ozone / ozone.py
mstz's picture
Upload ozone.py
8649b0f
raw
history blame
9.01 kB
"""Ozone: A Census Dataset"""
from typing import List
import datasets
import pandas
VERSION = datasets.Version("1.0.0")
_BASE_FEATURE_NAMES = [
"Date",
"WSR0",
"WSR1",
"WSR2",
"WSR3",
"WSR4",
"WSR5",
"WSR6",
"WSR7",
"WSR8",
"WSR9",
"WSR10",
"WSR11",
"WSR12",
"WSR13",
"WSR14",
"WSR15",
"WSR16",
"WSR17",
"WSR18",
"WSR19",
"WSR20",
"WSR21",
"WSR22",
"WSR23",
"WSR_PK",
"WSR_AV",
"T0",
"T1",
"T2",
"T3",
"T4",
"T5",
"T6",
"T7",
"T8",
"T9",
"T10",
"T11",
"T12",
"T13",
"T14",
"T15",
"T16",
"T17",
"T18",
"T19",
"T20",
"T21",
"T22",
"T23",
"T_PK",
"T_AV",
"T85",
"RH85",
"U85",
"V85",
"HT85",
"T70",
"RH70",
"U70",
"V70",
"HT70",
"T50",
"RH50",
"U50",
"V50",
"HT50",
"KI",
"TT",
"SLP",
"SLP_",
"Precp",
"Class"
]
DESCRIPTION = "Ozone dataset from the UCI ML repository."
_HOMEPAGE = "https://archive.ics.uci.edu/ml/datasets/Ozone"
_URLS = ("https://archive.ics.uci.edu/ml/datasets/Ozone")
_CITATION = """
@misc{misc_ozone_level_detection_172,
author = {Zhang,Kun, Fan,Wei & Yuan,XiaoJing},
title = {{Ozone Level Detection}},
year = {2008},
howpublished = {UCI Machine Learning Repository},
note = {{DOI}: \\url{10.24432/C5NG6W}}
}"""
# Dataset info
urls_per_split = {
"8hr": {"train": "https://huggingface.co/datasets/mstz/ozone/raw/main/eighthr.data"},
"1hr": {"train": "https://huggingface.co/datasets/mstz/ozone/raw/main/onehr.data"},
}
features_types_per_config = {
"8hr": {
"WSR0": datasets.Value("float64"),
"WSR1": datasets.Value("float64"),
"WSR2": datasets.Value("float64"),
"WSR3": datasets.Value("float64"),
"WSR4": datasets.Value("float64"),
"WSR5": datasets.Value("float64"),
"WSR6": datasets.Value("float64"),
"WSR7": datasets.Value("float64"),
"WSR8": datasets.Value("float64"),
"WSR9": datasets.Value("float64"),
"WSR10": datasets.Value("float64"),
"WSR11": datasets.Value("float64"),
"WSR12": datasets.Value("float64"),
"WSR13": datasets.Value("float64"),
"WSR14": datasets.Value("float64"),
"WSR15": datasets.Value("float64"),
"WSR16": datasets.Value("float64"),
"WSR17": datasets.Value("float64"),
"WSR18": datasets.Value("float64"),
"WSR19": datasets.Value("float64"),
"WSR20": datasets.Value("float64"),
"WSR21": datasets.Value("float64"),
"WSR22": datasets.Value("float64"),
"WSR23": datasets.Value("float64"),
"WSR_PK": datasets.Value("float64"),
"WSR_AV": datasets.Value("float64"),
"T0": datasets.Value("float64"),
"T1": datasets.Value("float64"),
"T2": datasets.Value("float64"),
"T3": datasets.Value("float64"),
"T4": datasets.Value("float64"),
"T5": datasets.Value("float64"),
"T6": datasets.Value("float64"),
"T7": datasets.Value("float64"),
"T8": datasets.Value("float64"),
"T9": datasets.Value("float64"),
"T10": datasets.Value("float64"),
"T11": datasets.Value("float64"),
"T12": datasets.Value("float64"),
"T13": datasets.Value("float64"),
"T14": datasets.Value("float64"),
"T15": datasets.Value("float64"),
"T16": datasets.Value("float64"),
"T17": datasets.Value("float64"),
"T18": datasets.Value("float64"),
"T19": datasets.Value("float64"),
"T20": datasets.Value("float64"),
"T21": datasets.Value("float64"),
"T22": datasets.Value("float64"),
"T23": datasets.Value("float64"),
"T_PK": datasets.Value("float64"),
"T_AV": datasets.Value("float64"),
"T85": datasets.Value("float64"),
"RH85": datasets.Value("float64"),
"U85": datasets.Value("float64"),
"V85": datasets.Value("float64"),
"HT85": datasets.Value("float64"),
"T70": datasets.Value("float64"),
"RH70": datasets.Value("float64"),
"U70": datasets.Value("float64"),
"V70": datasets.Value("float64"),
"HT70": datasets.Value("float64"),
"T50": datasets.Value("float64"),
"RH50": datasets.Value("float64"),
"U50": datasets.Value("float64"),
"V50": datasets.Value("float64"),
"HT50": datasets.Value("float64"),
"KI": datasets.Value("float64"),
"TT": datasets.Value("float64"),
"SLP": datasets.Value("float64"),
"SLP_": datasets.Value("float64"),
"Precp": datasets.Value("float64"),
"Class": datasets.ClassLabel(num_classes=2, names=("no", "yes"))
},
"1hr": {
"WSR0": datasets.Value("float64"),
"WSR1": datasets.Value("float64"),
"WSR2": datasets.Value("float64"),
"WSR3": datasets.Value("float64"),
"WSR4": datasets.Value("float64"),
"WSR5": datasets.Value("float64"),
"WSR6": datasets.Value("float64"),
"WSR7": datasets.Value("float64"),
"WSR8": datasets.Value("float64"),
"WSR9": datasets.Value("float64"),
"WSR10": datasets.Value("float64"),
"WSR11": datasets.Value("float64"),
"WSR12": datasets.Value("float64"),
"WSR13": datasets.Value("float64"),
"WSR14": datasets.Value("float64"),
"WSR15": datasets.Value("float64"),
"WSR16": datasets.Value("float64"),
"WSR17": datasets.Value("float64"),
"WSR18": datasets.Value("float64"),
"WSR19": datasets.Value("float64"),
"WSR20": datasets.Value("float64"),
"WSR21": datasets.Value("float64"),
"WSR22": datasets.Value("float64"),
"WSR23": datasets.Value("float64"),
"WSR_PK": datasets.Value("float64"),
"WSR_AV": datasets.Value("float64"),
"T0": datasets.Value("float64"),
"T1": datasets.Value("float64"),
"T2": datasets.Value("float64"),
"T3": datasets.Value("float64"),
"T4": datasets.Value("float64"),
"T5": datasets.Value("float64"),
"T6": datasets.Value("float64"),
"T7": datasets.Value("float64"),
"T8": datasets.Value("float64"),
"T9": datasets.Value("float64"),
"T10": datasets.Value("float64"),
"T11": datasets.Value("float64"),
"T12": datasets.Value("float64"),
"T13": datasets.Value("float64"),
"T14": datasets.Value("float64"),
"T15": datasets.Value("float64"),
"T16": datasets.Value("float64"),
"T17": datasets.Value("float64"),
"T18": datasets.Value("float64"),
"T19": datasets.Value("float64"),
"T20": datasets.Value("float64"),
"T21": datasets.Value("float64"),
"T22": datasets.Value("float64"),
"T23": datasets.Value("float64"),
"T_PK": datasets.Value("float64"),
"T_AV": datasets.Value("float64"),
"T85": datasets.Value("float64"),
"RH85": datasets.Value("float64"),
"U85": datasets.Value("float64"),
"V85": datasets.Value("float64"),
"HT85": datasets.Value("float64"),
"T70": datasets.Value("float64"),
"RH70": datasets.Value("float64"),
"U70": datasets.Value("float64"),
"V70": datasets.Value("float64"),
"HT70": datasets.Value("float64"),
"T50": datasets.Value("float64"),
"RH50": datasets.Value("float64"),
"U50": datasets.Value("float64"),
"V50": datasets.Value("float64"),
"HT50": datasets.Value("float64"),
"KI": datasets.Value("float64"),
"TT": datasets.Value("float64"),
"SLP": datasets.Value("float64"),
"SLP_": datasets.Value("float64"),
"Precp": datasets.Value("float64"),
"Class": datasets.ClassLabel(num_classes=2, names=("no", "yes"))
},
}
features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config}
class OzoneConfig(datasets.BuilderConfig):
def __init__(self, **kwargs):
super(OzoneConfig, self).__init__(version=VERSION, **kwargs)
self.features = features_per_config[kwargs["name"]]
class Ozone(datasets.GeneratorBasedBuilder):
# dataset versions
DEFAULT_CONFIG = "8hr"
BUILDER_CONFIGS = [
OzoneConfig(name="8hr",
description="Ozone for binary classification."),
OzoneConfig(name="1hr",
description="Ozone for binary classification.")
]
def _info(self):
info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE,
features=features_per_config[self.config.name])
return info
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
downloads = dl_manager.download_and_extract(urls_per_split)
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads[self.config.name]["train"]})
]
def _generate_examples(self, filepath: str):
data = pandas.read_csv(filepath)
data.drop("Date", axis="columns", inplace=True)
data.loc[:, "Class"] = data.Class.astype(int)
data = data[~(data.isin(["?"]).any(axis=1))]
data = data.infer_objects()
for row_id, row in data.iterrows():
data_row = dict(row)
yield row_id, data_row