031,6.45,4.032,5.016,6.321,2
|
92 |
+
20.1,16.99,0.8746,6.581,3.785,1.955,6.449,2
|
93 |
+
18.76,16.2,0.8984,6.172,3.796,3.12,6.053,2
|
94 |
+
18.81,16.29,0.8906,6.272,3.693,3.237,6.053,2
|
95 |
+
18.59,16.05,0.9066,6.037,3.86,6.001,5.877,2
|
96 |
+
18.36,16.52,0.8452,6.666,3.485,4.933,6.448,2
|
97 |
+
16.87,15.65,0.8648,6.139,3.463,3.696,5.967,2
|
98 |
+
19.31,16.59,0.8815,6.341,3.81,3.477,6.238,2
|
99 |
+
18.98,16.57,0.8687,6.449,3.552,2.144,6.453,2
|
100 |
+
18.17,16.26,0.8637,6.271,3.512,2.853,6.273,2
|
101 |
+
18.72,16.34,0.881,6.219,3.684,2.188,6.097,2
|
102 |
+
16.41,15.25,0.8866,5.718,3.525,4.217,5.618,2
|
103 |
+
17.99,15.86,0.8992,5.89,3.694,2.068,5.837,2
|
104 |
+
19.46,16.5,0.8985,6.113,3.892,4.308,6.009,2
|
105 |
+
19.18,16.63,0.8717,6.369,3.681,3.357,6.229,2
|
106 |
+
18.95,16.42,0.8829,6.248,3.755,3.368,6.148,2
|
107 |
+
18.83,16.29,0.8917,6.037,3.786,2.553,5.879,2
|
108 |
+
18.85,16.17,0.9056,6.152,3.806,2.843,6.2,,2
|
109 |
+
17.63,15.86,0.88,6.033,3.573,3.747,5.929,2
|
110 |
+
19.94,16.92,0.8752,6.675,3.763,3.252,6.55,2
|
111 |
+
18.55,16.22,0.8865,6.153,3.674,1.738,5.894,2
|
112 |
+
18.45,16.12,0.8921,6.107,3.769,2.235,5.794,2
|
113 |
+
19.38,16.72,0.8716,6.303,3.791,3.678,5.965,2
|
114 |
+
19.13,16.31,0.9035,6.183,3.902,2.109,5.924,2
|
115 |
+
19.14,16.61,0.8722,6.259,3.737,6.682,6.053,2
|
116 |
+
20.97,17.25,0.8859,6.563,3.991,4.677,6.316,2
|
117 |
+
19.06,16.45,0.8854,6.416,3.719,2.248,6.163,2
|
118 |
+
18.96,16.2,0.9077,6.051,3.897,4.334,5.75,2
|
119 |
+
19.15,16.45,0.889,6.245,3.815,3.084,6.185,2
|
120 |
+
18.89,16.23,0.9008,6.227,3.769,3.639,5.966,2
|
121 |
+
20.03,16.9,0.8811,6.493,3.857,3.063,6.32,2
|
122 |
+
20.24,16.91,0.8897,6.315,3.962,5.901,6.188,2
|
123 |
+
18.14,16.12,0.8772,6.059,3.563,3.619,6.011,2
|
124 |
+
16.17,15.38,0.8588,5.762,3.387,4.286,5.703,2
|
125 |
+
18.43,15.97,0.9077,5.98,3.771,2.984,5.905,2
|
126 |
+
15.99,14.89,0.9064,5.363,3.582,3.336,5.144,2
|
127 |
+
18.75,16.18,0.8999,6.111,3.869,4.188,5.992,2
|
128 |
+
18.65,16.41,0.8698,6.285,3.594,4.391,6.102,2
|
129 |
+
17.98,15.85,0.8993,5.979,3.687,2.257,5.919,2
|
130 |
+
20.16,17.03,0.8735,6.513,3.773,1.91,6.185,2
|
131 |
+
17.55,15.66,0.8991,5.791,3.69,5.366,5.661,2
|
132 |
+
18.3,15.89,0.9108,5.979,3.755,2.837,5.962,2
|
133 |
+
18.94,16.32,0.8942,6.144,3.825,2.908,5.949,2
|
134 |
+
15.38,14.9,0.8706,5.884,3.268,4.462,5.795,2
|
135 |
+
16.16,15.33,0.8644,5.845,3.395,4.266,5.795,2
|
136 |
+
15.56,14.89,0.8823,5.776,3.408,4.972,5.847,2
|
137 |
+
15.38,14.66,0.899,5.477,3.465,3.6,,5.439,2
|
138 |
+
17.36,15.76,0.8785,6.145,3.574,3.526,5.971,2
|
139 |
+
15.57,15.15,0.8527,5.92,3.231,2.64,5.879,2
|
140 |
+
15.6,15.11,0.858,5.832,3.286,2.725,5.752,2
|
141 |
+
16.23,15.18,0.885,5.872,3.472,3.769,5.922,2
|
142 |
+
13.07,13.92,0.848,5.472,2.994,5.304,5.395,3
|
143 |
+
13.32,13.94,0.8613,5.541,3.073,7.035,5.44,3
|
144 |
+
13.34,13.95,0.862,5.389,3.074,5.995,5.307,3
|
145 |
+
12.22,13.32,0.8652,5.224,2.967,5.469,5.221,3
|
146 |
+
11.82,13.4,0.8274,5.314,2.777,4.471,5.178,3
|
147 |
+
11.21,13.13,0.8167,5.279,2.687,6.169,5.275,3
|
148 |
+
11.43,13.13,0.8335,5.176,2.719,2.221,5.132,3
|
149 |
+
12.49,13.46,0.8658,5.267,2.967,4.421,5.002,3
|
150 |
+
12.7,13.71,0.8491,5.386,2.911,3.26,5.316,3
|
151 |
+
10.79,12.93,0.8107,5.317,2.648,5.462,5.194,3
|
152 |
+
11.83,13.23,0.8496,5.263,2.84,5.195,5.307,3
|
153 |
+
12.01,13.52,0.8249,5.405,2.776,6.992,5.27,3
|
154 |
+
12.26,13.6,0.8333,5.408,2.833,4.756,5.36,3
|
155 |
+
11.18,13.04,0.8266,5.22,2.693,3.332,5.001,3
|
156 |
+
11.36,13.05,0.8382,5.175,2.755,4.048,5.263,3
|
157 |
+
11.19,13.05,0.8253,5.25,2.675,5.813,5.219,3
|
158 |
+
11.34,12.87,0.8596,5.053,2.849,3.347,5.003,3
|
159 |
+
12.13,13.73,0.8081,5.394,2.745,4.825,5.22,3
|
160 |
+
11.75,13.52,0.8082,5.444,2.678,4.378,5.31,3
|
161 |
+
11.49,13.22,0.8263,5.304,2.695,5.388,5.31,3
|
162 |
+
12.54,13.67,0.8425,5.451,2.879,3.082,5.491,3
|
163 |
+
12.02,13.33,0.8503,5.35,2.81,4.271,5.308,3
|
164 |
+
12.05,13.41,0.8416,5.267,2.847,4.988,5.046,3
|
165 |
+
12.55,13.57,0.8558,5.333,2.968,4.419,5.176,3
|
166 |
+
11.14,12.79,0.8558,5.011,2.794,6.388,5.049,3
|
167 |
+
12.1,13.15,0.8793,5.105,2.941,2.201,5.056,3
|
168 |
+
12.44,13.59,0.8462,5.319,2.897,4.924,5.27,3
|
169 |
+
12.15,13.45,0.8443,5.417,2.837,3.638,5.338,3
|
170 |
+
11.35,13.12,0.8291,5.176,2.668,4.337,5.132,3
|
171 |
+
11.24,13,,0.8359,5.09,2.715,3.521,5.088,3
|
172 |
+
11.02,13,,0.8189,5.325,2.701,6.735,5.163,3
|
173 |
+
11.55,13.1,0.8455,5.167,2.845,6.715,4.956,3
|
174 |
+
11.27,12.97,0.8419,5.088,2.763,4.309,5,,3
|
175 |
+
11.4,13.08,0.8375,5.136,2.763,5.588,5.089,3
|
176 |
+
10.83,12.96,0.8099,5.278,2.641,5.182,5.185,3
|
177 |
+
10.8,12.57,0.859,4.981,2.821,4.773,5.063,3
|
178 |
+
11.26,13.01,0.8355,5.186,2.71,5.335,5.092,3
|
179 |
+
10.74,12.73,0.8329,5.145,2.642,4.702,4.963,3
|
180 |
+
11.48,13.05,0.8473,5.18,2.758,5.876,5.002,3
|
181 |
+
12.21,13.47,0.8453,5.357,2.893,1.661,5.178,3
|
182 |
+
11.41,12.95,0.856,5.09,2.775,4.957,4.825,3
|
183 |
+
12.46,13.41,0.8706,5.236,3.017,4.987,5.147,3
|
184 |
+
12.19,13.36,0.8579,5.24,2.909,4.857,5.158,3
|
185 |
+
11.65,13.07,0.8575,5.108,2.85,5.209,5.135,3
|
186 |
+
12.89,13.77,0.8541,5.495,3.026,6.185,5.316,3
|
187 |
+
11.56,13.31,0.8198,5.363,2.683,4.062,5.182,3
|
188 |
+
11.81,13.45,0.8198,5.413,2.716,4.898,5.352,3
|
189 |
+
10.91,12.8,0.8372,5.088,2.675,4.179,4.956,3
|
190 |
+
11.23,12.82,0.8594,5.089,2.821,7.524,4.957,3
|
191 |
+
10.59,12.41,0.8648,4.899,2.787,4.975,4.794,3
|
192 |
+
10.93,12.8,0.839,5.046,2.717,5.398,5.045,3
|
193 |
+
11.27,12.86,0.8563,5.091,2.804,3.985,5.001,3
|
194 |
+
11.87,13.02,0.8795,5.132,2.953,3.597,5.132,3
|
195 |
+
10.82,12.83,0.8256,5.18,2.63,4.853,5.089,3
|
196 |
+
12.11,13.27,0.8639,5.236,2.975,4.132,5.012,3
|
197 |
+
12.8,13.47,0.886,5.16,3.126,4.873,4.914,3
|
198 |
+
12.79,13.53,0.8786,5.224,3.054,5.483,4.958,3
|
199 |
+
13.37,13.78,0.8849,5.32,3.128,4.67,5.091,3
|
200 |
+
12.62,13.67,0.8481,5.41,2.911,3.306,5.231,3
|
201 |
+
12.76,13.38,0.8964,5.073,3.155,2.828,4.83,3
|
202 |
+
12.38,13.44,0.8609,5.219,2.989,5.472,5.045,3
|
203 |
+
12.67,13.32,0.8977,4.984,3.135,2.3,,4.745,3
|
204 |
+
11.18,12.72,0.868,5.009,2.81,4.051,4.828,3
|
205 |
+
12.7,13.41,0.8874,5.183,3.091,8.456,5,,3
|
206 |
+
12.37,13.47,0.8567,5.204,2.96,3.919,5.001,3
|
207 |
+
12.19,13.2,0.8783,5.137,2.981,3.631,4.87,3
|
208 |
+
11.23,12.88,0.8511,5.14,2.795,4.325,5.003,3
|
209 |
+
13.2,13.66,0.8883,5.236,3.232,8.315,5.056,3
|
210 |
+
11.84,13.21,0.8521,5.175,2.836,3.598,5.044,3
|
211 |
+
12.3,13.34,0.8684,5.243,2.974,5.637,5.063,3
|
seeds.py
ADDED
@@ -0,0 +1,136 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Seeds Dataset"""
|
2 |
+
|
3 |
+
from typing import List
|
4 |
+
from functools import partial
|
5 |
+
|
6 |
+
import datasets
|
7 |
+
|
8 |
+
import pandas
|
9 |
+
|
10 |
+
|
11 |
+
VERSION = datasets.Version("1.0.0")
|
12 |
+
|
13 |
+
_ENCODING_DICS = {}
|
14 |
+
|
15 |
+
DESCRIPTION = "Seeds dataset."
|
16 |
+
_HOMEPAGE = "https://archive-beta.ics.uci.edu/dataset/78/page+blocks+classification"
|
17 |
+
_URLS = ("https://archive-beta.ics.uci.edu/dataset/78/page+blocks+classification")
|
18 |
+
_CITATION = """
|
19 |
+
@misc{misc_seeds_236,
|
20 |
+
author = {Charytanowicz,Magorzata, Niewczas,Jerzy, Kulczycki,Piotr, Kowalski,Piotr & Lukasik,Szymon},
|
21 |
+
title = {{seeds}},
|
22 |
+
year = {2012},
|
23 |
+
howpublished = {UCI Machine Learning Repository},
|
24 |
+
note = {{DOI}: \\url{10.24432/C5H30K}}
|
25 |
+
}
|
26 |
+
"""
|
27 |
+
|
28 |
+
# Dataset info
|
29 |
+
urls_per_split = {
|
30 |
+
"train": "https://huggingface.co/datasets/mstz/seeds/raw/main/seeds.csv"
|
31 |
+
}
|
32 |
+
features_types_per_config = {
|
33 |
+
"seeds": {
|
34 |
+
"area": datasets.Value("float64"),
|
35 |
+
"perimeter": datasets.Value("float64"),
|
36 |
+
"compactness": datasets.Value("float64"),
|
37 |
+
"length": datasets.Value("float64"),
|
38 |
+
"width": datasets.Value("float64"),
|
39 |
+
"asymmetry": datasets.Value("float64"),
|
40 |
+
"length_grove": datasets.Value("float64"),
|
41 |
+
"class": datasets.ClassLabel(num_classes=3),
|
42 |
+
},
|
43 |
+
"seeds_0": {
|
44 |
+
"area": datasets.Value("float64"),
|
45 |
+
"perimeter": datasets.Value("float64"),
|
46 |
+
"compactness": datasets.Value("float64"),
|
47 |
+
"length": datasets.Value("float64"),
|
48 |
+
"width": datasets.Value("float64"),
|
49 |
+
"asymmetry": datasets.Value("float64"),
|
50 |
+
"length_grove": datasets.Value("float64"),
|
51 |
+
"class": datasets.ClassLabel(num_classes=2),
|
52 |
+
},
|
53 |
+
"seeds_1": {
|
54 |
+
"area": datasets.Value("float64"),
|
55 |
+
"perimeter": datasets.Value("float64"),
|
56 |
+
"compactness": datasets.Value("float64"),
|
57 |
+
"length": datasets.Value("float64"),
|
58 |
+
"width": datasets.Value("float64"),
|
59 |
+
"asymmetry": datasets.Value("float64"),
|
60 |
+
"length_grove": datasets.Value("float64"),
|
61 |
+
"class": datasets.ClassLabel(num_classes=2),
|
62 |
+
},
|
63 |
+
"seeds_2": {
|
64 |
+
"area": datasets.Value("float64"),
|
65 |
+
"perimeter": datasets.Value("float64"),
|
66 |
+
"compactness": datasets.Value("float64"),
|
67 |
+
"length": datasets.Value("float64"),
|
68 |
+
"width": datasets.Value("float64"),
|
69 |
+
"asymmetry": datasets.Value("float64"),
|
70 |
+
"length_grove": datasets.Value("float64"),
|
71 |
+
"class": datasets.ClassLabel(num_classes=2),
|
72 |
+
},
|
73 |
+
}
|
74 |
+
features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config}
|
75 |
+
|
76 |
+
|
77 |
+
class SeedsConfig(datasets.BuilderConfig):
|
78 |
+
def __init__(self, **kwargs):
|
79 |
+
super(SeedsConfig, self).__init__(version=VERSION, **kwargs)
|
80 |
+
self.features = features_per_config[kwargs["name"]]
|
81 |
+
|
82 |
+
|
83 |
+
class Seeds(datasets.GeneratorBasedBuilder):
|
84 |
+
# dataset versions
|
85 |
+
DEFAULT_CONFIG = "seeds"
|
86 |
+
BUILDER_CONFIGS = [
|
87 |
+
SeedsConfig(name="seeds", description="Seeds for multiclass classification."),
|
88 |
+
SeedsConfig(name="seeds_0", description="Seeds for binary classification."),
|
89 |
+
SeedsConfig(name="seeds_1", description="Seeds for binary classification."),
|
90 |
+
SeedsConfig(name="seeds_2", description="Seeds for binary classification."),
|
91 |
+
|
92 |
+
]
|
93 |
+
|
94 |
+
|
95 |
+
def _info(self):
|
96 |
+
info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE,
|
97 |
+
features=features_per_config[self.config.name])
|
98 |
+
|
99 |
+
return info
|
100 |
+
|
101 |
+
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
|
102 |
+
downloads = dl_manager.download_and_extract(urls_per_split)
|
103 |
+
|
104 |
+
return [
|
105 |
+
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]}),
|
106 |
+
]
|
107 |
+
|
108 |
+
def _generate_examples(self, filepath: str):
|
109 |
+
data = pandas.read_csv(filepath)
|
110 |
+
data = self.preprocess(data)
|
111 |
+
|
112 |
+
for row_id, row in data.iterrows():
|
113 |
+
data_row = dict(row)
|
114 |
+
|
115 |
+
yield row_id, data_row
|
116 |
+
|
117 |
+
def preprocess(self, data: pandas.DataFrame) -> pandas.DataFrame:
|
118 |
+
data["class"] = data["class"].apply(lambda x: x - 1)
|
119 |
+
|
120 |
+
if self.config.name == "seeds_0":
|
121 |
+
data["decision"] = data["decision"].apply(lambda x: 1 if x == 0 else 0)
|
122 |
+
elif self.config.name == "seeds_1":
|
123 |
+
data["decision"] = data["decision"].apply(lambda x: 1 if x == 1 else 0)
|
124 |
+
elif self.config.name == "seeds_2":
|
125 |
+
data["decision"] = data["decision"].apply(lambda x: 1 if x == 2 else 0)
|
126 |
+
|
127 |
+
for feature in _ENCODING_DICS:
|
128 |
+
encoding_function = partial(self.encode, feature)
|
129 |
+
data.loc[:, feature] = data[feature].apply(encoding_function)
|
130 |
+
|
131 |
+
return data[list(features_types_per_config[self.config.name].keys())]
|
132 |
+
|
133 |
+
def encode(self, feature, value):
|
134 |
+
if feature in _ENCODING_DICS:
|
135 |
+
return _ENCODING_DICS[feature][value]
|
136 |
+
raise ValueError(f"Unknown feature: {feature}")
|