|
from typing import List |
|
|
|
import datasets |
|
|
|
import pandas |
|
|
|
|
|
VERSION = datasets.Version("1.0.0") |
|
|
|
|
|
DESCRIPTION = "House16 dataset from the OpenML repository." |
|
_HOMEPAGE = "https://www.openml.org/search?type=data&sort=runs&id=722&status=active" |
|
_URLS = ("https://www.openml.org/search?type=data&sort=runs&id=722&status=active") |
|
_CITATION = """""" |
|
|
|
|
|
urls_per_split = { |
|
"train": "https://huggingface.co/datasets/mstz/house16/raw/main/house_16H.csv" |
|
} |
|
features_types_per_config = { |
|
"house16": { |
|
"P1": datasets.Value("int64"), |
|
"P5p1": datasets.Value("float64"), |
|
"P6p2": datasets.Value("float64"), |
|
"P11p4": datasets.Value("float64"), |
|
"P14p9": datasets.Value("float64"), |
|
"P15p1": datasets.Value("float64"), |
|
"P15p3": datasets.Value("float64"), |
|
"P16p2": datasets.Value("float64"), |
|
"P18p2": datasets.Value("float64"), |
|
"P27p4": datasets.Value("float64"), |
|
"H2p2": datasets.Value("float64"), |
|
"H8p2": datasets.Value("float64"), |
|
"H10p1": datasets.Value("float64"), |
|
"H13p1": datasets.Value("float64"), |
|
"H18pA": datasets.Value("float64"), |
|
"H40p4": datasets.Value("float64"), |
|
"class": datasets.ClassLabel(num_classes=2, names=("no", "yes")) |
|
} |
|
|
|
} |
|
features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config} |
|
|
|
|
|
class House16Config(datasets.BuilderConfig): |
|
def __init__(self, **kwargs): |
|
super(House16Config, self).__init__(version=VERSION, **kwargs) |
|
self.features = features_per_config[kwargs["name"]] |
|
|
|
|
|
class House16(datasets.GeneratorBasedBuilder): |
|
|
|
DEFAULT_CONFIG = "house16" |
|
BUILDER_CONFIGS = [ |
|
House16Config(name="house16", |
|
description="House16 for binary classification.") |
|
] |
|
|
|
|
|
def _info(self): |
|
info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE, |
|
features=features_per_config[self.config.name]) |
|
|
|
return info |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
downloads = dl_manager.download_and_extract(urls_per_split) |
|
|
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]}) |
|
] |
|
|
|
def _generate_examples(self, filepath: str): |
|
data = pandas.read_csv(filepath) |
|
|
|
for row_id, row in data.iterrows(): |
|
data_row = dict(row) |
|
|
|
yield row_id, data_row |
|
|