mstz commited on
Commit
4d938e1
1 Parent(s): ad761ef

Update diamonds.py

Browse files
Files changed (1) hide show
  1. diamonds.py +26 -13
diamonds.py CHANGED
@@ -69,8 +69,20 @@ features_types_per_config = {
69
  "observation_point_on_axis_y": datasets.Value("float32"),
70
  "observation_point_on_axis_z": datasets.Value("float32"),
71
  "cut": datasets.ClassLabel(num_classes=5, names=("Fair", "Good", "Very Good", "Premium", "Ideal"))
72
- }
73
-
 
 
 
 
 
 
 
 
 
 
 
 
74
  }
75
  features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config}
76
 
@@ -85,10 +97,9 @@ class Diamond(datasets.GeneratorBasedBuilder):
85
  # dataset versions
86
  DEFAULT_CONFIG = "cut"
87
  BUILDER_CONFIGS = [
88
- DiamondConfig(name="encoding",
89
- description="Encoding dictionaries for discrete features."),
90
- DiamondConfig(name="cut",
91
- description="5-ary classification, predict the cut quality of the diamond."),
92
  ]
93
 
94
 
@@ -118,18 +129,20 @@ class Diamond(datasets.GeneratorBasedBuilder):
118
  yield row_id, data_row
119
 
120
  def preprocess(self, data: pandas.DataFrame, config: str = "cut") -> pandas.DataFrame:
121
- data.loc[:, "clarity"] = data.clarity.apply(lambda x: x.replace("b", "").replace("'", ""))
122
- data.loc[:, "cut"] = data.cut.apply(lambda x: x.replace("b", "").replace("'", ""))
123
- data.loc[:, "color"] = data.color.astype(str)
124
- data.loc[:, "color"] = data.color.apply(lambda x: x[2]).replace("\"", "")
125
 
126
  for feature in _ENCODING_DICS:
127
  encoding_function = partial(self.encode, feature)
128
- data.loc[:, feature] = data[feature].apply(encoding_function)
129
 
130
  data.columns = _BASE_FEATURE_NAMES
131
- data = data.drop_duplicates(subset=["carat", "color", "clarity", "depth", "table",
132
- "price", "cut"])
 
 
133
 
134
 
135
  return data[list(features_types_per_config["cut"].keys())]
 
69
  "observation_point_on_axis_y": datasets.Value("float32"),
70
  "observation_point_on_axis_z": datasets.Value("float32"),
71
  "cut": datasets.ClassLabel(num_classes=5, names=("Fair", "Good", "Very Good", "Premium", "Ideal"))
72
+ },
73
+
74
+ "cut_binary": {
75
+ "carat": datasets.Value("float32"),
76
+ "color": datasets.Value("string"),
77
+ "clarity": datasets.Value("float32"),
78
+ "depth": datasets.Value("float32"),
79
+ "table": datasets.Value("float32"),
80
+ "price": datasets.Value("float32"),
81
+ "observation_point_on_axis_x": datasets.Value("float32"),
82
+ "observation_point_on_axis_y": datasets.Value("float32"),
83
+ "observation_point_on_axis_z": datasets.Value("float32"),
84
+ "cut": datasets.ClassLabel(num_classes=2, names=("no", "yes"))
85
+ },
86
  }
87
  features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config}
88
 
 
97
  # dataset versions
98
  DEFAULT_CONFIG = "cut"
99
  BUILDER_CONFIGS = [
100
+ DiamondConfig(name="encoding", description="Encoding dictionaries for discrete features."),
101
+ DiamondConfig(name="cut", description="5-ary classification, predict the cut quality of the diamond."),
102
+ DiamondConfig(name="cut_binary", description="Binary classification."),
 
103
  ]
104
 
105
 
 
129
  yield row_id, data_row
130
 
131
  def preprocess(self, data: pandas.DataFrame, config: str = "cut") -> pandas.DataFrame:
132
+ data["clarity"] = data.clarity.apply(lambda x: x.replace("b", "").replace("'", ""))
133
+ data["cut"] = data.cut.apply(lambda x: x.replace("b", "").replace("'", ""))
134
+ data["color"] = data.color.astype(str)
135
+ data["color"] = data.color.apply(lambda x: x[2]).replace("\"", "")
136
 
137
  for feature in _ENCODING_DICS:
138
  encoding_function = partial(self.encode, feature)
139
+ data[feature] = data[feature].apply(encoding_function)
140
 
141
  data.columns = _BASE_FEATURE_NAMES
142
+ data = data.drop_duplicates(subset=["carat", "color", "clarity", "depth", "table", "price", "cut"])
143
+
144
+ if self.config.name == "cut_binary":
145
+ data.cut = data.cut.apply(lambda x: 0 if x <= 2 else 1)
146
 
147
 
148
  return data[list(features_types_per_config["cut"].keys())]