mstz commited on
Commit
112b4c5
1 Parent(s): af160bd

Upload heart.py

Browse files
Files changed (1) hide show
  1. heart.py +18 -102
heart.py CHANGED
@@ -40,60 +40,9 @@ _CITATION = """
40
 
41
  # Dataset info
42
  urls_per_split = {
43
- "cleveland": {"train": "https://huggingface.co/datasets/mstz/heart/raw/main/processed.cleveland.data"},
44
  "hungary": {"train": "https://huggingface.co/datasets/mstz/heart/raw/main/processed.hungarian.data"},
45
- "switzerland": {"train": "https://huggingface.co/datasets/mstz/heart/raw/main/processed.switzerland.data"},
46
- "va": {"train": "https://huggingface.co/datasets/mstz/heart/raw/main/processed.va.data"}
47
  }
48
  features_types_per_config = {
49
- "cleveland": {
50
- "age": datasets.Value("int8"),
51
- "is_male": datasets.Value("bool"),
52
- "type_of_chest_pain": datasets.Value("string"),
53
- "resting_blood_pressure": datasets.Value("float32"),
54
- "serum_cholesterol": datasets.Value("float32"),
55
- "fasting_blood_sugar": datasets.Value("float32"),
56
- "rest_electrocardiographic_type": datasets.Value("string"),
57
- "maximum_heart_rate": datasets.Value("float32"),
58
- "has_exercise_induced_angina": datasets.Value("bool"),
59
- "depression_induced_by_exercise": datasets.Value("float32"),
60
- "slope_of_peak_exercise": datasets.Value("float32"),
61
- "number_of_major_vessels_colored_by_flourosopy": datasets.Value("int16"),
62
- "thal": datasets.Value("float32"),
63
- "has_hearth_disease": datasets.ClassLabel(num_classes=2, names=("no", "yes"))
64
- },
65
- "va": {
66
- "age": datasets.Value("int8"),
67
- "is_male": datasets.Value("bool"),
68
- "type_of_chest_pain": datasets.Value("string"),
69
- "resting_blood_pressure": datasets.Value("float32"),
70
- "serum_cholesterol": datasets.Value("float32"),
71
- "fasting_blood_sugar": datasets.Value("float32"),
72
- "rest_electrocardiographic_type": datasets.Value("string"),
73
- "maximum_heart_rate": datasets.Value("float32"),
74
- "has_exercise_induced_angina": datasets.Value("bool"),
75
- "depression_induced_by_exercise": datasets.Value("float32"),
76
- "slope_of_peak_exercise": datasets.Value("float32"),
77
- "number_of_major_vessels_colored_by_flourosopy": datasets.Value("int16"),
78
- "thal": datasets.Value("float32"),
79
- "has_hearth_disease": datasets.ClassLabel(num_classes=2, names=("no", "yes"))
80
- },
81
- "switzerland": {
82
- "age": datasets.Value("int8"),
83
- "is_male": datasets.Value("bool"),
84
- "type_of_chest_pain": datasets.Value("string"),
85
- "resting_blood_pressure": datasets.Value("float32"),
86
- "serum_cholesterol": datasets.Value("float32"),
87
- "fasting_blood_sugar": datasets.Value("float32"),
88
- "rest_electrocardiographic_type": datasets.Value("string"),
89
- "maximum_heart_rate": datasets.Value("float32"),
90
- "has_exercise_induced_angina": datasets.Value("bool"),
91
- "depression_induced_by_exercise": datasets.Value("float32"),
92
- "slope_of_peak_exercise": datasets.Value("float32"),
93
- "number_of_major_vessels_colored_by_flourosopy": datasets.Value("int16"),
94
- "thal": datasets.Value("float32"),
95
- "has_hearth_disease": datasets.ClassLabel(num_classes=2, names=("no", "yes"))
96
- },
97
  "hungary": {
98
  "age": datasets.Value("int8"),
99
  "is_male": datasets.Value("bool"),
@@ -127,14 +76,8 @@ class HeartConfig(datasets.BuilderConfig):
127
 
128
  class Heart(datasets.GeneratorBasedBuilder):
129
  # dataset versions
130
- DEFAULT_CONFIG = "cleveland"
131
  BUILDER_CONFIGS = [
132
- HeartConfig(name="cleveland",
133
- description="Heart for binary classification, dataset."),
134
- HeartConfig(name="va",
135
- description="Heart for binary classification, va dataset."),
136
- HeartConfig(name="switzerland",
137
- description="Heart for binary classification, switzerland dataset."),
138
  HeartConfig(name="hungary",
139
  description="Heart for binary classification, hungary dataset.")
140
  ]
@@ -158,12 +101,6 @@ class Heart(datasets.GeneratorBasedBuilder):
158
  data.columns = _BASE_FEATURE_NAMES
159
  data = self.preprocess(data, self.config.name)
160
 
161
- print(data.head())
162
- print(data.dtypes)
163
- for f in data.columns:
164
- print(f)
165
- print(data[f].unique())
166
-
167
  for row_id, row in data.iterrows():
168
  data_row = dict(row)
169
 
@@ -176,47 +113,26 @@ class Heart(datasets.GeneratorBasedBuilder):
176
 
177
  data[["age"]].applymap(int)
178
 
179
- if config == "hungary":
180
- data.drop("slope_of_peak_exercise", axis="columns", inplace=True)
181
- data.drop("number_of_major_vessels_colored_by_flourosopy", axis="columns", inplace=True)
182
- data.drop("thal", axis="columns", inplace=True)
183
- data = data[data.serum_cholesterol != "?"]
184
-
185
- data = data.infer_objects()
186
-
187
- data = data[data.resting_blood_pressure != "?"]
188
- data = data[data.fasting_blood_sugar != "?"]
189
- data = data[data.rest_electrocardiographic_type != "?"]
190
- data = data[data.maximum_heart_rate != "?"]
191
- data = data[data.has_exercise_induced_angina != "?"]
192
-
193
- for f in data.columns:
194
- if "?" in data[f].values:
195
- print(f)
196
- data = data.astype({"is_male": bool, "has_exercise_induced_angina": bool,
197
- "serum_cholesterol": float, "maximum_heart_rate": float,
198
- "resting_blood_pressure": float, "fasting_blood_sugar": float})
199
- else:
200
- data = data[data.thal != "?"]
201
- data = data[data.number_of_major_vessels_colored_by_flourosopy != "?"]
202
- data = data[data.resting_blood_pressure != "?"]
203
- data = data[data.fasting_blood_sugar != "?"]
204
- data = data[data.rest_electrocardiographic_type != "?"]
205
- data = data[data.maximum_heart_rate != "?"]
206
- data = data[data.has_exercise_induced_angina != "?"]
207
-
208
- for f in data.columns:
209
- if "?" in data[f].values:
210
- print(f)
211
- data = data.astype({"is_male": bool, "has_exercise_induced_angina": bool,
212
- "serum_cholesterol": float, "maximum_heart_rate": float,
213
- "resting_blood_pressure": float, "fasting_blood_sugar": float,
214
- "thal": float, "number_of_major_vessels_colored_by_flourosopy": float})
215
-
216
 
217
  return data
218
 
219
  def encode(self, feature, value):
220
  if feature in _ENCODING_DICS:
221
  return _ENCODING_DICS[feature][value]
222
- raise ValueError(f"Unknown feature: {feature}")
 
40
 
41
  # Dataset info
42
  urls_per_split = {
 
43
  "hungary": {"train": "https://huggingface.co/datasets/mstz/heart/raw/main/processed.hungarian.data"},
 
 
44
  }
45
  features_types_per_config = {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46
  "hungary": {
47
  "age": datasets.Value("int8"),
48
  "is_male": datasets.Value("bool"),
 
76
 
77
  class Heart(datasets.GeneratorBasedBuilder):
78
  # dataset versions
79
+ DEFAULT_CONFIG = "hungary"
80
  BUILDER_CONFIGS = [
 
 
 
 
 
 
81
  HeartConfig(name="hungary",
82
  description="Heart for binary classification, hungary dataset.")
83
  ]
 
101
  data.columns = _BASE_FEATURE_NAMES
102
  data = self.preprocess(data, self.config.name)
103
 
 
 
 
 
 
 
104
  for row_id, row in data.iterrows():
105
  data_row = dict(row)
106
 
 
113
 
114
  data[["age"]].applymap(int)
115
 
116
+ data.drop("slope_of_peak_exercise", axis="columns", inplace=True)
117
+ data.drop("number_of_major_vessels_colored_by_flourosopy", axis="columns", inplace=True)
118
+ data.drop("thal", axis="columns", inplace=True)
119
+ data = data[data.serum_cholesterol != "?"]
120
+
121
+ data = data.infer_objects()
122
+
123
+ data = data[data.resting_blood_pressure != "?"]
124
+ data = data[data.fasting_blood_sugar != "?"]
125
+ data = data[data.rest_electrocardiographic_type != "?"]
126
+ data = data[data.maximum_heart_rate != "?"]
127
+ data = data[data.has_exercise_induced_angina != "?"]
128
+
129
+ data = data.astype({"is_male": bool, "has_exercise_induced_angina": bool,
130
+ "serum_cholesterol": float, "maximum_heart_rate": float,
131
+ "resting_blood_pressure": float, "fasting_blood_sugar": float})
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
132
 
133
  return data
134
 
135
  def encode(self, feature, value):
136
  if feature in _ENCODING_DICS:
137
  return _ENCODING_DICS[feature][value]
138
+ raise ValueError(f"Unknown feature: {feature}")