mstz commited on
Commit
761febb
1 Parent(s): d2c927b

Upload 7 files

Browse files
README.md CHANGED
@@ -1,3 +1,37 @@
1
  ---
2
- license: cc-by-4.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ language:
3
+ - en
4
+ tags:
5
+ - heart
6
+ - tabular_classification
7
+ - binary_classification
8
+ pretty_name: Heart
9
+ size_categories:
10
+ - 100<n<1K
11
+ task_categories: # Full list at https://github.com/huggingface/hub-docs/blob/main/js/src/lib/interfaces/Types.ts
12
+ - tabular-classification
13
+ configs:
14
+ - cleveland
15
+ - va
16
+ - switzerland
17
+ - hungary
18
  ---
19
+ # Heart
20
+ The [Heart dataset](https://archive.ics.uci.edu/ml/datasets/Heart) from the [UCI ML repository](https://archive.ics.uci.edu/ml/datasets).
21
+ Does the patient have heart disease?
22
+
23
+ # Configurations and tasks
24
+ | **Configuration** | **Task** |
25
+ |-------------------|---------------------------|
26
+ | cleveland | Binary classification |
27
+ | va | Binary classification |
28
+ | switzerland | Binary classification |
29
+ | hungary | Binary classification |
30
+
31
+
32
+ # Usage
33
+ ```python
34
+ from datasets import load_dataset
35
+
36
+ dataset = load_dataset("mstz/heart", "cleveland")["train"]
37
+ ```
heart-disease.names ADDED
@@ -0,0 +1,245 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Publication Request:
2
+ >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
3
+ This file describes the contents of the heart-disease directory.
4
+
5
+ This directory contains 4 databases concerning heart disease diagnosis.
6
+ All attributes are numeric-valued. The data was collected from the
7
+ four following locations:
8
+
9
+ 1. Cleveland Clinic Foundation (cleveland.data)
10
+ 2. Hungarian Institute of Cardiology, Budapest (hungarian.data)
11
+ 3. V.A. Medical Center, Long Beach, CA (long-beach-va.data)
12
+ 4. University Hospital, Zurich, Switzerland (switzerland.data)
13
+
14
+ Each database has the same instance format. While the databases have 76
15
+ raw attributes, only 14 of them are actually used. Thus I've taken the
16
+ liberty of making 2 copies of each database: one with all the attributes
17
+ and 1 with the 14 attributes actually used in past experiments.
18
+
19
+ The authors of the databases have requested:
20
+
21
+ ...that any publications resulting from the use of the data include the
22
+ names of the principal investigator responsible for the data collection
23
+ at each institution. They would be:
24
+
25
+ 1. Hungarian Institute of Cardiology. Budapest: Andras Janosi, M.D.
26
+ 2. University Hospital, Zurich, Switzerland: William Steinbrunn, M.D.
27
+ 3. University Hospital, Basel, Switzerland: Matthias Pfisterer, M.D.
28
+ 4. V.A. Medical Center, Long Beach and Cleveland Clinic Foundation:
29
+ Robert Detrano, M.D., Ph.D.
30
+
31
+ Thanks in advance for abiding by this request.
32
+
33
+ David Aha
34
+ July 22, 1988
35
+ >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
36
+
37
+ 1. Title: Heart Disease Databases
38
+
39
+ 2. Source Information:
40
+ (a) Creators:
41
+ -- 1. Hungarian Institute of Cardiology. Budapest: Andras Janosi, M.D.
42
+ -- 2. University Hospital, Zurich, Switzerland: William Steinbrunn, M.D.
43
+ -- 3. University Hospital, Basel, Switzerland: Matthias Pfisterer, M.D.
44
+ -- 4. V.A. Medical Center, Long Beach and Cleveland Clinic Foundation:
45
+ Robert Detrano, M.D., Ph.D.
46
+ (b) Donor: David W. Aha (aha@ics.uci.edu) (714) 856-8779
47
+ (c) Date: July, 1988
48
+
49
+ 3. Past Usage:
50
+ 1. Detrano,~R., Janosi,~A., Steinbrunn,~W., Pfisterer,~M., Schmid,~J.,
51
+ Sandhu,~S., Guppy,~K., Lee,~S., \& Froelicher,~V. (1989). {\it
52
+ International application of a new probability algorithm for the
53
+ diagnosis of coronary artery disease.} {\it American Journal of
54
+ Cardiology}, {\it 64},304--310.
55
+ -- International Probability Analysis
56
+ -- Address: Robert Detrano, M.D.
57
+ Cardiology 111-C
58
+ V.A. Medical Center
59
+ 5901 E. 7th Street
60
+ Long Beach, CA 90028
61
+ -- Results in percent accuracy: (for 0.5 probability threshold)
62
+ Data Name: CDF CADENZA
63
+ -- Hungarian 77 74
64
+ Long beach 79 77
65
+ Swiss 81 81
66
+ -- Approximately a 77% correct classification accuracy with a
67
+ logistic-regression-derived discriminant function
68
+ 2. David W. Aha & Dennis Kibler
69
+ --
70
+
71
+
72
+ -- Instance-based prediction of heart-disease presence with the
73
+ Cleveland database
74
+ -- NTgrowth: 77.0% accuracy
75
+ -- C4: 74.8% accuracy
76
+ 3. John Gennari
77
+ -- Gennari, J.~H., Langley, P, \& Fisher, D. (1989). Models of
78
+ incremental concept formation. {\it Artificial Intelligence, 40},
79
+ 11--61.
80
+ -- Results:
81
+ -- The CLASSIT conceptual clustering system achieved a 78.9% accuracy
82
+ on the Cleveland database.
83
+
84
+ 4. Relevant Information:
85
+ This database contains 76 attributes, but all published experiments
86
+ refer to using a subset of 14 of them. In particular, the Cleveland
87
+ database is the only one that has been used by ML researchers to
88
+ this date. The "goal" field refers to the presence of heart disease
89
+ in the patient. It is integer valued from 0 (no presence) to 4.
90
+ Experiments with the Cleveland database have concentrated on simply
91
+ attempting to distinguish presence (values 1,2,3,4) from absence (value
92
+ 0).
93
+
94
+ The names and social security numbers of the patients were recently
95
+ removed from the database, replaced with dummy values.
96
+
97
+ One file has been "processed", that one containing the Cleveland
98
+ database. All four unprocessed files also exist in this directory.
99
+
100
+ 5. Number of Instances:
101
+ Database: # of instances:
102
+ Cleveland: 303
103
+ Hungarian: 294
104
+ Switzerland: 123
105
+ Long Beach VA: 200
106
+
107
+ 6. Number of Attributes: 76 (including the predicted attribute)
108
+
109
+ 7. Attribute Information:
110
+ -- Only 14 used
111
+ -- 1. #3 (age)
112
+ -- 2. #4 (sex)
113
+ -- 3. #9 (cp)
114
+ -- 4. #10 (trestbps)
115
+ -- 5. #12 (chol)
116
+ -- 6. #16 (fbs)
117
+ -- 7. #19 (restecg)
118
+ -- 8. #32 (thalach)
119
+ -- 9. #38 (exang)
120
+ -- 10. #40 (oldpeak)
121
+ -- 11. #41 (slope)
122
+ -- 12. #44 (ca)
123
+ -- 13. #51 (thal)
124
+ -- 14. #58 (num) (the predicted attribute)
125
+
126
+ -- Complete attribute documentation:
127
+ 1 id: patient identification number
128
+ 2 ccf: social security number (I replaced this with a dummy value of 0)
129
+ 3 age: age in years
130
+ 4 sex: sex (1 = male; 0 = female)
131
+ 5 painloc: chest pain location (1 = substernal; 0 = otherwise)
132
+ 6 painexer (1 = provoked by exertion; 0 = otherwise)
133
+ 7 relrest (1 = relieved after rest; 0 = otherwise)
134
+ 8 pncaden (sum of 5, 6, and 7)
135
+ 9 cp: chest pain type
136
+ -- Value 1: typical angina
137
+ -- Value 2: atypical angina
138
+ -- Value 3: non-anginal pain
139
+ -- Value 4: asymptomatic
140
+ 10 trestbps: resting blood pressure (in mm Hg on admission to the
141
+ hospital)
142
+ 11 htn
143
+ 12 chol: serum cholestoral in mg/dl
144
+ 13 smoke: I believe this is 1 = yes; 0 = no (is or is not a smoker)
145
+ 14 cigs (cigarettes per day)
146
+ 15 years (number of years as a smoker)
147
+ 16 fbs: (fasting blood sugar > 120 mg/dl) (1 = true; 0 = false)
148
+ 17 dm (1 = history of diabetes; 0 = no such history)
149
+ 18 famhist: family history of coronary artery disease (1 = yes; 0 = no)
150
+ 19 restecg: resting electrocardiographic results
151
+ -- Value 0: normal
152
+ -- Value 1: having ST-T wave abnormality (T wave inversions and/or ST
153
+ elevation or depression of > 0.05 mV)
154
+ -- Value 2: showing probable or definite left ventricular hypertrophy
155
+ by Estes' criteria
156
+ 20 ekgmo (month of exercise ECG reading)
157
+ 21 ekgday(day of exercise ECG reading)
158
+ 22 ekgyr (year of exercise ECG reading)
159
+ 23 dig (digitalis used furing exercise ECG: 1 = yes; 0 = no)
160
+ 24 prop (Beta blocker used during exercise ECG: 1 = yes; 0 = no)
161
+ 25 nitr (nitrates used during exercise ECG: 1 = yes; 0 = no)
162
+ 26 pro (calcium channel blocker used during exercise ECG: 1 = yes; 0 = no)
163
+ 27 diuretic (diuretic used used during exercise ECG: 1 = yes; 0 = no)
164
+ 28 proto: exercise protocol
165
+ 1 = Bruce
166
+ 2 = Kottus
167
+ 3 = McHenry
168
+ 4 = fast Balke
169
+ 5 = Balke
170
+ 6 = Noughton
171
+ 7 = bike 150 kpa min/min (Not sure if "kpa min/min" is what was
172
+ written!)
173
+ 8 = bike 125 kpa min/min
174
+ 9 = bike 100 kpa min/min
175
+ 10 = bike 75 kpa min/min
176
+ 11 = bike 50 kpa min/min
177
+ 12 = arm ergometer
178
+ 29 thaldur: duration of exercise test in minutes
179
+ 30 thaltime: time when ST measure depression was noted
180
+ 31 met: mets achieved
181
+ 32 thalach: maximum heart rate achieved
182
+ 33 thalrest: resting heart rate
183
+ 34 tpeakbps: peak exercise blood pressure (first of 2 parts)
184
+ 35 tpeakbpd: peak exercise blood pressure (second of 2 parts)
185
+ 36 dummy
186
+ 37 trestbpd: resting blood pressure
187
+ 38 exang: exercise induced angina (1 = yes; 0 = no)
188
+ 39 xhypo: (1 = yes; 0 = no)
189
+ 40 oldpeak = ST depression induced by exercise relative to rest
190
+ 41 slope: the slope of the peak exercise ST segment
191
+ -- Value 1: upsloping
192
+ -- Value 2: flat
193
+ -- Value 3: downsloping
194
+ 42 rldv5: height at rest
195
+ 43 rldv5e: height at peak exercise
196
+ 44 ca: number of major vessels (0-3) colored by flourosopy
197
+ 45 restckm: irrelevant
198
+ 46 exerckm: irrelevant
199
+ 47 restef: rest raidonuclid (sp?) ejection fraction
200
+ 48 restwm: rest wall (sp?) motion abnormality
201
+ 0 = none
202
+ 1 = mild or moderate
203
+ 2 = moderate or severe
204
+ 3 = akinesis or dyskmem (sp?)
205
+ 49 exeref: exercise radinalid (sp?) ejection fraction
206
+ 50 exerwm: exercise wall (sp?) motion
207
+ 51 thal: 3 = normal; 6 = fixed defect; 7 = reversable defect
208
+ 52 thalsev: not used
209
+ 53 thalpul: not used
210
+ 54 earlobe: not used
211
+ 55 cmo: month of cardiac cath (sp?) (perhaps "call")
212
+ 56 cday: day of cardiac cath (sp?)
213
+ 57 cyr: year of cardiac cath (sp?)
214
+ 58 num: diagnosis of heart disease (angiographic disease status)
215
+ -- Value 0: < 50% diameter narrowing
216
+ -- Value 1: > 50% diameter narrowing
217
+ (in any major vessel: attributes 59 through 68 are vessels)
218
+ 59 lmt
219
+ 60 ladprox
220
+ 61 laddist
221
+ 62 diag
222
+ 63 cxmain
223
+ 64 ramus
224
+ 65 om1
225
+ 66 om2
226
+ 67 rcaprox
227
+ 68 rcadist
228
+ 69 lvx1: not used
229
+ 70 lvx2: not used
230
+ 71 lvx3: not used
231
+ 72 lvx4: not used
232
+ 73 lvf: not used
233
+ 74 cathef: not used
234
+ 75 junk: not used
235
+ 76 name: last name of patient
236
+ (I replaced this with the dummy string "name")
237
+
238
+ 9. Missing Attribute Values: Several. Distinguished with value -9.0.
239
+
240
+ 10. Class Distribution:
241
+ Database: 0 1 2 3 4 Total
242
+ Cleveland: 164 55 36 35 13 303
243
+ Hungarian: 188 37 26 28 15 294
244
+ Switzerland: 8 48 32 30 5 123
245
+ Long Beach VA: 51 56 41 42 10 200
heart.py ADDED
@@ -0,0 +1,159 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Heart"""
2
+
3
+ from typing import List
4
+ from functools import partial
5
+
6
+ import datasets
7
+
8
+ import pandas
9
+
10
+
11
+ VERSION = datasets.Version("1.0.0")
12
+ _BASE_FEATURE_NAMES = [
13
+ "age"
14
+ "is_male"
15
+ "type_of_chest_pain"
16
+ "resting_blood_pressure"
17
+ "serum_cholesterol"
18
+ "fasting_blood_sugar"
19
+ "rest_electrocardiographic_type"
20
+ "maximum_heart_rate"
21
+ "has_exercise_induced_angina"
22
+ "depression_induced_by_exercise"
23
+ "slope_of_peak_exercise"
24
+ "number_of_major_vessels_colored_by_flourosopy"
25
+ "thal"
26
+ "has_hearth_disease"
27
+ ]
28
+
29
+ DESCRIPTION = "Heart dataset from the UCI ML repository."
30
+ _HOMEPAGE = "https://archive.ics.uci.edu/ml/datasets/Heart"
31
+ _URLS = ("https://huggingface.co/datasets/mstz/heart/raw/heart.csv")
32
+ _CITATION = """
33
+ @misc{misc_heart_disease_45,
34
+ author = {Janosi,Andras, Steinbrunn,William, Pfisterer,Matthias, Detrano,Robert & M.D.,M.D.},
35
+ title = {{Heart Disease}},
36
+ year = {1988},
37
+ howpublished = {UCI Machine Learning Repository},
38
+ note = {{DOI}: \\url{10.24432/C52P4X}}
39
+ }"""
40
+
41
+ # Dataset info
42
+ urls_per_split = {
43
+ "cleveland": {"train": "https://huggingface.co/datasets/mstz/heart/raw/main/processed.cleveland.data"}
44
+ "hungary": {"train": "https://huggingface.co/datasets/mstz/heart/raw/main/processed.hungarian.data"}
45
+ "switzerland": {"train": "https://huggingface.co/datasets/mstz/heart/raw/main/processed.switzerland.data"}
46
+ "va": {"train": "https://huggingface.co/datasets/mstz/heart/raw/main/processed.va.data"}
47
+ }
48
+ features_types_per_config = {
49
+ "cleveland": {
50
+ "age": datasets.Value("int8")
51
+ "is_male": datasets.Value("bool")
52
+ "type_of_chest_pain": datasets.Value("string")
53
+ "resting_blood_pressure": datasets.Value("float32")
54
+ "serum_cholesterol": datasets.Value("float32")
55
+ "fasting_blood_sugar": datasets.Value("float32")
56
+ "rest_electrocardiographic_type": datasets.Value("string")
57
+ "maximum_heart_rate": datasets.Value("float32")
58
+ "has_exercise_induced_angina": datasets.Value("bool")
59
+ "depression_induced_by_exercise": datasets.Value("float32")
60
+ "slope_of_peak_exercise": datasets.Value("float32")
61
+ "number_of_major_vessels_colored_by_flourosopy": datasets.Value("int16")
62
+ "thal": datasets.Value("float32")
63
+ "has_hearth_disease": datasets.ClassLabel(num_classes=2, names=("no", "yes"))
64
+ },
65
+ "va": {
66
+ "age": datasets.Value("int8")
67
+ "is_male": datasets.Value("bool")
68
+ "type_of_chest_pain": datasets.Value("string")
69
+ "resting_blood_pressure": datasets.Value("float32")
70
+ "serum_cholesterol": datasets.Value("float32")
71
+ "fasting_blood_sugar": datasets.Value("float32")
72
+ "rest_electrocardiographic_type": datasets.Value("string")
73
+ "maximum_heart_rate": datasets.Value("float32")
74
+ "has_exercise_induced_angina": datasets.Value("bool")
75
+ "depression_induced_by_exercise": datasets.Value("float32")
76
+ "slope_of_peak_exercise": datasets.Value("float32")
77
+ "number_of_major_vessels_colored_by_flourosopy": datasets.Value("int16")
78
+ "thal": datasets.Value("float32")
79
+ "has_hearth_disease": datasets.ClassLabel(num_classes=2, names=("no", "yes"))
80
+ },
81
+ "switzerland": {
82
+ "age": datasets.Value("int8")
83
+ "is_male": datasets.Value("bool")
84
+ "type_of_chest_pain": datasets.Value("string")
85
+ "resting_blood_pressure": datasets.Value("float32")
86
+ "serum_cholesterol": datasets.Value("float32")
87
+ "fasting_blood_sugar": datasets.Value("float32")
88
+ "rest_electrocardiographic_type": datasets.Value("string")
89
+ "maximum_heart_rate": datasets.Value("float32")
90
+ "has_exercise_induced_angina": datasets.Value("bool")
91
+ "depression_induced_by_exercise": datasets.Value("float32")
92
+ "slope_of_peak_exercise": datasets.Value("float32")
93
+ "number_of_major_vessels_colored_by_flourosopy": datasets.Value("int16")
94
+ "thal": datasets.Value("float32")
95
+ "has_hearth_disease": datasets.ClassLabel(num_classes=2, names=("no", "yes"))
96
+ },
97
+ "hungary": {
98
+ "age": datasets.Value("int8")
99
+ "is_male": datasets.Value("bool")
100
+ "type_of_chest_pain": datasets.Value("string")
101
+ "resting_blood_pressure": datasets.Value("float32")
102
+ "serum_cholesterol": datasets.Value("float32")
103
+ "fasting_blood_sugar": datasets.Value("float32")
104
+ "rest_electrocardiographic_type": datasets.Value("string")
105
+ "maximum_heart_rate": datasets.Value("float32")
106
+ "has_exercise_induced_angina": datasets.Value("bool")
107
+ "depression_induced_by_exercise": datasets.Value("float32")
108
+ "slope_of_peak_exercise": datasets.Value("float32")
109
+ "number_of_major_vessels_colored_by_flourosopy": datasets.Value("int16")
110
+ "thal": datasets.Value("float32")
111
+ "has_hearth_disease": datasets.ClassLabel(num_classes=2, names=("no", "yes"))
112
+ },
113
+ }
114
+ features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config}
115
+
116
+
117
+ class HeartConfig(datasets.BuilderConfig):
118
+ def __init__(self, **kwargs):
119
+ super(HeartConfig, self).__init__(version=VERSION, **kwargs)
120
+ self.features = features_per_config[kwargs["name"]]
121
+
122
+
123
+ class Heart(datasets.GeneratorBasedBuilder):
124
+ # dataset versions
125
+ DEFAULT_CONFIG = "cleveland"
126
+ BUILDER_CONFIGS = [
127
+ HeartConfig(name="cleveland",
128
+ description="Heart for binary classification, dataset."),
129
+ HeartConfig(name="va",
130
+ description="Heart for binary classification, va dataset."),
131
+ HeartConfig(name="switzerland",
132
+ description="Heart for binary classification, switzerland dataset."),
133
+ HeartConfig(name="hungary",
134
+ description="Heart for binary classification, hungary dataset.")
135
+ ]
136
+
137
+
138
+ def _info(self):
139
+ info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE,
140
+ features=features_per_config[self.config.name])
141
+
142
+ return info
143
+
144
+ def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
145
+ downloads = dl_manager.download_and_extract(urls_per_split)
146
+
147
+ return [
148
+ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads[self.config.name][self.config.name]["train"]})
149
+ ]
150
+
151
+ def _generate_examples(self, filepath: str):
152
+ data = pandas.read_csv(filepath)
153
+ data.columns = _BASE_FEATURE_NAMES
154
+ data = self.preprocess(data, config=self.config.name)
155
+
156
+ for row_id, row in data.iterrows():
157
+ data_row = dict(row)
158
+
159
+ yield row_id, data_row
processed.cleveland.data ADDED
@@ -0,0 +1,303 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 63.0,1.0,1.0,145.0,233.0,1.0,2.0,150.0,0.0,2.3,3.0,0.0,6.0,0
2
+ 67.0,1.0,4.0,160.0,286.0,0.0,2.0,108.0,1.0,1.5,2.0,3.0,3.0,2
3
+ 67.0,1.0,4.0,120.0,229.0,0.0,2.0,129.0,1.0,2.6,2.0,2.0,7.0,1
4
+ 37.0,1.0,3.0,130.0,250.0,0.0,0.0,187.0,0.0,3.5,3.0,0.0,3.0,0
5
+ 41.0,0.0,2.0,130.0,204.0,0.0,2.0,172.0,0.0,1.4,1.0,0.0,3.0,0
6
+ 56.0,1.0,2.0,120.0,236.0,0.0,0.0,178.0,0.0,0.8,1.0,0.0,3.0,0
7
+ 62.0,0.0,4.0,140.0,268.0,0.0,2.0,160.0,0.0,3.6,3.0,2.0,3.0,3
8
+ 57.0,0.0,4.0,120.0,354.0,0.0,0.0,163.0,1.0,0.6,1.0,0.0,3.0,0
9
+ 63.0,1.0,4.0,130.0,254.0,0.0,2.0,147.0,0.0,1.4,2.0,1.0,7.0,2
10
+ 53.0,1.0,4.0,140.0,203.0,1.0,2.0,155.0,1.0,3.1,3.0,0.0,7.0,1
11
+ 57.0,1.0,4.0,140.0,192.0,0.0,0.0,148.0,0.0,0.4,2.0,0.0,6.0,0
12
+ 56.0,0.0,2.0,140.0,294.0,0.0,2.0,153.0,0.0,1.3,2.0,0.0,3.0,0
13
+ 56.0,1.0,3.0,130.0,256.0,1.0,2.0,142.0,1.0,0.6,2.0,1.0,6.0,2
14
+ 44.0,1.0,2.0,120.0,263.0,0.0,0.0,173.0,0.0,0.0,1.0,0.0,7.0,0
15
+ 52.0,1.0,3.0,172.0,199.0,1.0,0.0,162.0,0.0,0.5,1.0,0.0,7.0,0
16
+ 57.0,1.0,3.0,150.0,168.0,0.0,0.0,174.0,0.0,1.6,1.0,0.0,3.0,0
17
+ 48.0,1.0,2.0,110.0,229.0,0.0,0.0,168.0,0.0,1.0,3.0,0.0,7.0,1
18
+ 54.0,1.0,4.0,140.0,239.0,0.0,0.0,160.0,0.0,1.2,1.0,0.0,3.0,0
19
+ 48.0,0.0,3.0,130.0,275.0,0.0,0.0,139.0,0.0,0.2,1.0,0.0,3.0,0
20
+ 49.0,1.0,2.0,130.0,266.0,0.0,0.0,171.0,0.0,0.6,1.0,0.0,3.0,0
21
+ 64.0,1.0,1.0,110.0,211.0,0.0,2.0,144.0,1.0,1.8,2.0,0.0,3.0,0
22
+ 58.0,0.0,1.0,150.0,283.0,1.0,2.0,162.0,0.0,1.0,1.0,0.0,3.0,0
23
+ 58.0,1.0,2.0,120.0,284.0,0.0,2.0,160.0,0.0,1.8,2.0,0.0,3.0,1
24
+ 58.0,1.0,3.0,132.0,224.0,0.0,2.0,173.0,0.0,3.2,1.0,2.0,7.0,3
25
+ 60.0,1.0,4.0,130.0,206.0,0.0,2.0,132.0,1.0,2.4,2.0,2.0,7.0,4
26
+ 50.0,0.0,3.0,120.0,219.0,0.0,0.0,158.0,0.0,1.6,2.0,0.0,3.0,0
27
+ 58.0,0.0,3.0,120.0,340.0,0.0,0.0,172.0,0.0,0.0,1.0,0.0,3.0,0
28
+ 66.0,0.0,1.0,150.0,226.0,0.0,0.0,114.0,0.0,2.6,3.0,0.0,3.0,0
29
+ 43.0,1.0,4.0,150.0,247.0,0.0,0.0,171.0,0.0,1.5,1.0,0.0,3.0,0
30
+ 40.0,1.0,4.0,110.0,167.0,0.0,2.0,114.0,1.0,2.0,2.0,0.0,7.0,3
31
+ 69.0,0.0,1.0,140.0,239.0,0.0,0.0,151.0,0.0,1.8,1.0,2.0,3.0,0
32
+ 60.0,1.0,4.0,117.0,230.0,1.0,0.0,160.0,1.0,1.4,1.0,2.0,7.0,2
33
+ 64.0,1.0,3.0,140.0,335.0,0.0,0.0,158.0,0.0,0.0,1.0,0.0,3.0,1
34
+ 59.0,1.0,4.0,135.0,234.0,0.0,0.0,161.0,0.0,0.5,2.0,0.0,7.0,0
35
+ 44.0,1.0,3.0,130.0,233.0,0.0,0.0,179.0,1.0,0.4,1.0,0.0,3.0,0
36
+ 42.0,1.0,4.0,140.0,226.0,0.0,0.0,178.0,0.0,0.0,1.0,0.0,3.0,0
37
+ 43.0,1.0,4.0,120.0,177.0,0.0,2.0,120.0,1.0,2.5,2.0,0.0,7.0,3
38
+ 57.0,1.0,4.0,150.0,276.0,0.0,2.0,112.0,1.0,0.6,2.0,1.0,6.0,1
39
+ 55.0,1.0,4.0,132.0,353.0,0.0,0.0,132.0,1.0,1.2,2.0,1.0,7.0,3
40
+ 61.0,1.0,3.0,150.0,243.0,1.0,0.0,137.0,1.0,1.0,2.0,0.0,3.0,0
41
+ 65.0,0.0,4.0,150.0,225.0,0.0,2.0,114.0,0.0,1.0,2.0,3.0,7.0,4
42
+ 40.0,1.0,1.0,140.0,199.0,0.0,0.0,178.0,1.0,1.4,1.0,0.0,7.0,0
43
+ 71.0,0.0,2.0,160.0,302.0,0.0,0.0,162.0,0.0,0.4,1.0,2.0,3.0,0
44
+ 59.0,1.0,3.0,150.0,212.0,1.0,0.0,157.0,0.0,1.6,1.0,0.0,3.0,0
45
+ 61.0,0.0,4.0,130.0,330.0,0.0,2.0,169.0,0.0,0.0,1.0,0.0,3.0,1
46
+ 58.0,1.0,3.0,112.0,230.0,0.0,2.0,165.0,0.0,2.5,2.0,1.0,7.0,4
47
+ 51.0,1.0,3.0,110.0,175.0,0.0,0.0,123.0,0.0,0.6,1.0,0.0,3.0,0
48
+ 50.0,1.0,4.0,150.0,243.0,0.0,2.0,128.0,0.0,2.6,2.0,0.0,7.0,4
49
+ 65.0,0.0,3.0,140.0,417.0,1.0,2.0,157.0,0.0,0.8,1.0,1.0,3.0,0
50
+ 53.0,1.0,3.0,130.0,197.0,1.0,2.0,152.0,0.0,1.2,3.0,0.0,3.0,0
51
+ 41.0,0.0,2.0,105.0,198.0,0.0,0.0,168.0,0.0,0.0,1.0,1.0,3.0,0
52
+ 65.0,1.0,4.0,120.0,177.0,0.0,0.0,140.0,0.0,0.4,1.0,0.0,7.0,0
53
+ 44.0,1.0,4.0,112.0,290.0,0.0,2.0,153.0,0.0,0.0,1.0,1.0,3.0,2
54
+ 44.0,1.0,2.0,130.0,219.0,0.0,2.0,188.0,0.0,0.0,1.0,0.0,3.0,0
55
+ 60.0,1.0,4.0,130.0,253.0,0.0,0.0,144.0,1.0,1.4,1.0,1.0,7.0,1
56
+ 54.0,1.0,4.0,124.0,266.0,0.0,2.0,109.0,1.0,2.2,2.0,1.0,7.0,1
57
+ 50.0,1.0,3.0,140.0,233.0,0.0,0.0,163.0,0.0,0.6,2.0,1.0,7.0,1
58
+ 41.0,1.0,4.0,110.0,172.0,0.0,2.0,158.0,0.0,0.0,1.0,0.0,7.0,1
59
+ 54.0,1.0,3.0,125.0,273.0,0.0,2.0,152.0,0.0,0.5,3.0,1.0,3.0,0
60
+ 51.0,1.0,1.0,125.0,213.0,0.0,2.0,125.0,1.0,1.4,1.0,1.0,3.0,0
61
+ 51.0,0.0,4.0,130.0,305.0,0.0,0.0,142.0,1.0,1.2,2.0,0.0,7.0,2
62
+ 46.0,0.0,3.0,142.0,177.0,0.0,2.0,160.0,1.0,1.4,3.0,0.0,3.0,0
63
+ 58.0,1.0,4.0,128.0,216.0,0.0,2.0,131.0,1.0,2.2,2.0,3.0,7.0,1
64
+ 54.0,0.0,3.0,135.0,304.0,1.0,0.0,170.0,0.0,0.0,1.0,0.0,3.0,0
65
+ 54.0,1.0,4.0,120.0,188.0,0.0,0.0,113.0,0.0,1.4,2.0,1.0,7.0,2
66
+ 60.0,1.0,4.0,145.0,282.0,0.0,2.0,142.0,1.0,2.8,2.0,2.0,7.0,2
67
+ 60.0,1.0,3.0,140.0,185.0,0.0,2.0,155.0,0.0,3.0,2.0,0.0,3.0,1
68
+ 54.0,1.0,3.0,150.0,232.0,0.0,2.0,165.0,0.0,1.6,1.0,0.0,7.0,0
69
+ 59.0,1.0,4.0,170.0,326.0,0.0,2.0,140.0,1.0,3.4,3.0,0.0,7.0,2
70
+ 46.0,1.0,3.0,150.0,231.0,0.0,0.0,147.0,0.0,3.6,2.0,0.0,3.0,1
71
+ 65.0,0.0,3.0,155.0,269.0,0.0,0.0,148.0,0.0,0.8,1.0,0.0,3.0,0
72
+ 67.0,1.0,4.0,125.0,254.0,1.0,0.0,163.0,0.0,0.2,2.0,2.0,7.0,3
73
+ 62.0,1.0,4.0,120.0,267.0,0.0,0.0,99.0,1.0,1.8,2.0,2.0,7.0,1
74
+ 65.0,1.0,4.0,110.0,248.0,0.0,2.0,158.0,0.0,0.6,1.0,2.0,6.0,1
75
+ 44.0,1.0,4.0,110.0,197.0,0.0,2.0,177.0,0.0,0.0,1.0,1.0,3.0,1
76
+ 65.0,0.0,3.0,160.0,360.0,0.0,2.0,151.0,0.0,0.8,1.0,0.0,3.0,0
77
+ 60.0,1.0,4.0,125.0,258.0,0.0,2.0,141.0,1.0,2.8,2.0,1.0,7.0,1
78
+ 51.0,0.0,3.0,140.0,308.0,0.0,2.0,142.0,0.0,1.5,1.0,1.0,3.0,0
79
+ 48.0,1.0,2.0,130.0,245.0,0.0,2.0,180.0,0.0,0.2,2.0,0.0,3.0,0
80
+ 58.0,1.0,4.0,150.0,270.0,0.0,2.0,111.0,1.0,0.8,1.0,0.0,7.0,3
81
+ 45.0,1.0,4.0,104.0,208.0,0.0,2.0,148.0,1.0,3.0,2.0,0.0,3.0,0
82
+ 53.0,0.0,4.0,130.0,264.0,0.0,2.0,143.0,0.0,0.4,2.0,0.0,3.0,0
83
+ 39.0,1.0,3.0,140.0,321.0,0.0,2.0,182.0,0.0,0.0,1.0,0.0,3.0,0
84
+ 68.0,1.0,3.0,180.0,274.0,1.0,2.0,150.0,1.0,1.6,2.0,0.0,7.0,3
85
+ 52.0,1.0,2.0,120.0,325.0,0.0,0.0,172.0,0.0,0.2,1.0,0.0,3.0,0
86
+ 44.0,1.0,3.0,140.0,235.0,0.0,2.0,180.0,0.0,0.0,1.0,0.0,3.0,0
87
+ 47.0,1.0,3.0,138.0,257.0,0.0,2.0,156.0,0.0,0.0,1.0,0.0,3.0,0
88
+ 53.0,0.0,3.0,128.0,216.0,0.0,2.0,115.0,0.0,0.0,1.0,0.0,?,0
89
+ 53.0,0.0,4.0,138.0,234.0,0.0,2.0,160.0,0.0,0.0,1.0,0.0,3.0,0
90
+ 51.0,0.0,3.0,130.0,256.0,0.0,2.0,149.0,0.0,0.5,1.0,0.0,3.0,0
91
+ 66.0,1.0,4.0,120.0,302.0,0.0,2.0,151.0,0.0,0.4,2.0,0.0,3.0,0
92
+ 62.0,0.0,4.0,160.0,164.0,0.0,2.0,145.0,0.0,6.2,3.0,3.0,7.0,3
93
+ 62.0,1.0,3.0,130.0,231.0,0.0,0.0,146.0,0.0,1.8,2.0,3.0,7.0,0
94
+ 44.0,0.0,3.0,108.0,141.0,0.0,0.0,175.0,0.0,0.6,2.0,0.0,3.0,0
95
+ 63.0,0.0,3.0,135.0,252.0,0.0,2.0,172.0,0.0,0.0,1.0,0.0,3.0,0
96
+ 52.0,1.0,4.0,128.0,255.0,0.0,0.0,161.0,1.0,0.0,1.0,1.0,7.0,1
97
+ 59.0,1.0,4.0,110.0,239.0,0.0,2.0,142.0,1.0,1.2,2.0,1.0,7.0,2
98
+ 60.0,0.0,4.0,150.0,258.0,0.0,2.0,157.0,0.0,2.6,2.0,2.0,7.0,3
99
+ 52.0,1.0,2.0,134.0,201.0,0.0,0.0,158.0,0.0,0.8,1.0,1.0,3.0,0
100
+ 48.0,1.0,4.0,122.0,222.0,0.0,2.0,186.0,0.0,0.0,1.0,0.0,3.0,0
101
+ 45.0,1.0,4.0,115.0,260.0,0.0,2.0,185.0,0.0,0.0,1.0,0.0,3.0,0
102
+ 34.0,1.0,1.0,118.0,182.0,0.0,2.0,174.0,0.0,0.0,1.0,0.0,3.0,0
103
+ 57.0,0.0,4.0,128.0,303.0,0.0,2.0,159.0,0.0,0.0,1.0,1.0,3.0,0
104
+ 71.0,0.0,3.0,110.0,265.0,1.0,2.0,130.0,0.0,0.0,1.0,1.0,3.0,0
105
+ 49.0,1.0,3.0,120.0,188.0,0.0,0.0,139.0,0.0,2.0,2.0,3.0,7.0,3
106
+ 54.0,1.0,2.0,108.0,309.0,0.0,0.0,156.0,0.0,0.0,1.0,0.0,7.0,0
107
+ 59.0,1.0,4.0,140.0,177.0,0.0,0.0,162.0,1.0,0.0,1.0,1.0,7.0,2
108
+ 57.0,1.0,3.0,128.0,229.0,0.0,2.0,150.0,0.0,0.4,2.0,1.0,7.0,1
109
+ 61.0,1.0,4.0,120.0,260.0,0.0,0.0,140.0,1.0,3.6,2.0,1.0,7.0,2
110
+ 39.0,1.0,4.0,118.0,219.0,0.0,0.0,140.0,0.0,1.2,2.0,0.0,7.0,3
111
+ 61.0,0.0,4.0,145.0,307.0,0.0,2.0,146.0,1.0,1.0,2.0,0.0,7.0,1
112
+ 56.0,1.0,4.0,125.0,249.0,1.0,2.0,144.0,1.0,1.2,2.0,1.0,3.0,1
113
+ 52.0,1.0,1.0,118.0,186.0,0.0,2.0,190.0,0.0,0.0,2.0,0.0,6.0,0
114
+ 43.0,0.0,4.0,132.0,341.0,1.0,2.0,136.0,1.0,3.0,2.0,0.0,7.0,2
115
+ 62.0,0.0,3.0,130.0,263.0,0.0,0.0,97.0,0.0,1.2,2.0,1.0,7.0,2
116
+ 41.0,1.0,2.0,135.0,203.0,0.0,0.0,132.0,0.0,0.0,2.0,0.0,6.0,0
117
+ 58.0,1.0,3.0,140.0,211.0,1.0,2.0,165.0,0.0,0.0,1.0,0.0,3.0,0
118
+ 35.0,0.0,4.0,138.0,183.0,0.0,0.0,182.0,0.0,1.4,1.0,0.0,3.0,0
119
+ 63.0,1.0,4.0,130.0,330.0,1.0,2.0,132.0,1.0,1.8,1.0,3.0,7.0,3
120
+ 65.0,1.0,4.0,135.0,254.0,0.0,2.0,127.0,0.0,2.8,2.0,1.0,7.0,2
121
+ 48.0,1.0,4.0,130.0,256.0,1.0,2.0,150.0,1.0,0.0,1.0,2.0,7.0,3
122
+ 63.0,0.0,4.0,150.0,407.0,0.0,2.0,154.0,0.0,4.0,2.0,3.0,7.0,4
123
+ 51.0,1.0,3.0,100.0,222.0,0.0,0.0,143.0,1.0,1.2,2.0,0.0,3.0,0
124
+ 55.0,1.0,4.0,140.0,217.0,0.0,0.0,111.0,1.0,5.6,3.0,0.0,7.0,3
125
+ 65.0,1.0,1.0,138.0,282.0,1.0,2.0,174.0,0.0,1.4,2.0,1.0,3.0,1
126
+ 45.0,0.0,2.0,130.0,234.0,0.0,2.0,175.0,0.0,0.6,2.0,0.0,3.0,0
127
+ 56.0,0.0,4.0,200.0,288.0,1.0,2.0,133.0,1.0,4.0,3.0,2.0,7.0,3
128
+ 54.0,1.0,4.0,110.0,239.0,0.0,0.0,126.0,1.0,2.8,2.0,1.0,7.0,3
129
+ 44.0,1.0,2.0,120.0,220.0,0.0,0.0,170.0,0.0,0.0,1.0,0.0,3.0,0
130
+ 62.0,0.0,4.0,124.0,209.0,0.0,0.0,163.0,0.0,0.0,1.0,0.0,3.0,0
131
+ 54.0,1.0,3.0,120.0,258.0,0.0,2.0,147.0,0.0,0.4,2.0,0.0,7.0,0
132
+ 51.0,1.0,3.0,94.0,227.0,0.0,0.0,154.0,1.0,0.0,1.0,1.0,7.0,0
133
+ 29.0,1.0,2.0,130.0,204.0,0.0,2.0,202.0,0.0,0.0,1.0,0.0,3.0,0
134
+ 51.0,1.0,4.0,140.0,261.0,0.0,2.0,186.0,1.0,0.0,1.0,0.0,3.0,0
135
+ 43.0,0.0,3.0,122.0,213.0,0.0,0.0,165.0,0.0,0.2,2.0,0.0,3.0,0
136
+ 55.0,0.0,2.0,135.0,250.0,0.0,2.0,161.0,0.0,1.4,2.0,0.0,3.0,0
137
+ 70.0,1.0,4.0,145.0,174.0,0.0,0.0,125.0,1.0,2.6,3.0,0.0,7.0,4
138
+ 62.0,1.0,2.0,120.0,281.0,0.0,2.0,103.0,0.0,1.4,2.0,1.0,7.0,3
139
+ 35.0,1.0,4.0,120.0,198.0,0.0,0.0,130.0,1.0,1.6,2.0,0.0,7.0,1
140
+ 51.0,1.0,3.0,125.0,245.0,1.0,2.0,166.0,0.0,2.4,2.0,0.0,3.0,0
141
+ 59.0,1.0,2.0,140.0,221.0,0.0,0.0,164.0,1.0,0.0,1.0,0.0,3.0,0
142
+ 59.0,1.0,1.0,170.0,288.0,0.0,2.0,159.0,0.0,0.2,2.0,0.0,7.0,1
143
+ 52.0,1.0,2.0,128.0,205.0,1.0,0.0,184.0,0.0,0.0,1.0,0.0,3.0,0
144
+ 64.0,1.0,3.0,125.0,309.0,0.0,0.0,131.0,1.0,1.8,2.0,0.0,7.0,1
145
+ 58.0,1.0,3.0,105.0,240.0,0.0,2.0,154.0,1.0,0.6,2.0,0.0,7.0,0
146
+ 47.0,1.0,3.0,108.0,243.0,0.0,0.0,152.0,0.0,0.0,1.0,0.0,3.0,1
147
+ 57.0,1.0,4.0,165.0,289.0,1.0,2.0,124.0,0.0,1.0,2.0,3.0,7.0,4
148
+ 41.0,1.0,3.0,112.0,250.0,0.0,0.0,179.0,0.0,0.0,1.0,0.0,3.0,0
149
+ 45.0,1.0,2.0,128.0,308.0,0.0,2.0,170.0,0.0,0.0,1.0,0.0,3.0,0
150
+ 60.0,0.0,3.0,102.0,318.0,0.0,0.0,160.0,0.0,0.0,1.0,1.0,3.0,0
151
+ 52.0,1.0,1.0,152.0,298.0,1.0,0.0,178.0,0.0,1.2,2.0,0.0,7.0,0
152
+ 42.0,0.0,4.0,102.0,265.0,0.0,2.0,122.0,0.0,0.6,2.0,0.0,3.0,0
153
+ 67.0,0.0,3.0,115.0,564.0,0.0,2.0,160.0,0.0,1.6,2.0,0.0,7.0,0
154
+ 55.0,1.0,4.0,160.0,289.0,0.0,2.0,145.0,1.0,0.8,2.0,1.0,7.0,4
155
+ 64.0,1.0,4.0,120.0,246.0,0.0,2.0,96.0,1.0,2.2,3.0,1.0,3.0,3
156
+ 70.0,1.0,4.0,130.0,322.0,0.0,2.0,109.0,0.0,2.4,2.0,3.0,3.0,1
157
+ 51.0,1.0,4.0,140.0,299.0,0.0,0.0,173.0,1.0,1.6,1.0,0.0,7.0,1
158
+ 58.0,1.0,4.0,125.0,300.0,0.0,2.0,171.0,0.0,0.0,1.0,2.0,7.0,1
159
+ 60.0,1.0,4.0,140.0,293.0,0.0,2.0,170.0,0.0,1.2,2.0,2.0,7.0,2
160
+ 68.0,1.0,3.0,118.0,277.0,0.0,0.0,151.0,0.0,1.0,1.0,1.0,7.0,0
161
+ 46.0,1.0,2.0,101.0,197.0,1.0,0.0,156.0,0.0,0.0,1.0,0.0,7.0,0
162
+ 77.0,1.0,4.0,125.0,304.0,0.0,2.0,162.0,1.0,0.0,1.0,3.0,3.0,4
163
+ 54.0,0.0,3.0,110.0,214.0,0.0,0.0,158.0,0.0,1.6,2.0,0.0,3.0,0
164
+ 58.0,0.0,4.0,100.0,248.0,0.0,2.0,122.0,0.0,1.0,2.0,0.0,3.0,0
165
+ 48.0,1.0,3.0,124.0,255.0,1.0,0.0,175.0,0.0,0.0,1.0,2.0,3.0,0
166
+ 57.0,1.0,4.0,132.0,207.0,0.0,0.0,168.0,1.0,0.0,1.0,0.0,7.0,0
167
+ 52.0,1.0,3.0,138.0,223.0,0.0,0.0,169.0,0.0,0.0,1.0,?,3.0,0
168
+ 54.0,0.0,2.0,132.0,288.0,1.0,2.0,159.0,1.0,0.0,1.0,1.0,3.0,0
169
+ 35.0,1.0,4.0,126.0,282.0,0.0,2.0,156.0,1.0,0.0,1.0,0.0,7.0,1
170
+ 45.0,0.0,2.0,112.0,160.0,0.0,0.0,138.0,0.0,0.0,2.0,0.0,3.0,0
171
+ 70.0,1.0,3.0,160.0,269.0,0.0,0.0,112.0,1.0,2.9,2.0,1.0,7.0,3
172
+ 53.0,1.0,4.0,142.0,226.0,0.0,2.0,111.0,1.0,0.0,1.0,0.0,7.0,0
173
+ 59.0,0.0,4.0,174.0,249.0,0.0,0.0,143.0,1.0,0.0,2.0,0.0,3.0,1
174
+ 62.0,0.0,4.0,140.0,394.0,0.0,2.0,157.0,0.0,1.2,2.0,0.0,3.0,0
175
+ 64.0,1.0,4.0,145.0,212.0,0.0,2.0,132.0,0.0,2.0,2.0,2.0,6.0,4
176
+ 57.0,1.0,4.0,152.0,274.0,0.0,0.0,88.0,1.0,1.2,2.0,1.0,7.0,1
177
+ 52.0,1.0,4.0,108.0,233.0,1.0,0.0,147.0,0.0,0.1,1.0,3.0,7.0,0
178
+ 56.0,1.0,4.0,132.0,184.0,0.0,2.0,105.0,1.0,2.1,2.0,1.0,6.0,1
179
+ 43.0,1.0,3.0,130.0,315.0,0.0,0.0,162.0,0.0,1.9,1.0,1.0,3.0,0
180
+ 53.0,1.0,3.0,130.0,246.0,1.0,2.0,173.0,0.0,0.0,1.0,3.0,3.0,0
181
+ 48.0,1.0,4.0,124.0,274.0,0.0,2.0,166.0,0.0,0.5,2.0,0.0,7.0,3
182
+ 56.0,0.0,4.0,134.0,409.0,0.0,2.0,150.0,1.0,1.9,2.0,2.0,7.0,2
183
+ 42.0,1.0,1.0,148.0,244.0,0.0,2.0,178.0,0.0,0.8,1.0,2.0,3.0,0
184
+ 59.0,1.0,1.0,178.0,270.0,0.0,2.0,145.0,0.0,4.2,3.0,0.0,7.0,0
185
+ 60.0,0.0,4.0,158.0,305.0,0.0,2.0,161.0,0.0,0.0,1.0,0.0,3.0,1
186
+ 63.0,0.0,2.0,140.0,195.0,0.0,0.0,179.0,0.0,0.0,1.0,2.0,3.0,0
187
+ 42.0,1.0,3.0,120.0,240.0,1.0,0.0,194.0,0.0,0.8,3.0,0.0,7.0,0
188
+ 66.0,1.0,2.0,160.0,246.0,0.0,0.0,120.0,1.0,0.0,2.0,3.0,6.0,2
189
+ 54.0,1.0,2.0,192.0,283.0,0.0,2.0,195.0,0.0,0.0,1.0,1.0,7.0,1
190
+ 69.0,1.0,3.0,140.0,254.0,0.0,2.0,146.0,0.0,2.0,2.0,3.0,7.0,2
191
+ 50.0,1.0,3.0,129.0,196.0,0.0,0.0,163.0,0.0,0.0,1.0,0.0,3.0,0
192
+ 51.0,1.0,4.0,140.0,298.0,0.0,0.0,122.0,1.0,4.2,2.0,3.0,7.0,3
193
+ 43.0,1.0,4.0,132.0,247.0,1.0,2.0,143.0,1.0,0.1,2.0,?,7.0,1
194
+ 62.0,0.0,4.0,138.0,294.0,1.0,0.0,106.0,0.0,1.9,2.0,3.0,3.0,2
195
+ 68.0,0.0,3.0,120.0,211.0,0.0,2.0,115.0,0.0,1.5,2.0,0.0,3.0,0
196
+ 67.0,1.0,4.0,100.0,299.0,0.0,2.0,125.0,1.0,0.9,2.0,2.0,3.0,3
197
+ 69.0,1.0,1.0,160.0,234.0,1.0,2.0,131.0,0.0,0.1,2.0,1.0,3.0,0
198
+ 45.0,0.0,4.0,138.0,236.0,0.0,2.0,152.0,1.0,0.2,2.0,0.0,3.0,0
199
+ 50.0,0.0,2.0,120.0,244.0,0.0,0.0,162.0,0.0,1.1,1.0,0.0,3.0,0
200
+ 59.0,1.0,1.0,160.0,273.0,0.0,2.0,125.0,0.0,0.0,1.0,0.0,3.0,1
201
+ 50.0,0.0,4.0,110.0,254.0,0.0,2.0,159.0,0.0,0.0,1.0,0.0,3.0,0
202
+ 64.0,0.0,4.0,180.0,325.0,0.0,0.0,154.0,1.0,0.0,1.0,0.0,3.0,0
203
+ 57.0,1.0,3.0,150.0,126.0,1.0,0.0,173.0,0.0,0.2,1.0,1.0,7.0,0
204
+ 64.0,0.0,3.0,140.0,313.0,0.0,0.0,133.0,0.0,0.2,1.0,0.0,7.0,0
205
+ 43.0,1.0,4.0,110.0,211.0,0.0,0.0,161.0,0.0,0.0,1.0,0.0,7.0,0
206
+ 45.0,1.0,4.0,142.0,309.0,0.0,2.0,147.0,1.0,0.0,2.0,3.0,7.0,3
207
+ 58.0,1.0,4.0,128.0,259.0,0.0,2.0,130.0,1.0,3.0,2.0,2.0,7.0,3
208
+ 50.0,1.0,4.0,144.0,200.0,0.0,2.0,126.0,1.0,0.9,2.0,0.0,7.0,3
209
+ 55.0,1.0,2.0,130.0,262.0,0.0,0.0,155.0,0.0,0.0,1.0,0.0,3.0,0
210
+ 62.0,0.0,4.0,150.0,244.0,0.0,0.0,154.0,1.0,1.4,2.0,0.0,3.0,1
211
+ 37.0,0.0,3.0,120.0,215.0,0.0,0.0,170.0,0.0,0.0,1.0,0.0,3.0,0
212
+ 38.0,1.0,1.0,120.0,231.0,0.0,0.0,182.0,1.0,3.8,2.0,0.0,7.0,4
213
+ 41.0,1.0,3.0,130.0,214.0,0.0,2.0,168.0,0.0,2.0,2.0,0.0,3.0,0
214
+ 66.0,0.0,4.0,178.0,228.0,1.0,0.0,165.0,1.0,1.0,2.0,2.0,7.0,3
215
+ 52.0,1.0,4.0,112.0,230.0,0.0,0.0,160.0,0.0,0.0,1.0,1.0,3.0,1
216
+ 56.0,1.0,1.0,120.0,193.0,0.0,2.0,162.0,0.0,1.9,2.0,0.0,7.0,0
217
+ 46.0,0.0,2.0,105.0,204.0,0.0,0.0,172.0,0.0,0.0,1.0,0.0,3.0,0
218
+ 46.0,0.0,4.0,138.0,243.0,0.0,2.0,152.0,1.0,0.0,2.0,0.0,3.0,0
219
+ 64.0,0.0,4.0,130.0,303.0,0.0,0.0,122.0,0.0,2.0,2.0,2.0,3.0,0
220
+ 59.0,1.0,4.0,138.0,271.0,0.0,2.0,182.0,0.0,0.0,1.0,0.0,3.0,0
221
+ 41.0,0.0,3.0,112.0,268.0,0.0,2.0,172.0,1.0,0.0,1.0,0.0,3.0,0
222
+ 54.0,0.0,3.0,108.0,267.0,0.0,2.0,167.0,0.0,0.0,1.0,0.0,3.0,0
223
+ 39.0,0.0,3.0,94.0,199.0,0.0,0.0,179.0,0.0,0.0,1.0,0.0,3.0,0
224
+ 53.0,1.0,4.0,123.0,282.0,0.0,0.0,95.0,1.0,2.0,2.0,2.0,7.0,3
225
+ 63.0,0.0,4.0,108.0,269.0,0.0,0.0,169.0,1.0,1.8,2.0,2.0,3.0,1
226
+ 34.0,0.0,2.0,118.0,210.0,0.0,0.0,192.0,0.0,0.7,1.0,0.0,3.0,0
227
+ 47.0,1.0,4.0,112.0,204.0,0.0,0.0,143.0,0.0,0.1,1.0,0.0,3.0,0
228
+ 67.0,0.0,3.0,152.0,277.0,0.0,0.0,172.0,0.0,0.0,1.0,1.0,3.0,0
229
+ 54.0,1.0,4.0,110.0,206.0,0.0,2.0,108.0,1.0,0.0,2.0,1.0,3.0,3
230
+ 66.0,1.0,4.0,112.0,212.0,0.0,2.0,132.0,1.0,0.1,1.0,1.0,3.0,2
231
+ 52.0,0.0,3.0,136.0,196.0,0.0,2.0,169.0,0.0,0.1,2.0,0.0,3.0,0
232
+ 55.0,0.0,4.0,180.0,327.0,0.0,1.0,117.0,1.0,3.4,2.0,0.0,3.0,2
233
+ 49.0,1.0,3.0,118.0,149.0,0.0,2.0,126.0,0.0,0.8,1.0,3.0,3.0,1
234
+ 74.0,0.0,2.0,120.0,269.0,0.0,2.0,121.0,1.0,0.2,1.0,1.0,3.0,0
235
+ 54.0,0.0,3.0,160.0,201.0,0.0,0.0,163.0,0.0,0.0,1.0,1.0,3.0,0
236
+ 54.0,1.0,4.0,122.0,286.0,0.0,2.0,116.0,1.0,3.2,2.0,2.0,3.0,3
237
+ 56.0,1.0,4.0,130.0,283.0,1.0,2.0,103.0,1.0,1.6,3.0,0.0,7.0,2
238
+ 46.0,1.0,4.0,120.0,249.0,0.0,2.0,144.0,0.0,0.8,1.0,0.0,7.0,1
239
+ 49.0,0.0,2.0,134.0,271.0,0.0,0.0,162.0,0.0,0.0,2.0,0.0,3.0,0
240
+ 42.0,1.0,2.0,120.0,295.0,0.0,0.0,162.0,0.0,0.0,1.0,0.0,3.0,0
241
+ 41.0,1.0,2.0,110.0,235.0,0.0,0.0,153.0,0.0,0.0,1.0,0.0,3.0,0
242
+ 41.0,0.0,2.0,126.0,306.0,0.0,0.0,163.0,0.0,0.0,1.0,0.0,3.0,0
243
+ 49.0,0.0,4.0,130.0,269.0,0.0,0.0,163.0,0.0,0.0,1.0,0.0,3.0,0
244
+ 61.0,1.0,1.0,134.0,234.0,0.0,0.0,145.0,0.0,2.6,2.0,2.0,3.0,2
245
+ 60.0,0.0,3.0,120.0,178.0,1.0,0.0,96.0,0.0,0.0,1.0,0.0,3.0,0
246
+ 67.0,1.0,4.0,120.0,237.0,0.0,0.0,71.0,0.0,1.0,2.0,0.0,3.0,2
247
+ 58.0,1.0,4.0,100.0,234.0,0.0,0.0,156.0,0.0,0.1,1.0,1.0,7.0,2
248
+ 47.0,1.0,4.0,110.0,275.0,0.0,2.0,118.0,1.0,1.0,2.0,1.0,3.0,1
249
+ 52.0,1.0,4.0,125.0,212.0,0.0,0.0,168.0,0.0,1.0,1.0,2.0,7.0,3
250
+ 62.0,1.0,2.0,128.0,208.0,1.0,2.0,140.0,0.0,0.0,1.0,0.0,3.0,0
251
+ 57.0,1.0,4.0,110.0,201.0,0.0,0.0,126.0,1.0,1.5,2.0,0.0,6.0,0
252
+ 58.0,1.0,4.0,146.0,218.0,0.0,0.0,105.0,0.0,2.0,2.0,1.0,7.0,1
253
+ 64.0,1.0,4.0,128.0,263.0,0.0,0.0,105.0,1.0,0.2,2.0,1.0,7.0,0
254
+ 51.0,0.0,3.0,120.0,295.0,0.0,2.0,157.0,0.0,0.6,1.0,0.0,3.0,0
255
+ 43.0,1.0,4.0,115.0,303.0,0.0,0.0,181.0,0.0,1.2,2.0,0.0,3.0,0
256
+ 42.0,0.0,3.0,120.0,209.0,0.0,0.0,173.0,0.0,0.0,2.0,0.0,3.0,0
257
+ 67.0,0.0,4.0,106.0,223.0,0.0,0.0,142.0,0.0,0.3,1.0,2.0,3.0,0
258
+ 76.0,0.0,3.0,140.0,197.0,0.0,1.0,116.0,0.0,1.1,2.0,0.0,3.0,0
259
+ 70.0,1.0,2.0,156.0,245.0,0.0,2.0,143.0,0.0,0.0,1.0,0.0,3.0,0
260
+ 57.0,1.0,2.0,124.0,261.0,0.0,0.0,141.0,0.0,0.3,1.0,0.0,7.0,1
261
+ 44.0,0.0,3.0,118.0,242.0,0.0,0.0,149.0,0.0,0.3,2.0,1.0,3.0,0
262
+ 58.0,0.0,2.0,136.0,319.0,1.0,2.0,152.0,0.0,0.0,1.0,2.0,3.0,3
263
+ 60.0,0.0,1.0,150.0,240.0,0.0,0.0,171.0,0.0,0.9,1.0,0.0,3.0,0
264
+ 44.0,1.0,3.0,120.0,226.0,0.0,0.0,169.0,0.0,0.0,1.0,0.0,3.0,0
265
+ 61.0,1.0,4.0,138.0,166.0,0.0,2.0,125.0,1.0,3.6,2.0,1.0,3.0,4
266
+ 42.0,1.0,4.0,136.0,315.0,0.0,0.0,125.0,1.0,1.8,2.0,0.0,6.0,2
267
+ 52.0,1.0,4.0,128.0,204.0,1.0,0.0,156.0,1.0,1.0,2.0,0.0,?,2
268
+ 59.0,1.0,3.0,126.0,218.0,1.0,0.0,134.0,0.0,2.2,2.0,1.0,6.0,2
269
+ 40.0,1.0,4.0,152.0,223.0,0.0,0.0,181.0,0.0,0.0,1.0,0.0,7.0,1
270
+ 42.0,1.0,3.0,130.0,180.0,0.0,0.0,150.0,0.0,0.0,1.0,0.0,3.0,0
271
+ 61.0,1.0,4.0,140.0,207.0,0.0,2.0,138.0,1.0,1.9,1.0,1.0,7.0,1
272
+ 66.0,1.0,4.0,160.0,228.0,0.0,2.0,138.0,0.0,2.3,1.0,0.0,6.0,0
273
+ 46.0,1.0,4.0,140.0,311.0,0.0,0.0,120.0,1.0,1.8,2.0,2.0,7.0,2
274
+ 71.0,0.0,4.0,112.0,149.0,0.0,0.0,125.0,0.0,1.6,2.0,0.0,3.0,0
275
+ 59.0,1.0,1.0,134.0,204.0,0.0,0.0,162.0,0.0,0.8,1.0,2.0,3.0,1
276
+ 64.0,1.0,1.0,170.0,227.0,0.0,2.0,155.0,0.0,0.6,2.0,0.0,7.0,0
277
+ 66.0,0.0,3.0,146.0,278.0,0.0,2.0,152.0,0.0,0.0,2.0,1.0,3.0,0
278
+ 39.0,0.0,3.0,138.0,220.0,0.0,0.0,152.0,0.0,0.0,2.0,0.0,3.0,0
279
+ 57.0,1.0,2.0,154.0,232.0,0.0,2.0,164.0,0.0,0.0,1.0,1.0,3.0,1
280
+ 58.0,0.0,4.0,130.0,197.0,0.0,0.0,131.0,0.0,0.6,2.0,0.0,3.0,0
281
+ 57.0,1.0,4.0,110.0,335.0,0.0,0.0,143.0,1.0,3.0,2.0,1.0,7.0,2
282
+ 47.0,1.0,3.0,130.0,253.0,0.0,0.0,179.0,0.0,0.0,1.0,0.0,3.0,0
283
+ 55.0,0.0,4.0,128.0,205.0,0.0,1.0,130.0,1.0,2.0,2.0,1.0,7.0,3
284
+ 35.0,1.0,2.0,122.0,192.0,0.0,0.0,174.0,0.0,0.0,1.0,0.0,3.0,0
285
+ 61.0,1.0,4.0,148.0,203.0,0.0,0.0,161.0,0.0,0.0,1.0,1.0,7.0,2
286
+ 58.0,1.0,4.0,114.0,318.0,0.0,1.0,140.0,0.0,4.4,3.0,3.0,6.0,4
287
+ 58.0,0.0,4.0,170.0,225.0,1.0,2.0,146.0,1.0,2.8,2.0,2.0,6.0,2
288
+ 58.0,1.0,2.0,125.0,220.0,0.0,0.0,144.0,0.0,0.4,2.0,?,7.0,0
289
+ 56.0,1.0,2.0,130.0,221.0,0.0,2.0,163.0,0.0,0.0,1.0,0.0,7.0,0
290
+ 56.0,1.0,2.0,120.0,240.0,0.0,0.0,169.0,0.0,0.0,3.0,0.0,3.0,0
291
+ 67.0,1.0,3.0,152.0,212.0,0.0,2.0,150.0,0.0,0.8,2.0,0.0,7.0,1
292
+ 55.0,0.0,2.0,132.0,342.0,0.0,0.0,166.0,0.0,1.2,1.0,0.0,3.0,0
293
+ 44.0,1.0,4.0,120.0,169.0,0.0,0.0,144.0,1.0,2.8,3.0,0.0,6.0,2
294
+ 63.0,1.0,4.0,140.0,187.0,0.0,2.0,144.0,1.0,4.0,1.0,2.0,7.0,2
295
+ 63.0,0.0,4.0,124.0,197.0,0.0,0.0,136.0,1.0,0.0,2.0,0.0,3.0,1
296
+ 41.0,1.0,2.0,120.0,157.0,0.0,0.0,182.0,0.0,0.0,1.0,0.0,3.0,0
297
+ 59.0,1.0,4.0,164.0,176.0,1.0,2.0,90.0,0.0,1.0,2.0,2.0,6.0,3
298
+ 57.0,0.0,4.0,140.0,241.0,0.0,0.0,123.0,1.0,0.2,2.0,0.0,7.0,1
299
+ 45.0,1.0,1.0,110.0,264.0,0.0,0.0,132.0,0.0,1.2,2.0,0.0,7.0,1
300
+ 68.0,1.0,4.0,144.0,193.0,1.0,0.0,141.0,0.0,3.4,2.0,2.0,7.0,2
301
+ 57.0,1.0,4.0,130.0,131.0,0.0,0.0,115.0,1.0,1.2,2.0,1.0,7.0,3
302
+ 57.0,0.0,2.0,130.0,236.0,0.0,2.0,174.0,0.0,0.0,2.0,1.0,3.0,1
303
+ 38.0,1.0,3.0,138.0,175.0,0.0,0.0,173.0,0.0,0.0,1.0,?,3.0,0
processed.hungarian.data ADDED
@@ -0,0 +1,294 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 28,1,2,130,132,0,2,185,0,0,?,?,?,0
2
+ 29,1,2,120,243,0,0,160,0,0,?,?,?,0
3
+ 29,1,2,140,?,0,0,170,0,0,?,?,?,0
4
+ 30,0,1,170,237,0,1,170,0,0,?,?,6,0
5
+ 31,0,2,100,219,0,1,150,0,0,?,?,?,0
6
+ 32,0,2,105,198,0,0,165,0,0,?,?,?,0
7
+ 32,1,2,110,225,0,0,184,0,0,?,?,?,0
8
+ 32,1,2,125,254,0,0,155,0,0,?,?,?,0
9
+ 33,1,3,120,298,0,0,185,0,0,?,?,?,0
10
+ 34,0,2,130,161,0,0,190,0,0,?,?,?,0
11
+ 34,1,2,150,214,0,1,168,0,0,?,?,?,0
12
+ 34,1,2,98,220,0,0,150,0,0,?,?,?,0
13
+ 35,0,1,120,160,0,1,185,0,0,?,?,?,0
14
+ 35,0,4,140,167,0,0,150,0,0,?,?,?,0
15
+ 35,1,2,120,308,0,2,180,0,0,?,?,?,0
16
+ 35,1,2,150,264,0,0,168,0,0,?,?,?,0
17
+ 36,1,2,120,166,0,0,180,0,0,?,?,?,0
18
+ 36,1,3,112,340,0,0,184,0,1,2,?,3,0
19
+ 36,1,3,130,209,0,0,178,0,0,?,?,?,0
20
+ 36,1,3,150,160,0,0,172,0,0,?,?,?,0
21
+ 37,0,2,120,260,0,0,130,0,0,?,?,?,0
22
+ 37,0,3,130,211,0,0,142,0,0,?,?,?,0
23
+ 37,0,4,130,173,0,1,184,0,0,?,?,?,0
24
+ 37,1,2,130,283,0,1,98,0,0,?,?,?,0
25
+ 37,1,3,130,194,0,0,150,0,0,?,?,?,0
26
+ 37,1,4,120,223,0,0,168,0,0,?,?,3,0
27
+ 37,1,4,130,315,0,0,158,0,0,?,?,?,0
28
+ 38,0,2,120,275,?,0,129,0,0,?,?,?,0
29
+ 38,1,2,140,297,0,0,150,0,0,?,?,?,0
30
+ 38,1,3,145,292,0,0,130,0,0,?,?,?,0
31
+ 39,0,3,110,182,0,1,180,0,0,?,?,?,0
32
+ 39,1,2,120,?,0,1,146,0,2,1,?,?,0
33
+ 39,1,2,120,200,0,0,160,1,1,2,?,?,0
34
+ 39,1,2,120,204,0,0,145,0,0,?,?,?,0
35
+ 39,1,2,130,?,0,0,120,0,0,?,?,?,0
36
+ 39,1,2,190,241,0,0,106,0,0,?,?,?,0
37
+ 39,1,3,120,339,0,0,170,0,0,?,?,?,0
38
+ 39,1,3,160,147,1,0,160,0,0,?,?,?,0
39
+ 39,1,4,110,273,0,0,132,0,0,?,?,?,0
40
+ 39,1,4,130,307,0,0,140,0,0,?,?,?,0
41
+ 40,1,2,130,275,0,0,150,0,0,?,?,?,0
42
+ 40,1,2,140,289,0,0,172,0,0,?,?,?,0
43
+ 40,1,3,130,215,0,0,138,0,0,?,?,?,0
44
+ 40,1,3,130,281,0,0,167,0,0,?,?,?,0
45
+ 40,1,3,140,?,0,0,188,0,0,?,?,?,0
46
+ 41,0,2,110,250,0,1,142,0,0,?,?,?,0
47
+ 41,0,2,125,184,0,0,180,0,0,?,?,?,0
48
+ 41,0,2,130,245,0,0,150,0,0,?,?,?,0
49
+ 41,1,2,120,291,0,1,160,0,0,?,?,?,0
50
+ 41,1,2,120,295,0,0,170,0,0,?,?,?,0
51
+ 41,1,2,125,269,0,0,144,0,0,?,?,?,0
52
+ 41,1,4,112,250,0,0,142,0,0,?,?,?,0
53
+ 42,0,3,115,211,0,1,137,0,0,?,?,?,0
54
+ 42,1,2,120,196,0,0,150,0,0,?,?,?,0
55
+ 42,1,2,120,198,0,0,155,0,0,?,?,?,0
56
+ 42,1,2,150,268,0,0,136,0,0,?,?,?,0
57
+ 42,1,3,120,228,0,0,152,1,1.5,2,?,?,0
58
+ 42,1,3,160,147,0,0,146,0,0,?,?,?,0
59
+ 42,1,4,140,358,0,0,170,0,0,?,?,?,0
60
+ 43,0,1,100,223,0,0,142,0,0,?,?,?,0
61
+ 43,0,2,120,201,0,0,165,0,0,?,?,?,0
62
+ 43,0,2,120,215,0,1,175,0,0,?,?,?,0
63
+ 43,0,2,120,249,0,1,176,0,0,?,?,?,0
64
+ 43,0,2,120,266,0,0,118,0,0,?,?,?,0
65
+ 43,0,2,150,186,0,0,154,0,0,?,?,?,0
66
+ 43,0,3,150,?,0,0,175,0,0,?,?,3,0
67
+ 43,1,2,142,207,0,0,138,0,0,?,?,?,0
68
+ 44,0,4,120,218,0,1,115,0,0,?,?,?,0
69
+ 44,1,2,120,184,0,0,142,0,1,2,?,?,0
70
+ 44,1,2,130,215,0,0,135,0,0,?,?,?,0
71
+ 44,1,4,150,412,0,0,170,0,0,?,?,?,0
72
+ 45,0,2,130,237,0,0,170,0,0,?,?,?,0
73
+ 45,0,2,180,?,0,0,180,0,0,?,?,?,0
74
+ 45,0,4,132,297,0,0,144,0,0,?,?,?,0
75
+ 45,1,2,140,224,1,0,122,0,0,?,?,?,0
76
+ 45,1,3,135,?,0,0,110,0,0,?,?,?,0
77
+ 45,1,4,120,225,0,0,140,0,0,?,?,?,0
78
+ 45,1,4,140,224,0,0,144,0,0,?,?,?,0
79
+ 46,0,4,130,238,0,0,90,0,0,?,?,?,0
80
+ 46,1,2,140,275,0,0,165,1,0,?,?,?,0
81
+ 46,1,3,120,230,0,0,150,0,0,?,?,?,0
82
+ 46,1,3,150,163,?,0,116,0,0,?,?,?,0
83
+ 46,1,4,110,238,0,1,140,1,1,2,?,3,0
84
+ 46,1,4,110,240,0,1,140,0,0,?,?,3,0
85
+ 46,1,4,180,280,0,1,120,0,0,?,?,?,0
86
+ 47,0,2,140,257,0,0,135,0,1,1,?,?,0
87
+ 47,0,3,130,?,0,0,145,0,2,2,?,?,0
88
+ 47,1,1,110,249,0,0,150,0,0,?,?,?,0
89
+ 47,1,2,160,263,0,0,174,0,0,?,?,?,0
90
+ 47,1,4,140,276,1,0,125,1,0,?,?,?,0
91
+ 48,0,2,?,308,0,1,?,?,2,1,?,?,0
92
+ 48,0,2,120,?,1,1,148,0,0,?,?,?,0
93
+ 48,0,2,120,284,0,0,120,0,0,?,?,?,0
94
+ 48,0,3,120,195,0,0,125,0,0,?,?,?,0
95
+ 48,0,4,108,163,0,0,175,0,2,1,?,?,0
96
+ 48,0,4,120,254,0,1,110,0,0,?,?,?,0
97
+ 48,0,4,150,227,0,0,130,1,1,2,?,?,0
98
+ 48,1,2,100,?,0,0,100,0,0,?,?,?,0
99
+ 48,1,2,130,245,0,0,160,0,0,?,?,?,0
100
+ 48,1,2,140,238,0,0,118,0,0,?,?,?,0
101
+ 48,1,3,110,211,0,0,138,0,0,?,?,6,0
102
+ 49,0,2,110,?,0,0,160,0,0,?,?,?,0
103
+ 49,0,2,110,?,0,0,160,0,0,?,?,?,0
104
+ 49,0,2,124,201,0,0,164,0,0,?,?,?,0
105
+ 49,0,3,130,207,0,1,135,0,0,?,?,?,0
106
+ 49,1,2,100,253,0,0,174,0,0,?,?,?,0
107
+ 49,1,3,140,187,0,0,172,0,0,?,?,?,0
108
+ 49,1,4,120,297,?,0,132,0,1,2,?,?,0
109
+ 49,1,4,140,?,0,0,130,0,0,?,?,?,0
110
+ 50,0,2,110,202,0,0,145,0,0,?,?,?,0
111
+ 50,0,4,120,328,0,0,110,1,1,2,?,?,0
112
+ 50,1,2,120,168,0,0,160,0,0,?,0,?,0
113
+ 50,1,2,140,216,0,0,170,0,0,?,?,3,0
114
+ 50,1,2,170,209,0,1,116,0,0,?,?,?,0
115
+ 50,1,4,140,129,0,0,135,0,0,?,?,?,0
116
+ 50,1,4,150,215,0,0,140,1,0,?,?,?,0
117
+ 51,0,2,160,194,0,0,170,0,0,?,?,?,0
118
+ 51,0,3,110,190,0,0,120,0,0,?,?,?,0
119
+ 51,0,3,130,220,0,0,160,1,2,1,?,?,0
120
+ 51,0,3,150,200,0,0,120,0,0.5,1,?,?,0
121
+ 51,1,2,125,188,0,0,145,0,0,?,?,?,0
122
+ 51,1,2,130,224,0,0,150,0,0,?,?,?,0
123
+ 51,1,4,130,179,0,0,100,0,0,?,?,7,0
124
+ 52,0,2,120,210,0,0,148,0,0,?,?,?,0
125
+ 52,0,2,140,?,0,0,140,0,0,?,?,?,0
126
+ 52,0,3,125,272,0,0,139,0,0,?,?,?,0
127
+ 52,0,4,130,180,0,0,140,1,1.5,2,?,?,0
128
+ 52,1,2,120,284,0,0,118,0,0,?,?,?,0
129
+ 52,1,2,140,100,0,0,138,1,0,?,?,?,0
130
+ 52,1,2,160,196,0,0,165,0,0,?,?,?,0
131
+ 52,1,3,140,259,0,1,170,0,0,?,?,?,0
132
+ 53,0,2,113,468,?,0,127,0,0,?,?,?,0
133
+ 53,0,2,140,216,0,0,142,1,2,2,?,?,0
134
+ 53,0,3,120,274,0,0,130,0,0,?,?,?,0
135
+ 53,1,2,120,?,0,0,132,0,0,?,?,?,0
136
+ 53,1,2,140,320,0,0,162,0,0,?,?,?,0
137
+ 53,1,3,120,195,0,0,140,0,0,?,?,?,0
138
+ 53,1,4,124,260,0,1,112,1,3,2,?,?,0
139
+ 53,1,4,130,182,0,0,148,0,0,?,?,?,0
140
+ 53,1,4,140,243,0,0,155,0,0,?,?,?,0
141
+ 54,0,2,120,221,0,0,138,0,1,1,?,?,0
142
+ 54,0,2,120,230,1,0,140,0,0,?,?,?,0
143
+ 54,0,2,120,273,0,0,150,0,1.5,2,?,?,0
144
+ 54,0,2,130,253,0,1,155,0,0,?,?,?,0
145
+ 54,0,2,140,309,?,1,140,0,0,?,?,?,0
146
+ 54,0,2,150,230,0,0,130,0,0,?,?,?,0
147
+ 54,0,2,160,312,0,0,130,0,0,?,?,?,0
148
+ 54,1,1,120,171,0,0,137,0,2,1,?,?,0
149
+ 54,1,2,110,208,0,0,142,0,0,?,?,?,0
150
+ 54,1,2,120,238,0,0,154,0,0,?,?,?,0
151
+ 54,1,2,120,246,0,0,110,0,0,?,?,?,0
152
+ 54,1,2,160,195,0,1,130,0,1,1,?,?,0
153
+ 54,1,2,160,305,0,0,175,0,0,?,?,?,0
154
+ 54,1,3,120,217,0,0,137,0,0,?,?,?,0
155
+ 54,1,3,150,?,0,0,122,0,0,?,?,?,0
156
+ 54,1,4,150,365,0,1,134,0,1,1,?,?,0
157
+ 55,0,2,110,344,0,1,160,0,0,?,?,?,0
158
+ 55,0,2,122,320,0,0,155,0,0,?,?,?,0
159
+ 55,0,2,130,394,0,2,150,0,0,?,?,?,0
160
+ 55,1,2,120,256,1,0,137,0,0,?,?,7,0
161
+ 55,1,2,140,196,0,0,150,0,0,?,?,7,0
162
+ 55,1,2,145,326,0,0,155,0,0,?,?,?,0
163
+ 55,1,3,110,277,0,0,160,0,0,?,?,?,0
164
+ 55,1,3,120,220,0,2,134,0,0,?,?,?,0
165
+ 55,1,4,120,270,0,0,140,0,0,?,?,?,0
166
+ 55,1,4,140,229,0,0,110,1,0.5,2,?,?,0
167
+ 56,0,3,130,219,?,1,164,0,0,?,?,7,0
168
+ 56,1,2,130,184,0,0,100,0,0,?,?,?,0
169
+ 56,1,3,130,?,0,0,114,0,0,?,?,?,0
170
+ 56,1,3,130,276,0,0,128,1,1,1,?,6,0
171
+ 56,1,4,120,85,0,0,140,0,0,?,?,?,0
172
+ 57,0,1,130,308,0,0,98,0,1,2,?,?,0
173
+ 57,0,4,180,347,0,1,126,1,0.8,2,?,?,0
174
+ 57,1,2,140,260,1,0,140,0,0,?,?,6,0
175
+ 58,1,2,130,230,0,0,150,0,0,?,?,?,0
176
+ 58,1,2,130,251,0,0,110,0,0,?,?,?,0
177
+ 58,1,3,140,179,0,0,160,0,0,?,?,?,0
178
+ 58,1,4,135,222,0,0,100,0,0,?,?,?,0
179
+ 59,0,2,130,188,0,0,124,0,1,2,?,?,0
180
+ 59,1,2,140,287,0,0,150,0,0,?,?,?,0
181
+ 59,1,3,130,318,0,0,120,1,1,2,?,3,0
182
+ 59,1,3,180,213,0,0,100,0,0,?,?,?,0
183
+ 59,1,4,140,?,0,0,140,0,0,?,0,?,0
184
+ 60,1,3,120,246,0,2,135,0,0,?,?,?,0
185
+ 61,0,4,130,294,0,1,120,1,1,2,?,?,0
186
+ 61,1,4,125,292,0,1,115,1,0,?,?,?,0
187
+ 62,0,1,160,193,0,0,116,0,0,?,?,?,0
188
+ 62,1,2,140,271,0,0,152,0,1,1,?,?,0
189
+ 31,1,4,120,270,0,0,153,1,1.5,2,?,?,1
190
+ 33,0,4,100,246,0,0,150,1,1,2,?,?,1
191
+ 34,1,1,140,156,0,0,180,0,0,?,?,?,1
192
+ 35,1,2,110,257,0,0,140,0,0,?,?,?,1
193
+ 36,1,2,120,267,0,0,160,0,3,2,?,?,1
194
+ 37,1,4,140,207,0,0,130,1,1.5,2,?,?,1
195
+ 38,1,4,110,196,0,0,166,0,0,?,?,?,1
196
+ 38,1,4,120,282,0,0,170,0,0,?,?,?,1
197
+ 38,1,4,92,117,0,0,134,1,2.5,2,?,?,1
198
+ 40,1,4,120,466,?,0,152,1,1,2,?,6,1
199
+ 41,1,4,110,289,0,0,170,0,0,?,?,6,1
200
+ 41,1,4,120,237,?,0,138,1,1,2,?,?,1
201
+ 43,1,4,150,247,0,0,130,1,2,2,?,?,1
202
+ 46,1,4,110,202,0,0,150,1,0,?,?,?,1
203
+ 46,1,4,118,186,0,0,124,0,0,?,?,7,1
204
+ 46,1,4,120,277,0,0,125,1,1,2,?,?,1
205
+ 47,1,3,140,193,0,0,145,1,1,2,?,?,1
206
+ 47,1,4,150,226,0,0,98,1,1.5,2,0,7,1
207
+ 48,1,4,106,263,1,0,110,0,0,?,?,?,1
208
+ 48,1,4,120,260,0,0,115,0,2,2,?,?,1
209
+ 48,1,4,160,268,0,0,103,1,1,2,?,?,1
210
+ 49,0,3,160,180,0,0,156,0,1,2,?,?,1
211
+ 49,1,3,115,265,0,0,175,0,0,?,?,?,1
212
+ 49,1,4,130,206,0,0,170,0,0,?,?,?,1
213
+ 50,0,3,140,288,0,0,140,1,0,?,?,7,1
214
+ 50,1,4,145,264,0,0,150,0,0,?,?,?,1
215
+ 51,0,4,160,303,0,0,150,1,1,2,?,?,1
216
+ 52,1,4,130,225,0,0,120,1,2,2,?,?,1
217
+ 54,1,4,125,216,0,0,140,0,0,?,?,?,1
218
+ 54,1,4,125,224,0,0,122,0,2,2,?,?,1
219
+ 55,1,4,140,201,0,0,130,1,3,2,?,?,1
220
+ 57,1,2,140,265,0,1,145,1,1,2,?,?,1
221
+ 58,1,3,130,213,0,1,140,0,0,?,?,6,1
222
+ 59,0,4,130,338,1,1,130,1,1.5,2,?,?,1
223
+ 60,1,4,100,248,0,0,125,0,1,2,?,?,1
224
+ 63,1,4,150,223,0,0,115,0,0,?,?,?,1
225
+ 65,1,4,140,306,1,0,87,1,1.5,2,?,?,1
226
+ 32,1,4,118,529,0,0,130,0,0,?,?,?,1
227
+ 38,1,4,110,?,0,0,150,1,1,2,?,?,1
228
+ 39,1,4,110,280,0,0,150,0,0,?,?,6,1
229
+ 40,0,4,150,392,0,0,130,0,2,2,?,6,1
230
+ 43,1,1,120,291,0,1,155,0,0,?,?,?,1
231
+ 45,1,4,130,219,0,1,130,1,1,2,?,?,1
232
+ 46,1,4,120,231,0,0,115,1,0,?,?,?,1
233
+ 46,1,4,130,222,0,0,112,0,0,?,?,?,1
234
+ 48,1,4,122,275,1,1,150,1,2,3,?,?,1
235
+ 48,1,4,160,193,0,0,102,1,3,2,?,?,1
236
+ 48,1,4,160,329,0,0,92,1,1.5,2,?,?,1
237
+ 48,1,4,160,355,0,0,99,1,2,2,?,?,1
238
+ 50,1,4,130,233,0,0,121,1,2,2,?,7,1
239
+ 52,1,4,120,182,0,0,150,0,0,?,?,?,1
240
+ 52,1,4,170,?,0,0,126,1,1.5,2,?,?,1
241
+ 53,1,4,120,246,0,0,116,1,0,?,?,?,1
242
+ 54,1,3,120,237,0,0,150,1,1.5,?,?,7,1
243
+ 54,1,4,130,242,0,0,91,1,1,2,?,?,1
244
+ 54,1,4,130,603,1,0,125,1,1,2,?,?,1
245
+ 54,1,4,140,?,0,0,118,1,0,?,?,?,1
246
+ 54,1,4,200,198,0,0,142,1,2,2,?,?,1
247
+ 55,1,4,140,268,0,0,128,1,1.5,2,?,?,1
248
+ 56,1,4,150,213,1,0,125,1,1,2,?,?,1
249
+ 57,1,4,150,255,0,0,92,1,3,2,?,?,1
250
+ 58,1,3,160,211,1,1,92,0,0,?,?,?,1
251
+ 58,1,4,130,263,0,0,140,1,2,2,?,?,1
252
+ 41,1,4,130,172,0,1,130,0,2,2,?,?,1
253
+ 43,1,4,120,175,0,0,120,1,1,2,?,7,1
254
+ 44,1,2,150,288,0,0,150,1,3,2,?,?,1
255
+ 44,1,4,130,290,0,0,100,1,2,2,?,?,1
256
+ 46,1,1,140,272,1,0,175,0,2,2,?,?,1
257
+ 47,0,3,135,248,1,0,170,0,0,?,?,?,1
258
+ 48,0,4,138,214,0,0,108,1,1.5,2,?,?,1
259
+ 49,1,4,130,341,0,0,120,1,1,2,?,?,1
260
+ 49,1,4,140,234,0,0,140,1,1,2,?,?,1
261
+ 51,1,3,135,160,0,0,150,0,2,2,?,?,1
262
+ 52,1,4,112,342,0,1,96,1,1,2,?,?,1
263
+ 52,1,4,130,298,0,0,110,1,1,2,?,?,1
264
+ 52,1,4,140,404,0,0,124,1,2,2,?,?,1
265
+ 52,1,4,160,246,0,1,82,1,4,2,?,?,1
266
+ 53,1,3,145,518,0,0,130,0,0,?,?,?,1
267
+ 53,1,4,180,285,0,1,120,1,1.5,2,?,?,1
268
+ 54,1,4,140,216,0,0,105,0,1.5,2,?,?,1
269
+ 55,1,1,140,295,0,?,136,0,0,?,?,?,1
270
+ 55,1,2,160,292,1,0,143,1,2,2,?,?,1
271
+ 55,1,4,145,248,0,0,96,1,2,2,?,?,1
272
+ 56,0,2,120,279,0,0,150,0,1,2,?,?,1
273
+ 56,1,4,150,230,0,1,124,1,1.5,2,?,?,1
274
+ 56,1,4,170,388,0,1,122,1,2,2,?,?,1
275
+ 58,1,2,136,164,0,1,99,1,2,2,?,?,1
276
+ 59,1,4,130,?,0,0,125,0,0,?,?,?,1
277
+ 59,1,4,140,264,1,2,119,1,0,?,?,?,1
278
+ 65,1,4,170,263,1,0,112,1,2,2,?,?,1
279
+ 66,1,4,140,?,0,0,94,1,1,2,?,?,1
280
+ 41,1,4,120,336,0,0,118,1,3,2,?,?,1
281
+ 43,1,4,140,288,0,0,135,1,2,2,?,?,1
282
+ 44,1,4,135,491,0,0,135,0,0,?,?,?,1
283
+ 47,0,4,120,205,0,0,98,1,2,2,?,6,1
284
+ 47,1,4,160,291,0,1,158,1,3,2,?,?,1
285
+ 49,1,4,128,212,0,0,96,1,0,?,?,?,1
286
+ 49,1,4,150,222,0,0,122,0,2,2,?,?,1
287
+ 50,1,4,140,231,0,1,140,1,5,2,?,?,1
288
+ 50,1,4,140,341,0,1,125,1,2.5,2,?,?,1
289
+ 52,1,4,140,266,0,0,134,1,2,2,?,?,1
290
+ 52,1,4,160,331,0,0,94,1,2.5,?,?,?,1
291
+ 54,0,3,130,294,0,1,100,1,0,2,?,?,1
292
+ 56,1,4,155,342,1,0,150,1,3,2,?,?,1
293
+ 58,0,2,180,393,0,0,110,1,1,2,?,7,1
294
+ 65,1,4,130,275,0,1,115,1,1,2,?,?,1
processed.switzerland.data ADDED
@@ -0,0 +1,123 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 32,1,1,95,0,?,0,127,0,.7,1,?,?,1
2
+ 34,1,4,115,0,?,?,154,0,.2,1,?,?,1
3
+ 35,1,4,?,0,?,0,130,1,?,?,?,7,3
4
+ 36,1,4,110,0,?,0,125,1,1,2,?,6,1
5
+ 38,0,4,105,0,?,0,166,0,2.8,1,?,?,2
6
+ 38,0,4,110,0,0,0,156,0,0,2,?,3,1
7
+ 38,1,3,100,0,?,0,179,0,-1.1,1,?,?,0
8
+ 38,1,3,115,0,0,0,128,1,0,2,?,7,1
9
+ 38,1,4,135,0,?,0,150,0,0,?,?,3,2
10
+ 38,1,4,150,0,?,0,120,1,?,?,?,3,1
11
+ 40,1,4,95,0,?,1,144,0,0,1,?,?,2
12
+ 41,1,4,125,0,?,0,176,0,1.6,1,?,?,2
13
+ 42,1,4,105,0,?,0,128,1,-1.5,3,?,?,1
14
+ 42,1,4,145,0,0,0,99,1,0,2,?,?,2
15
+ 43,1,4,100,0,?,0,122,0,1.5,3,?,?,3
16
+ 43,1,4,115,0,0,0,145,1,2,2,?,7,4
17
+ 43,1,4,140,0,0,1,140,1,.5,1,?,7,2
18
+ 45,1,3,110,0,?,0,138,0,-.1,1,?,?,0
19
+ 46,1,4,100,0,?,1,133,0,-2.6,2,?,?,1
20
+ 46,1,4,115,0,0,0,113,1,1.5,2,?,7,1
21
+ 47,1,3,110,0,?,0,120,1,0,?,?,3,1
22
+ 47,1,3,155,0,0,0,118,1,1,2,?,3,3
23
+ 47,1,4,110,0,?,1,149,0,2.1,1,?,?,2
24
+ 47,1,4,160,0,0,0,124,1,0,2,?,7,1
25
+ 48,1,4,115,0,?,0,128,0,0,2,?,6,2
26
+ 50,0,4,160,0,?,0,110,0,0,?,?,3,1
27
+ 50,1,4,115,0,0,0,120,1,.5,2,?,6,3
28
+ 50,1,4,120,0,0,1,156,1,0,1,?,6,3
29
+ 50,1,4,145,0,?,0,139,1,.7,2,?,?,1
30
+ 51,0,4,120,0,?,0,127,1,1.5,1,?,?,2
31
+ 51,1,4,110,0,?,0,92,0,0,2,?,?,4
32
+ 51,1,4,120,0,1,0,104,0,0,2,?,3,3
33
+ 51,1,4,130,0,?,0,170,0,-.7,1,?,?,2
34
+ 51,1,4,130,0,?,1,163,0,0,?,?,7,1
35
+ 51,1,4,140,0,0,0,60,0,0,2,?,3,2
36
+ 51,1,4,95,0,?,0,126,0,2.2,2,?,?,2
37
+ 52,1,4,130,0,?,0,120,0,0,2,?,7,2
38
+ 52,1,4,135,0,?,0,128,1,2,2,?,7,2
39
+ 52,1,4,165,0,?,0,122,1,1,1,?,7,2
40
+ 52,1,4,95,0,?,0,82,1,?,?,?,?,2
41
+ 53,1,2,120,0,0,0,95,0,0,2,?,3,3
42
+ 53,1,2,130,0,?,1,120,0,.7,3,?,?,0
43
+ 53,1,3,105,0,0,0,115,0,0,2,?,7,1
44
+ 53,1,3,160,0,?,2,122,1,0,?,?,7,1
45
+ 53,1,4,120,0,?,0,120,0,0,2,?,7,1
46
+ 53,1,4,125,0,?,0,120,0,1.5,1,?,?,4
47
+ 53,1,4,130,0,0,2,135,1,1,2,?,7,2
48
+ 53,1,4,80,0,?,0,141,1,2,3,?,?,0
49
+ 54,1,4,120,0,0,0,155,0,0,2,?,7,2
50
+ 54,1,4,130,0,?,0,110,1,3,2,?,7,3
51
+ 54,1,4,180,0,?,0,150,0,1.5,2,?,7,1
52
+ 55,1,2,140,0,?,1,150,0,.2,1,?,?,0
53
+ 55,1,4,115,0,?,0,155,0,.1,2,?,?,1
54
+ 55,1,4,120,0,0,1,92,0,.3,1,?,7,4
55
+ 55,1,4,140,0,0,0,83,0,0,2,?,7,2
56
+ 56,1,3,120,0,0,0,97,0,0,2,?,7,0
57
+ 56,1,3,125,0,?,0,98,0,-2,2,?,7,2
58
+ 56,1,3,155,0,0,1,99,0,0,2,?,3,2
59
+ 56,1,4,115,0,?,1,82,0,-1,1,?,?,1
60
+ 56,1,4,120,0,0,1,100,1,-1,3,?,7,2
61
+ 56,1,4,120,0,0,1,148,0,0,2,?,?,2
62
+ 56,1,4,125,0,1,0,103,1,1,2,?,7,3
63
+ 56,1,4,140,0,?,0,121,1,1.8,1,?,?,1
64
+ 57,1,3,105,0,?,0,148,0,.3,2,?,?,1
65
+ 57,1,4,110,0,?,1,131,1,1.4,1,1,?,3
66
+ 57,1,4,140,0,0,0,120,1,2,2,?,6,2
67
+ 57,1,4,140,0,?,0,100,1,0,?,?,6,3
68
+ 57,1,4,160,0,?,0,98,1,2,2,?,7,2
69
+ 57,1,4,95,0,?,0,182,0,.7,3,?,?,1
70
+ 58,1,4,115,0,?,0,138,0,.5,1,?,?,1
71
+ 58,1,4,130,0,0,1,100,1,1,2,?,6,4
72
+ 58,1,4,170,0,?,1,105,1,0,?,?,3,1
73
+ 59,1,3,125,0,?,0,175,0,2.6,2,?,?,1
74
+ 59,1,4,110,0,?,0,94,0,0,?,?,6,3
75
+ 59,1,4,120,0,0,0,115,0,0,2,?,3,2
76
+ 59,1,4,125,0,?,0,119,1,.9,1,?,?,1
77
+ 59,1,4,135,0,0,0,115,1,1,2,?,7,1
78
+ 60,1,3,115,0,?,0,143,0,2.4,1,?,?,1
79
+ 60,1,4,125,0,?,0,110,0,.1,1,2,?,3
80
+ 60,1,4,130,0,?,1,130,1,1.1,3,1,?,1
81
+ 60,1,4,135,0,0,0,63,1,.5,1,?,7,3
82
+ 60,1,4,160,0,0,1,99,1,.5,2,?,7,3
83
+ 60,1,4,160,0,?,0,149,0,.4,2,?,?,1
84
+ 61,1,3,200,0,?,1,70,0,0,?,?,3,3
85
+ 61,1,4,105,0,?,0,110,1,1.5,1,?,?,1
86
+ 61,1,4,110,0,?,0,113,0,1.4,2,?,?,1
87
+ 61,1,4,125,0,0,0,105,1,0,3,?,7,3
88
+ 61,1,4,130,0,0,2,115,0,0,2,?,7,3
89
+ 61,1,4,130,0,?,0,77,0,2.5,2,?,?,3
90
+ 61,1,4,150,0,0,0,105,1,0,2,?,7,1
91
+ 61,1,4,150,0,0,0,117,1,2,2,?,7,2
92
+ 61,1,4,160,0,1,1,145,0,1,2,?,7,2
93
+ 62,0,1,140,0,?,0,143,0,0,?,?,3,2
94
+ 62,0,4,120,0,?,1,123,1,1.7,3,?,?,1
95
+ 62,1,1,120,0,?,2,134,0,-.8,2,2,?,1
96
+ 62,1,3,160,0,0,0,72,1,0,2,?,3,3
97
+ 62,1,4,115,0,?,0,128,1,2.5,3,?,?,2
98
+ 62,1,4,115,0,?,0,72,1,-.5,2,?,3,1
99
+ 62,1,4,150,0,?,1,78,0,2,2,?,7,3
100
+ 63,1,4,100,0,?,0,109,0,-.9,2,?,?,1
101
+ 63,1,4,140,0,?,2,149,0,2,1,?,?,2
102
+ 63,1,4,150,0,0,0,86,1,2,2,?,?,3
103
+ 63,1,4,150,0,?,1,154,0,3.7,1,?,?,3
104
+ 63,1,4,185,0,0,0,98,1,0,1,?,7,1
105
+ 64,0,4,200,0,0,0,140,1,1,2,?,3,3
106
+ 64,0,4,95,0,?,0,145,0,1.1,3,?,?,1
107
+ 64,1,4,110,0,?,0,114,1,1.3,3,?,?,1
108
+ 65,1,4,115,0,0,0,93,1,0,2,?,7,1
109
+ 65,1,4,145,0,?,1,67,0,?,?,?,6,3
110
+ 65,1,4,155,0,?,0,154,0,1,1,?,?,0
111
+ 65,1,4,160,0,1,1,122,0,?,?,?,7,3
112
+ 66,0,4,155,0,?,0,90,0,0,?,?,7,1
113
+ 66,1,4,150,0,0,0,108,1,2,2,?,7,3
114
+ 67,1,1,145,0,0,2,125,0,0,2,?,3,2
115
+ 68,1,4,135,0,0,1,120,1,0,1,?,7,3
116
+ 68,1,4,145,0,?,0,136,0,1.8,1,?,?,1
117
+ 69,1,4,135,0,0,0,130,0,0,2,?,6,1
118
+ 69,1,4,?,0,0,1,?,?,?,?,?,7,3
119
+ 70,1,4,115,0,0,1,92,1,0,2,?,7,1
120
+ 70,1,4,140,0,1,0,157,1,2,2,?,7,3
121
+ 72,1,3,160,0,?,2,114,0,1.6,2,2,?,0
122
+ 73,0,3,160,0,0,1,121,0,0,1,?,3,1
123
+ 74,1,2,145,0,?,1,123,0,1.3,1,?,?,1
processed.va.data ADDED
@@ -0,0 +1,200 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 63,1,4,140,260,0,1,112,1,3,2,?,?,2
2
+ 44,1,4,130,209,0,1,127,0,0,?,?,?,0
3
+ 60,1,4,132,218,0,1,140,1,1.5,3,?,?,2
4
+ 55,1,4,142,228,0,1,149,1,2.5,1,?,?,1
5
+ 66,1,3,110,213,1,2,99,1,1.3,2,?,?,0
6
+ 66,1,3,120,0,0,1,120,0,-0.5,1,?,?,0
7
+ 65,1,4,150,236,1,1,105,1,0,?,?,?,3
8
+ 60,1,3,180,0,0,1,140,1,1.5,2,?,?,0
9
+ 60,1,3,120,0,?,0,141,1,2,1,?,?,3
10
+ 60,1,2,160,267,1,1,157,0,0.5,2,?,?,1
11
+ 56,1,2,126,166,0,1,140,0,0,?,?,?,0
12
+ 59,1,4,140,0,0,1,117,1,1,2,?,?,1
13
+ 62,1,4,110,0,0,0,120,1,0.5,2,?,3,1
14
+ 63,1,3,?,0,0,2,?,?,?,?,?,?,1
15
+ 57,1,4,128,0,1,1,148,1,1,2,?,?,1
16
+ 62,1,4,120,220,0,1,86,0,0,?,?,?,0
17
+ 63,1,4,170,177,0,0,84,1,2.5,3,?,?,4
18
+ 46,1,4,110,236,0,0,125,1,2,2,?,?,1
19
+ 63,1,4,126,0,0,1,120,0,1.5,3,?,?,0
20
+ 60,1,4,152,0,0,1,118,1,0,?,?,7,0
21
+ 58,1,4,116,0,0,0,124,0,1,1,?,?,2
22
+ 64,1,4,120,0,1,1,106,0,2,2,?,?,1
23
+ 63,1,3,130,0,0,1,111,1,0,?,?,?,3
24
+ 74,1,3,?,0,0,0,?,?,?,?,?,?,0
25
+ 52,1,3,128,0,0,1,180,0,3,1,?,?,2
26
+ 69,1,4,130,0,1,1,129,0,1,2,?,6,2
27
+ 51,1,4,?,0,1,1,?,?,?,?,?,?,2
28
+ 60,1,4,130,186,1,1,140,1,0.5,2,?,?,1
29
+ 56,1,4,120,100,0,0,120,1,1.5,2,0,7,1
30
+ 55,1,3,?,228,0,1,?,?,?,?,?,?,3
31
+ 54,1,4,?,0,0,1,?,?,?,?,?,?,3
32
+ 77,1,4,124,171,0,1,110,1,2,1,?,?,3
33
+ 63,1,4,160,230,1,0,105,1,1,2,?,?,3
34
+ 55,1,3,0,0,0,0,155,0,1.5,2,?,?,3
35
+ 52,1,3,122,0,0,0,110,1,2,3,?,?,2
36
+ 64,1,4,144,0,0,1,122,1,1,2,?,?,3
37
+ 60,1,4,?,281,0,1,?,?,?,?,?,?,2
38
+ 60,1,4,120,0,0,0,133,1,2,1,?,7,0
39
+ 58,1,4,?,203,1,0,?,?,?,?,?,?,1
40
+ 59,1,4,154,0,0,1,131,1,1.5,?,0,?,0
41
+ 61,1,3,120,0,0,0,80,1,0,2,?,?,3
42
+ 40,1,4,125,0,1,0,165,0,0,?,?,7,1
43
+ 61,1,4,?,0,1,1,86,0,1.5,2,?,7,3
44
+ 41,1,4,104,0,0,1,111,0,0,?,?,?,0
45
+ 57,1,4,?,277,1,1,?,?,?,?,?,?,4
46
+ 63,1,4,136,0,0,0,84,1,0,?,?,7,2
47
+ 59,1,4,122,233,0,0,117,1,1.3,3,?,?,1
48
+ 51,1,4,128,0,0,0,107,0,0,?,?,?,0
49
+ 59,1,3,?,0,0,0,128,1,2,3,?,?,2
50
+ 42,1,3,134,240,?,0,160,0,0,?,?,?,0
51
+ 55,1,3,120,0,0,1,125,1,2.5,2,?,7,1
52
+ 63,0,2,?,0,0,0,?,?,?,?,?,?,0
53
+ 62,1,4,152,153,0,1,97,1,1.6,1,?,7,2
54
+ 56,1,2,124,224,1,0,161,0,2,2,?,?,0
55
+ 53,1,4,126,0,0,0,106,0,0,?,?,?,1
56
+ 68,1,4,138,0,0,0,130,1,3,2,?,?,2
57
+ 53,1,4,154,0,?,1,140,1,1.5,2,?,?,2
58
+ 60,1,3,?,316,1,1,?,?,?,?,?,?,3
59
+ 62,1,2,?,0,0,0,?,?,?,?,?,?,0
60
+ 59,1,4,178,0,1,2,120,1,0,?,?,7,1
61
+ 51,1,4,?,218,1,2,?,?,?,?,?,?,0
62
+ 61,1,4,110,0,?,0,108,1,2,3,?,?,2
63
+ 57,1,4,130,311,?,1,148,1,2,2,?,?,1
64
+ 56,1,3,170,0,0,2,123,1,2.5,?,?,?,4
65
+ 58,1,2,126,0,1,0,110,1,2,2,?,?,2
66
+ 69,1,3,140,0,?,1,118,0,2.5,3,?,?,2
67
+ 67,1,1,142,270,1,0,125,0,2.5,1,?,?,3
68
+ 58,1,4,120,0,0,2,106,1,1.5,3,?,7,1
69
+ 65,1,4,?,0,0,0,?,?,?,?,?,?,1
70
+ 63,1,2,?,217,1,1,?,?,?,?,?,?,1
71
+ 55,1,2,110,214,1,1,180,0,?,?,?,?,0
72
+ 57,1,4,140,214,0,1,144,1,2,2,?,6,2
73
+ 65,1,1,?,252,0,0,?,?,?,?,?,?,0
74
+ 54,1,4,136,220,0,0,140,1,3,2,?,?,3
75
+ 72,1,3,120,214,0,0,102,1,1,2,?,?,3
76
+ 75,1,4,170,203,1,1,108,0,0,?,?,7,1
77
+ 49,1,1,130,0,0,1,145,0,3,2,?,?,2
78
+ 51,1,3,?,339,0,0,?,?,?,?,?,?,3
79
+ 60,1,4,142,216,0,0,110,1,2.5,2,?,?,2
80
+ 64,0,4,142,276,0,0,140,1,1,2,?,7,1
81
+ 58,1,4,132,458,1,0,69,0,1,3,?,?,0
82
+ 61,1,4,146,241,0,0,148,1,3,3,?,?,2
83
+ 67,1,4,160,384,1,1,130,1,0,2,?,?,2
84
+ 62,1,4,135,297,0,0,130,1,1,2,?,?,2
85
+ 65,1,4,136,248,0,0,140,1,4,3,?,?,4
86
+ 63,1,4,130,308,0,0,138,1,2,2,?,?,2
87
+ 69,1,4,140,208,0,1,140,1,2,?,?,?,3
88
+ 51,1,4,?,227,1,1,?,?,?,?,?,?,0
89
+ 62,1,4,158,210,1,0,112,1,3,3,?,?,1
90
+ 55,1,3,?,245,1,1,?,?,?,?,?,?,1
91
+ 75,1,4,136,225,0,0,112,1,3,2,?,?,3
92
+ 40,1,3,106,240,0,0,80,1,0,?,?,7,0
93
+ 67,1,4,120,0,1,0,150,0,1.5,3,?,?,3
94
+ 58,1,4,110,198,0,0,110,0,0,?,?,?,1
95
+ 60,1,4,?,195,0,0,?,?,?,?,?,?,0
96
+ 63,1,4,160,267,1,1,88,1,2,?,?,?,3
97
+ 35,1,3,?,161,0,1,?,?,?,?,?,?,0
98
+ 62,1,1,112,258,0,1,150,1,?,?,?,?,1
99
+ 43,1,4,122,0,0,0,120,0,0.5,1,?,?,1
100
+ 63,1,3,130,0,1,1,160,0,3,2,?,?,0
101
+ 68,1,3,150,195,1,0,132,0,0,?,?,6,1
102
+ 65,1,4,150,235,0,0,120,1,1.5,2,?,?,3
103
+ 48,1,3,102,0,?,1,110,1,1,3,?,?,1
104
+ 63,1,4,96,305,0,1,121,1,1,1,?,?,1
105
+ 64,1,4,130,223,0,1,128,0,0.5,2,?,?,0
106
+ 61,1,4,120,282,0,1,135,1,4,3,?,6,3
107
+ 50,1,4,144,349,0,2,120,1,1,1,?,7,1
108
+ 59,1,4,124,?,0,0,117,1,1,2,?,?,1
109
+ 55,1,4,150,160,0,1,150,0,0,?,?,?,0
110
+ 45,1,3,?,236,0,0,?,?,?,?,?,?,0
111
+ 65,1,4,?,312,0,2,?,?,?,?,?,?,3
112
+ 61,1,2,?,283,0,0,?,?,?,?,?,?,0
113
+ 49,1,3,?,142,0,0,?,?,?,?,?,?,3
114
+ 72,1,4,?,211,0,0,?,?,?,?,?,?,1
115
+ 50,1,4,?,218,0,0,?,?,?,?,?,?,1
116
+ 64,1,4,?,306,1,1,?,?,?,?,?,?,3
117
+ 55,1,4,116,186,1,1,102,0,0,?,?,?,2
118
+ 63,1,4,110,252,0,1,140,1,2,2,?,?,2
119
+ 59,1,4,125,222,0,0,135,1,2.5,3,?,?,3
120
+ 56,1,4,?,0,0,2,?,?,?,?,?,?,1
121
+ 62,1,3,?,0,1,1,?,?,?,?,?,?,2
122
+ 74,1,4,150,258,1,1,130,1,4,3,?,?,3
123
+ 54,1,4,130,202,1,0,112,1,2,2,?,?,1
124
+ 57,1,4,110,197,0,2,100,0,0,?,?,?,0
125
+ 62,1,3,?,204,0,1,?,?,?,?,?,?,1
126
+ 76,1,3,104,?,0,2,120,0,3.5,3,?,?,4
127
+ 54,0,4,138,274,0,0,105,1,1.5,2,?,?,1
128
+ 70,1,4,170,192,0,1,129,1,3,3,?,?,2
129
+ 61,0,2,140,298,1,0,120,1,0,?,?,7,0
130
+ 48,1,4,?,272,0,1,?,?,?,?,?,?,0
131
+ 48,1,3,132,220,1,1,162,0,0,?,?,6,1
132
+ 61,1,1,142,200,1,1,100,0,1.5,3,?,?,3
133
+ 66,1,4,112,261,0,0,140,0,1.5,1,?,?,1
134
+ 68,1,1,?,181,1,1,?,?,?,?,?,?,0
135
+ 55,1,4,172,260,0,0,73,0,2,?,?,?,3
136
+ 62,1,3,120,220,0,2,86,0,0,?,?,?,0
137
+ 71,1,3,?,221,0,0,?,?,?,?,?,?,3
138
+ 74,1,1,?,216,1,0,?,?,?,?,?,?,3
139
+ 53,1,3,155,175,1,1,160,0,?,?,?,6,0
140
+ 58,1,3,150,219,0,1,118,1,0,?,?,?,2
141
+ 75,1,4,160,310,1,0,112,1,2,3,?,7,0
142
+ 56,1,3,?,208,1,1,?,?,?,?,?,?,4
143
+ 58,1,3,?,232,0,1,?,?,?,?,?,?,2
144
+ 64,1,4,134,273,0,0,102,1,4,3,?,?,4
145
+ 54,1,3,?,203,0,1,?,?,?,?,?,?,0
146
+ 54,1,2,?,182,0,1,?,?,?,?,?,?,0
147
+ 59,1,4,140,274,0,0,154,1,2,2,?,?,0
148
+ 55,1,4,?,204,1,1,?,?,?,?,?,?,1
149
+ 57,1,4,144,270,1,1,160,1,2,2,?,?,3
150
+ 61,1,4,?,292,0,1,?,?,?,?,?,?,3
151
+ 41,1,4,150,171,0,0,128,1,1.5,2,?,?,0
152
+ 71,1,4,130,221,0,1,115,1,0,?,?,?,3
153
+ 38,1,4,110,289,0,0,105,1,1.5,3,?,?,1
154
+ 55,1,4,158,217,0,0,110,1,2.5,2,?,?,1
155
+ 56,1,4,128,223,0,1,119,1,2,3,?,?,2
156
+ 69,1,4,?,?,1,0,?,?,?,?,?,?,2
157
+ 64,1,4,150,193,0,1,135,1,0.5,2,?,?,2
158
+ 72,1,4,160,?,1,2,130,0,1.5,?,?,?,2
159
+ 69,1,4,?,210,1,1,?,?,?,?,?,?,2
160
+ 56,1,4,?,282,1,0,?,?,?,?,?,?,1
161
+ 62,1,4,?,170,0,1,120,1,3,?,?,?,4
162
+ 67,1,4,?,369,0,0,?,?,?,?,?,?,3
163
+ 57,1,4,156,173,0,2,119,1,3,3,?,?,3
164
+ 69,1,4,?,289,1,1,?,?,?,?,?,?,3
165
+ 51,1,4,?,?,1,2,?,?,?,?,?,7,1
166
+ 48,1,4,140,?,0,0,159,1,1.5,1,?,?,3
167
+ 69,1,4,122,216,1,2,84,1,0,?,?,7,2
168
+ 69,1,3,?,271,0,2,?,?,?,?,?,?,0
169
+ 64,1,4,?,244,1,1,?,?,?,?,?,?,2
170
+ 57,1,2,180,285,1,1,120,0,0.8,?,?,?,1
171
+ 53,1,4,124,243,0,0,122,1,2,2,?,7,1
172
+ 37,1,3,118,240,0,2,165,0,1,2,?,3,0
173
+ 67,1,4,140,219,0,1,122,1,2,2,?,7,3
174
+ 74,1,3,140,237,1,0,94,0,0,?,?,?,1
175
+ 63,1,2,?,165,0,1,?,?,?,?,?,?,0
176
+ 58,1,4,100,213,0,1,110,0,0,?,?,?,0
177
+ 61,1,4,190,287,1,2,150,1,2,3,?,?,4
178
+ 64,1,4,130,258,1,2,130,0,0,?,?,6,2
179
+ 58,1,4,160,256,1,2,113,1,1,1,?,?,3
180
+ 60,1,4,130,186,1,2,140,1,0.5,2,?,?,1
181
+ 57,1,4,122,264,0,2,100,0,0,?,?,?,1
182
+ 55,1,3,?,?,0,1,?,?,?,?,?,?,0
183
+ 55,1,4,120,226,0,2,127,1,1.7,3,?,7,1
184
+ 56,1,4,130,203,1,0,98,0,1.5,2,?,7,1
185
+ 57,1,4,130,207,0,1,96,1,1,2,?,?,0
186
+ 61,1,3,?,284,0,0,?,?,?,?,?,?,1
187
+ 61,1,3,120,337,0,0,98,1,0,?,?,?,3
188
+ 58,1,3,150,219,0,1,118,1,0,?,?,?,2
189
+ 74,1,4,155,310,0,0,112,1,1.5,3,?,?,2
190
+ 68,1,3,134,254,1,0,151,1,0,?,?,3,0
191
+ 51,0,4,114,258,1,2,96,0,1,1,?,?,0
192
+ 62,1,4,160,254,1,1,108,1,3,2,?,?,4
193
+ 53,1,4,144,300,1,1,128,1,1.5,2,?,?,3
194
+ 62,1,4,158,170,0,1,138,1,0,?,?,?,1
195
+ 46,1,4,134,310,0,0,126,0,0,?,?,3,2
196
+ 54,0,4,127,333,1,1,154,0,0,?,?,?,1
197
+ 62,1,1,?,139,0,1,?,?,?,?,?,?,0
198
+ 55,1,4,122,223,1,1,100,0,0,?,?,6,2
199
+ 58,1,4,?,385,1,2,?,?,?,?,?,?,0
200
+ 62,1,2,120,254,0,2,93,1,0,?,?,?,1