mstz commited on
Commit
b6402c2
1 Parent(s): cb50ab4

Delete gisette.py

Browse files
Files changed (1) hide show
  1. gisette.py +0 -85
gisette.py DELETED
@@ -1,85 +0,0 @@
1
- """Gisette Dataset"""
2
-
3
- from typing import List
4
- from functools import partial
5
-
6
- import datasets
7
-
8
- import pandas
9
-
10
-
11
- VERSION = datasets.Version("1.0.0")
12
-
13
- _ENCODING_DICS = {}
14
-
15
- DESCRIPTION = "Gisette dataset."
16
- _HOMEPAGE = "https://archive-beta.ics.uci.edu/dataset/170/gisette"
17
- _URLS = ("https://archive-beta.ics.uci.edu/dataset/170/gisette")
18
- _CITATION = """
19
- @misc{misc_gisette_170,
20
- author = {Guyon,Isabelle, Gunn,Steve, Ben-Hur,Asa & Dror,Gideon},
21
- title = {{Gisette}},
22
- year = {2008},
23
- howpublished = {UCI Machine Learning Repository},
24
- note = {{DOI}: \\url{10.24432/C5HP5B}}
25
- }
26
- """
27
-
28
- # Dataset info
29
- urls_per_split = {
30
- "train": "https://huggingface.co/datasets/mstz/gisette/resolve/main/gisette.data"
31
- }
32
- features_types_per_config = {
33
- "gisette": {f"feature_{i}": datasets.Value("int64") for i in range(5000)}
34
- }
35
- features_types_per_config["class"] = datasets.ClassLabel(num_classes=2)
36
- features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config}
37
-
38
-
39
- class GisetteConfig(datasets.BuilderConfig):
40
- def __init__(self, **kwargs):
41
- super(GisetteConfig, self).__init__(version=VERSION, **kwargs)
42
- self.features = features_per_config[kwargs["name"]]
43
-
44
-
45
- class Gisette(datasets.GeneratorBasedBuilder):
46
- # dataset versions
47
- DEFAULT_CONFIG = "gisette"
48
- BUILDER_CONFIGS = [
49
- GisetteConfig(name="gisette", description="Gisette for multiclass classification.")
50
- ]
51
-
52
-
53
- def _info(self):
54
- info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE,
55
- features=features_per_config[self.config.name])
56
-
57
- return info
58
-
59
- def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
60
- downloads = dl_manager.download_and_extract(urls_per_split)
61
-
62
- return [
63
- datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]}),
64
- ]
65
-
66
- def _generate_examples(self, filepath: str):
67
- data = pandas.read_csv(filepath, header=None)
68
- data = self.preprocess(data)
69
-
70
- for row_id, row in data.iterrows():
71
- data_row = dict(row)
72
-
73
- yield row_id, data_row
74
-
75
- def preprocess(self, data: pandas.DataFrame) -> pandas.DataFrame:
76
- for feature in _ENCODING_DICS:
77
- encoding_function = partial(self.encode, feature)
78
- data.loc[:, feature] = data[feature].apply(encoding_function)
79
-
80
- return data[list(features_types_per_config[self.config.name].keys())]
81
-
82
- def encode(self, feature, value):
83
- if feature in _ENCODING_DICS:
84
- return _ENCODING_DICS[feature][value]
85
- raise ValueError(f"Unknown feature: {feature}")