parquet-converter commited on
Commit
36bfc04
·
1 Parent(s): 5971f4a

Update parquet files

Browse files
README.md DELETED
@@ -1,31 +0,0 @@
1
- ---
2
- language:
3
- - en
4
- tags:
5
- - chess
6
- - tabular_classification
7
- - binary_classification
8
- - multiclass_classification
9
- pretty_name: Adult
10
- size_categories:
11
- - 1K<n<10K
12
- task_categories: # Full list at https://github.com/huggingface/hub-docs/blob/main/js/src/lib/interfaces/Types.ts
13
- - tabular-classification
14
- configs:
15
- - chess
16
- ---
17
- # Adult
18
- The [Adult dataset](https://archive.ics.uci.edu/ml/datasets/Adult) from the [UCI ML repository](https://archive.ics.uci.edu/ml/datasets).
19
- Census dataset including personal characteristic of a person, and their income threshold.
20
-
21
- # Configurations and tasks
22
- | **Configuration** | **Task** | **Description** |
23
- |-------------------|---------------------------|--------------------------|
24
- | chess | Binary classification | Can the white piece win? |
25
-
26
- # Usage
27
- ```python
28
- from datasets import load_dataset
29
-
30
- dataset = load_dataset("mstz/chess", "chess")["train"]
31
- ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
chess/chess_rock_vs_pawn-train.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a2af30e4ae4852e2c0667e568e35cc14337a605071b501f4063b90d8f3f1a65a
3
+ size 45257
chess_rock_vs_pawn.py DELETED
@@ -1,143 +0,0 @@
1
- """Chess"""
2
-
3
- from typing import List
4
-
5
- import datasets
6
-
7
- import pandas
8
-
9
-
10
- VERSION = datasets.Version("1.0.0")
11
- _BASE_FEATURE_NAMES = [
12
- "bkblk",
13
- "bknwy",
14
- "bkon8",
15
- "bkona",
16
- "bkspr",
17
- "bkxbq",
18
- "bkxcr",
19
- "bkxwp",
20
- "blxwp",
21
- "bxqsq",
22
- "cntxt",
23
- "dsopp",
24
- "dwipd",
25
- "hdchk",
26
- "katri",
27
- "mulch",
28
- "qxmsq",
29
- "r2ar8",
30
- "reskd",
31
- "reskr",
32
- "rimmx",
33
- "rkxwp",
34
- "rxmsq",
35
- "simpl",
36
- "skach",
37
- "skewr",
38
- "skrxp",
39
- "spcop",
40
- "stlmt",
41
- "thrsk",
42
- "wkcti",
43
- "wkna8",
44
- "wknck",
45
- "wkovl",
46
- "wkpos",
47
- "white_wins"
48
- ]
49
-
50
- DESCRIPTION = "Chess dataset from the UCI ML repository."
51
- _HOMEPAGE = "https://archive.ics.uci.edu/ml/datasets/Chess"
52
- _URLS = ("https://huggingface.co/datasets/mstz/chess/raw/chess.csv")
53
- _CITATION = """
54
- @misc{misc_chess_(king-rook_vs._king-pawn)_22,
55
- title = {{Chess (King-Rook vs. King-Pawn)}},
56
- year = {1989},
57
- howpublished = {UCI Machine Learning Repository},
58
- note = {{DOI}: \\url{10.24432/C5DK5C}}
59
- }"""
60
-
61
- # Dataset info
62
- urls_per_split = {
63
- "train": "https://huggingface.co/datasets/mstz/chess/raw/main/kr-vs-kp.data"
64
- }
65
- features_types_per_config = {
66
- "chess": {
67
- "bkblk": datasets.Value("string"),
68
- "bknwy": datasets.Value("string"),
69
- "bkon8": datasets.Value("string"),
70
- "bkona": datasets.Value("string"),
71
- "bkspr": datasets.Value("string"),
72
- "bkxbq": datasets.Value("string"),
73
- "bkxcr": datasets.Value("string"),
74
- "bkxwp": datasets.Value("string"),
75
- "blxwp": datasets.Value("string"),
76
- "bxqsq": datasets.Value("string"),
77
- "cntxt": datasets.Value("string"),
78
- "dsopp": datasets.Value("string"),
79
- "dwipd": datasets.Value("string"),
80
- "hdchk": datasets.Value("string"),
81
- "katri": datasets.Value("string"),
82
- "mulch": datasets.Value("string"),
83
- "qxmsq": datasets.Value("string"),
84
- "r2ar8": datasets.Value("string"),
85
- "reskd": datasets.Value("string"),
86
- "reskr": datasets.Value("string"),
87
- "rimmx": datasets.Value("string"),
88
- "rkxwp": datasets.Value("string"),
89
- "rxmsq": datasets.Value("string"),
90
- "simpl": datasets.Value("string"),
91
- "skach": datasets.Value("string"),
92
- "skewr": datasets.Value("string"),
93
- "skrxp": datasets.Value("string"),
94
- "spcop": datasets.Value("string"),
95
- "stlmt": datasets.Value("string"),
96
- "thrsk": datasets.Value("string"),
97
- "wkcti": datasets.Value("string"),
98
- "wkna8": datasets.Value("string"),
99
- "wknck": datasets.Value("string"),
100
- "wkovl": datasets.Value("string"),
101
- "wkpos": datasets.Value("string"),
102
- "wtoeg": datasets.Value("string"),
103
- "white_wins": datasets.ClassLabel(num_classes=2, names=("no", "yes"))
104
- }
105
- }
106
- features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config}
107
-
108
-
109
- class ChessConfig(datasets.BuilderConfig):
110
- def __init__(self, **kwargs):
111
- super(ChessConfig, self).__init__(version=VERSION, **kwargs)
112
- self.features = features_per_config[kwargs["name"]]
113
-
114
-
115
- class Chess(datasets.GeneratorBasedBuilder):
116
- # dataset versions
117
- DEFAULT_CONFIG = "chess"
118
- BUILDER_CONFIGS = [
119
- ChessConfig(name="chess",
120
- description="Chess for binary classification.")
121
- ]
122
-
123
-
124
- def _info(self):
125
- info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE,
126
- features=features_per_config[self.config.name])
127
-
128
- return info
129
-
130
- def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
131
- downloads = dl_manager.download_and_extract(urls_per_split)
132
-
133
- return [
134
- datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]})
135
- ]
136
-
137
- def _generate_examples(self, filepath: str):
138
- data = pandas.read_csv(filepath)
139
-
140
- for row_id, row in data.iterrows():
141
- data_row = dict(row)
142
-
143
- yield row_id, data_row
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
kr-vs-kp.data DELETED
The diff for this file is too large to render. See raw diff
 
kr-vs-kp.names DELETED
@@ -1,66 +0,0 @@
1
- 1. Title: Chess End-Game -- King+Rook versus King+Pawn on a7
2
- (usually abbreviated KRKPA7). The pawn on a7 means it is one square
3
- away from queening. It is the King+Rook's side (white) to move.
4
-
5
- 2. Sources:
6
- (a) Database originally generated and described by Alen Shapiro.
7
- (b) Donor/Coder: Rob Holte (holte@uottawa.bitnet). The database
8
- was supplied to Holte by Peter Clark of the Turing Institute
9
- in Glasgow (pete@turing.ac.uk).
10
- (c) Date: 1 August 1989
11
-
12
- 3. Past Usage:
13
- - Alen D. Shapiro (1983,1987), "Structured Induction in Expert Systems",
14
- Addison-Wesley. This book is based on Shapiro's Ph.D. thesis (1983)
15
- at the University of Edinburgh entitled "The Role of Structured
16
- Induction in Expert Systems".
17
- - Stephen Muggleton (1987), "Structuring Knowledge by Asking Questions",
18
- pp.218-229 in "Progress in Machine Learning", edited by I. Bratko
19
- and Nada Lavrac, Sigma Press, Wilmslow, England SK9 5BB.
20
- - Robert C. Holte, Liane Acker, and Bruce W. Porter (1989),
21
- "Concept Learning and the Problem of Small Disjuncts",
22
- Proceedings of IJCAI. Also available as technical report AI89-106,
23
- Computer Sciences Department, University of Texas at Austin,
24
- Austin, Texas 78712.
25
-
26
- 4. Relevant Information:
27
- The dataset format is described below. Note: the format of this
28
- database was modified on 2/26/90 to conform with the format of all
29
- the other databases in the UCI repository of machine learning databases.
30
-
31
- 5. Number of Instances: 3196 total
32
-
33
- 6. Number of Attributes: 36
34
-
35
- 7. Attribute Summaries:
36
- Classes (2): -- White-can-win ("won") and White-cannot-win ("nowin").
37
- I believe that White is deemed to be unable to win if the Black pawn
38
- can safely advance.
39
- Attributes: see Shapiro's book.
40
-
41
- 8. Missing Attributes: -- none
42
-
43
- 9. Class Distribution:
44
- In 1669 of the positions (52%), White can win.
45
- In 1527 of the positions (48%), White cannot win.
46
-
47
- The format for instances in this database is a sequence of 37 attribute values.
48
- Each instance is a board-descriptions for this chess endgame. The first
49
- 36 attributes describe the board. The last (37th) attribute is the
50
- classification: "win" or "nowin". There are 0 missing values.
51
- A typical board-description is
52
-
53
- f,f,f,f,f,f,f,f,f,f,f,f,l,f,n,f,f,t,f,f,f,f,f,f,f,t,f,f,f,f,f,f,f,t,t,n,won
54
-
55
- The names of the features do not appear in the board-descriptions.
56
- Instead, each feature correponds to a particular position in the
57
- feature-value list. For example, the head of this list is the value
58
- for the feature "bkblk". The following is the list of features, in
59
- the order in which their values appear in the feature-value list:
60
-
61
- [bkblk,bknwy,bkon8,bkona,bkspr,bkxbq,bkxcr,bkxwp,blxwp,bxqsq,cntxt,dsopp,dwipd,
62
- hdchk,katri,mulch,qxmsq,r2ar8,reskd,reskr,rimmx,rkxwp,rxmsq,simpl,skach,skewr,
63
- skrxp,spcop,stlmt,thrsk,wkcti,wkna8,wknck,wkovl,wkpos,wtoeg]
64
-
65
- In the file, there is one instance (board position) per line.
66
-