Datasets:
Upload 3 files
Browse files- README.md +17 -0
- diamonds.csv +0 -0
- diamonds.py +129 -0
README.md
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
tags:
|
5 |
+
- diamonds
|
6 |
+
- tabular_classification
|
7 |
+
- binary_classification
|
8 |
+
pretty_name: Compas
|
9 |
+
size_categories:
|
10 |
+
- 10K<n<100K
|
11 |
+
task_categories: # Full list at https://github.com/huggingface/hub-docs/blob/main/js/src/lib/interfaces/Types.ts
|
12 |
+
- tabular-classification
|
13 |
+
configs:
|
14 |
+
- cut
|
15 |
+
---
|
16 |
+
# Diamonds
|
17 |
+
The [Diamonds dataset](https://www.kaggle.com/datasets/ulrikthygepedersen/diamonds) is cool.
|
diamonds.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
diamonds.py
ADDED
@@ -0,0 +1,129 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Diamond Dataset"""
|
2 |
+
|
3 |
+
from typing import List
|
4 |
+
from functools import partial
|
5 |
+
|
6 |
+
import datasets
|
7 |
+
|
8 |
+
import pandas
|
9 |
+
|
10 |
+
|
11 |
+
VERSION = datasets.Version("1.0.0")
|
12 |
+
_BASE_FEATURE_NAMES = [
|
13 |
+
"carat",
|
14 |
+
"cut",
|
15 |
+
"color",
|
16 |
+
"clarity",
|
17 |
+
"depth",
|
18 |
+
"table",
|
19 |
+
"price",
|
20 |
+
"observation_point_on_axis_x",
|
21 |
+
"observation_point_on_axis_y",
|
22 |
+
"observation_point_on_axis_z"
|
23 |
+
]
|
24 |
+
|
25 |
+
_ENCODING_DICS = {
|
26 |
+
"cut": {
|
27 |
+
"Fair": 0,
|
28 |
+
"Good": 1,
|
29 |
+
"Very Good": 2,
|
30 |
+
"Premium": 3,
|
31 |
+
"Ideal": 4
|
32 |
+
},
|
33 |
+
"clarity": {
|
34 |
+
"IF": 0,
|
35 |
+
"VVS1": 1,
|
36 |
+
"VVS2": 2,
|
37 |
+
"VS1": 3,
|
38 |
+
"VS2": 4,
|
39 |
+
"SI1": 5,
|
40 |
+
"SI2": 6,
|
41 |
+
"I1": 7
|
42 |
+
}
|
43 |
+
}
|
44 |
+
|
45 |
+
DESCRIPTION = "Diamond quality dataset."
|
46 |
+
_HOMEPAGE = "https://www.kaggle.com/datasets/ulrikthygepedersen/diamonds"
|
47 |
+
_URLS = ("https://www.kaggle.com/datasets/ulrikthygepedersen/diamonds")
|
48 |
+
_CITATION = """"""
|
49 |
+
|
50 |
+
# Dataset info
|
51 |
+
urls_per_split = {
|
52 |
+
"train": "https://huggingface.co/datasets/mstz/diamonds/raw/main/diamonds.csv",
|
53 |
+
}
|
54 |
+
features_types_per_config = {
|
55 |
+
"cut": {
|
56 |
+
"carat": datasets.Value("float32"),
|
57 |
+
"color": datasets.Value("string"),
|
58 |
+
"clarity": datasets.Value("float32"),
|
59 |
+
"depth": datasets.Value("float32"),
|
60 |
+
"table": datasets.Value("float32"),
|
61 |
+
"price": datasets.Value("float32"),
|
62 |
+
"observation_point_on_axis_x": datasets.Value("float32"),
|
63 |
+
"observation_point_on_axis_y": datasets.Value("float32"),
|
64 |
+
"observation_point_on_axis_z": datasets.Value("float32"),
|
65 |
+
"cut": datasets.ClassLabel(num_classes=5, names=("Fair", "Good", "Very Good", "Premium", "Ideal"))
|
66 |
+
}
|
67 |
+
|
68 |
+
}
|
69 |
+
features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config}
|
70 |
+
|
71 |
+
|
72 |
+
class DiamondConfig(datasets.BuilderConfig):
|
73 |
+
def __init__(self, **kwargs):
|
74 |
+
super(DiamondConfig, self).__init__(version=VERSION, **kwargs)
|
75 |
+
self.features = features_per_config[kwargs["name"]]
|
76 |
+
|
77 |
+
|
78 |
+
class Diamond(datasets.GeneratorBasedBuilder):
|
79 |
+
# dataset versions
|
80 |
+
DEFAULT_CONFIG = "cut"
|
81 |
+
BUILDER_CONFIGS = [
|
82 |
+
DiamondConfig(name="cut",
|
83 |
+
description="5-ary classification, predict the cut quality of the diamond."),
|
84 |
+
]
|
85 |
+
|
86 |
+
|
87 |
+
def _info(self):
|
88 |
+
if self.config.name not in features_per_config:
|
89 |
+
raise ValueError(f"Unknown configuration: {self.config.name}")
|
90 |
+
|
91 |
+
info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE,
|
92 |
+
features=features_per_config[self.config.name])
|
93 |
+
|
94 |
+
return info
|
95 |
+
|
96 |
+
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
|
97 |
+
downloads = dl_manager.download_and_extract(urls_per_split)
|
98 |
+
|
99 |
+
return [
|
100 |
+
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]}),
|
101 |
+
]
|
102 |
+
|
103 |
+
def _generate_examples(self, filepath: str):
|
104 |
+
data = pandas.read_csv(filepath)
|
105 |
+
data = self.preprocess(data, config=self.config.name)
|
106 |
+
|
107 |
+
for row_id, row in data.iterrows():
|
108 |
+
data_row = dict(row)
|
109 |
+
|
110 |
+
yield row_id, data_row
|
111 |
+
|
112 |
+
def preprocess(self, data: pandas.DataFrame, config: str = "cut") -> pandas.DataFrame:
|
113 |
+
data.loc[:, "color"] = data.color.astype(str)
|
114 |
+
data.loc[:, "color"] = data.color.apply(lambda x: x[2])
|
115 |
+
|
116 |
+
encode_clarity = partial(encode, "clarity")
|
117 |
+
data.loc[:, "clarity"] = data.clarity.apply(encode_clarity)
|
118 |
+
|
119 |
+
data.columns = _BASE_FEATURE_NAMES
|
120 |
+
data = data.drop_duplicates(subset=["carat", "color", "clarity", "depth", "table",
|
121 |
+
"price", "cut"])
|
122 |
+
|
123 |
+
if config == "cut":
|
124 |
+
return data[list(features_types_per_config["cut"].keys())]
|
125 |
+
else:
|
126 |
+
raise ValueError(f"Unknown config: {config}")
|
127 |
+
|
128 |
+
def encode(self, feature, value):
|
129 |
+
return _ENCODING_DICS[feature][value]
|