Datasets:
Tasks:
Tabular Classification
Languages:
English
"""P53 Dataset""" | |
from typing import List | |
from functools import partial | |
import datasets | |
import pandas | |
VERSION = datasets.Version("1.0.0") | |
_ENCODING_DICS = { | |
"class": { | |
"inactive": 0, | |
"active": 1 | |
} | |
} | |
DESCRIPTION = "P53 dataset." | |
_HOMEPAGE = "https://archive-beta.ics.uci.edu/dataset/170/p53" | |
_URLS = ("https://archive-beta.ics.uci.edu/dataset/170/p53") | |
_CITATION = """ | |
@misc{misc_p53_mutants_188, | |
author = {Lathrop,Richard}, | |
title = {{p53 Mutants}}, | |
year = {2010}, | |
howpublished = {UCI Machine Learning Repository}, | |
note = {{DOI}: \\url{10.24432/C5T89H}} | |
} | |
""" | |
# Dataset info | |
urls_per_split = { | |
"train": "https://huggingface.co/datasets/mstz/p53/resolve/main/p53.data" | |
} | |
features_types_per_config = { | |
"p53": {f"feature_{i}": datasets.Value("float64") for i in range(5408)} | |
} | |
features_types_per_config["p53"]["class"] = datasets.ClassLabel(num_classes=2) | |
features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config} | |
class P53Config(datasets.BuilderConfig): | |
def __init__(self, **kwargs): | |
super(P53Config, self).__init__(version=VERSION, **kwargs) | |
self.features = features_per_config[kwargs["name"]] | |
class P53(datasets.GeneratorBasedBuilder): | |
# dataset versions | |
DEFAULT_CONFIG = "p53" | |
BUILDER_CONFIGS = [ | |
P53Config(name="p53", description="P53 for binary classification.") | |
] | |
def _info(self): | |
info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE, | |
features=features_per_config[self.config.name]) | |
return info | |
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: | |
downloads = dl_manager.download_and_extract(urls_per_split) | |
return [ | |
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]}), | |
] | |
def _generate_examples(self, filepath: str): | |
data = pandas.read_csv(filepath, header=None, nrows=100) | |
data.columns = [f"feature_{i}" for i in range(5408)] + ["class"] | |
print("preprocessing..") | |
data = self.preprocess(data) | |
print("preprocessed!\n\n\n\n") | |
for row_id, row in data.iterrows(): | |
data_row = dict(row) | |
yield row_id, data_row | |
def preprocess(self, data: pandas.DataFrame) -> pandas.DataFrame: | |
for feature in _ENCODING_DICS: | |
print(f"encoding {feature}\n\n\n") | |
encoding_function = partial(self.encode, feature) | |
data.loc[:, feature] = data[feature].apply(encoding_function) | |
for feature in data.columns: | |
if feature == "class": | |
break | |
data.loc[data[feature] == "?", feature] = data[data[feature] != "?"].astype(float).mean() | |
return data[list(features_types_per_config[self.config.name].keys())] | |
def encode(self, feature, value): | |
if feature in _ENCODING_DICS: | |
return _ENCODING_DICS[feature][value] | |
raise ValueError(f"Unknown feature: {feature}") | |