Datasets:
parquet-converter
commited on
Commit
·
36bfc04
1
Parent(s):
5971f4a
Update parquet files
Browse files- README.md +0 -31
- chess/chess_rock_vs_pawn-train.parquet +3 -0
- chess_rock_vs_pawn.py +0 -143
- kr-vs-kp.data +0 -0
- kr-vs-kp.names +0 -66
README.md
DELETED
@@ -1,31 +0,0 @@
|
|
1 |
-
---
|
2 |
-
language:
|
3 |
-
- en
|
4 |
-
tags:
|
5 |
-
- chess
|
6 |
-
- tabular_classification
|
7 |
-
- binary_classification
|
8 |
-
- multiclass_classification
|
9 |
-
pretty_name: Adult
|
10 |
-
size_categories:
|
11 |
-
- 1K<n<10K
|
12 |
-
task_categories: # Full list at https://github.com/huggingface/hub-docs/blob/main/js/src/lib/interfaces/Types.ts
|
13 |
-
- tabular-classification
|
14 |
-
configs:
|
15 |
-
- chess
|
16 |
-
---
|
17 |
-
# Adult
|
18 |
-
The [Adult dataset](https://archive.ics.uci.edu/ml/datasets/Adult) from the [UCI ML repository](https://archive.ics.uci.edu/ml/datasets).
|
19 |
-
Census dataset including personal characteristic of a person, and their income threshold.
|
20 |
-
|
21 |
-
# Configurations and tasks
|
22 |
-
| **Configuration** | **Task** | **Description** |
|
23 |
-
|-------------------|---------------------------|--------------------------|
|
24 |
-
| chess | Binary classification | Can the white piece win? |
|
25 |
-
|
26 |
-
# Usage
|
27 |
-
```python
|
28 |
-
from datasets import load_dataset
|
29 |
-
|
30 |
-
dataset = load_dataset("mstz/chess", "chess")["train"]
|
31 |
-
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
chess/chess_rock_vs_pawn-train.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a2af30e4ae4852e2c0667e568e35cc14337a605071b501f4063b90d8f3f1a65a
|
3 |
+
size 45257
|
chess_rock_vs_pawn.py
DELETED
@@ -1,143 +0,0 @@
|
|
1 |
-
"""Chess"""
|
2 |
-
|
3 |
-
from typing import List
|
4 |
-
|
5 |
-
import datasets
|
6 |
-
|
7 |
-
import pandas
|
8 |
-
|
9 |
-
|
10 |
-
VERSION = datasets.Version("1.0.0")
|
11 |
-
_BASE_FEATURE_NAMES = [
|
12 |
-
"bkblk",
|
13 |
-
"bknwy",
|
14 |
-
"bkon8",
|
15 |
-
"bkona",
|
16 |
-
"bkspr",
|
17 |
-
"bkxbq",
|
18 |
-
"bkxcr",
|
19 |
-
"bkxwp",
|
20 |
-
"blxwp",
|
21 |
-
"bxqsq",
|
22 |
-
"cntxt",
|
23 |
-
"dsopp",
|
24 |
-
"dwipd",
|
25 |
-
"hdchk",
|
26 |
-
"katri",
|
27 |
-
"mulch",
|
28 |
-
"qxmsq",
|
29 |
-
"r2ar8",
|
30 |
-
"reskd",
|
31 |
-
"reskr",
|
32 |
-
"rimmx",
|
33 |
-
"rkxwp",
|
34 |
-
"rxmsq",
|
35 |
-
"simpl",
|
36 |
-
"skach",
|
37 |
-
"skewr",
|
38 |
-
"skrxp",
|
39 |
-
"spcop",
|
40 |
-
"stlmt",
|
41 |
-
"thrsk",
|
42 |
-
"wkcti",
|
43 |
-
"wkna8",
|
44 |
-
"wknck",
|
45 |
-
"wkovl",
|
46 |
-
"wkpos",
|
47 |
-
"white_wins"
|
48 |
-
]
|
49 |
-
|
50 |
-
DESCRIPTION = "Chess dataset from the UCI ML repository."
|
51 |
-
_HOMEPAGE = "https://archive.ics.uci.edu/ml/datasets/Chess"
|
52 |
-
_URLS = ("https://huggingface.co/datasets/mstz/chess/raw/chess.csv")
|
53 |
-
_CITATION = """
|
54 |
-
@misc{misc_chess_(king-rook_vs._king-pawn)_22,
|
55 |
-
title = {{Chess (King-Rook vs. King-Pawn)}},
|
56 |
-
year = {1989},
|
57 |
-
howpublished = {UCI Machine Learning Repository},
|
58 |
-
note = {{DOI}: \\url{10.24432/C5DK5C}}
|
59 |
-
}"""
|
60 |
-
|
61 |
-
# Dataset info
|
62 |
-
urls_per_split = {
|
63 |
-
"train": "https://huggingface.co/datasets/mstz/chess/raw/main/kr-vs-kp.data"
|
64 |
-
}
|
65 |
-
features_types_per_config = {
|
66 |
-
"chess": {
|
67 |
-
"bkblk": datasets.Value("string"),
|
68 |
-
"bknwy": datasets.Value("string"),
|
69 |
-
"bkon8": datasets.Value("string"),
|
70 |
-
"bkona": datasets.Value("string"),
|
71 |
-
"bkspr": datasets.Value("string"),
|
72 |
-
"bkxbq": datasets.Value("string"),
|
73 |
-
"bkxcr": datasets.Value("string"),
|
74 |
-
"bkxwp": datasets.Value("string"),
|
75 |
-
"blxwp": datasets.Value("string"),
|
76 |
-
"bxqsq": datasets.Value("string"),
|
77 |
-
"cntxt": datasets.Value("string"),
|
78 |
-
"dsopp": datasets.Value("string"),
|
79 |
-
"dwipd": datasets.Value("string"),
|
80 |
-
"hdchk": datasets.Value("string"),
|
81 |
-
"katri": datasets.Value("string"),
|
82 |
-
"mulch": datasets.Value("string"),
|
83 |
-
"qxmsq": datasets.Value("string"),
|
84 |
-
"r2ar8": datasets.Value("string"),
|
85 |
-
"reskd": datasets.Value("string"),
|
86 |
-
"reskr": datasets.Value("string"),
|
87 |
-
"rimmx": datasets.Value("string"),
|
88 |
-
"rkxwp": datasets.Value("string"),
|
89 |
-
"rxmsq": datasets.Value("string"),
|
90 |
-
"simpl": datasets.Value("string"),
|
91 |
-
"skach": datasets.Value("string"),
|
92 |
-
"skewr": datasets.Value("string"),
|
93 |
-
"skrxp": datasets.Value("string"),
|
94 |
-
"spcop": datasets.Value("string"),
|
95 |
-
"stlmt": datasets.Value("string"),
|
96 |
-
"thrsk": datasets.Value("string"),
|
97 |
-
"wkcti": datasets.Value("string"),
|
98 |
-
"wkna8": datasets.Value("string"),
|
99 |
-
"wknck": datasets.Value("string"),
|
100 |
-
"wkovl": datasets.Value("string"),
|
101 |
-
"wkpos": datasets.Value("string"),
|
102 |
-
"wtoeg": datasets.Value("string"),
|
103 |
-
"white_wins": datasets.ClassLabel(num_classes=2, names=("no", "yes"))
|
104 |
-
}
|
105 |
-
}
|
106 |
-
features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config}
|
107 |
-
|
108 |
-
|
109 |
-
class ChessConfig(datasets.BuilderConfig):
|
110 |
-
def __init__(self, **kwargs):
|
111 |
-
super(ChessConfig, self).__init__(version=VERSION, **kwargs)
|
112 |
-
self.features = features_per_config[kwargs["name"]]
|
113 |
-
|
114 |
-
|
115 |
-
class Chess(datasets.GeneratorBasedBuilder):
|
116 |
-
# dataset versions
|
117 |
-
DEFAULT_CONFIG = "chess"
|
118 |
-
BUILDER_CONFIGS = [
|
119 |
-
ChessConfig(name="chess",
|
120 |
-
description="Chess for binary classification.")
|
121 |
-
]
|
122 |
-
|
123 |
-
|
124 |
-
def _info(self):
|
125 |
-
info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE,
|
126 |
-
features=features_per_config[self.config.name])
|
127 |
-
|
128 |
-
return info
|
129 |
-
|
130 |
-
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
|
131 |
-
downloads = dl_manager.download_and_extract(urls_per_split)
|
132 |
-
|
133 |
-
return [
|
134 |
-
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]})
|
135 |
-
]
|
136 |
-
|
137 |
-
def _generate_examples(self, filepath: str):
|
138 |
-
data = pandas.read_csv(filepath)
|
139 |
-
|
140 |
-
for row_id, row in data.iterrows():
|
141 |
-
data_row = dict(row)
|
142 |
-
|
143 |
-
yield row_id, data_row
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
kr-vs-kp.data
DELETED
The diff for this file is too large to render.
See raw diff
|
|
kr-vs-kp.names
DELETED
@@ -1,66 +0,0 @@
|
|
1 |
-
1. Title: Chess End-Game -- King+Rook versus King+Pawn on a7
|
2 |
-
(usually abbreviated KRKPA7). The pawn on a7 means it is one square
|
3 |
-
away from queening. It is the King+Rook's side (white) to move.
|
4 |
-
|
5 |
-
2. Sources:
|
6 |
-
(a) Database originally generated and described by Alen Shapiro.
|
7 |
-
(b) Donor/Coder: Rob Holte (holte@uottawa.bitnet). The database
|
8 |
-
was supplied to Holte by Peter Clark of the Turing Institute
|
9 |
-
in Glasgow (pete@turing.ac.uk).
|
10 |
-
(c) Date: 1 August 1989
|
11 |
-
|
12 |
-
3. Past Usage:
|
13 |
-
- Alen D. Shapiro (1983,1987), "Structured Induction in Expert Systems",
|
14 |
-
Addison-Wesley. This book is based on Shapiro's Ph.D. thesis (1983)
|
15 |
-
at the University of Edinburgh entitled "The Role of Structured
|
16 |
-
Induction in Expert Systems".
|
17 |
-
- Stephen Muggleton (1987), "Structuring Knowledge by Asking Questions",
|
18 |
-
pp.218-229 in "Progress in Machine Learning", edited by I. Bratko
|
19 |
-
and Nada Lavrac, Sigma Press, Wilmslow, England SK9 5BB.
|
20 |
-
- Robert C. Holte, Liane Acker, and Bruce W. Porter (1989),
|
21 |
-
"Concept Learning and the Problem of Small Disjuncts",
|
22 |
-
Proceedings of IJCAI. Also available as technical report AI89-106,
|
23 |
-
Computer Sciences Department, University of Texas at Austin,
|
24 |
-
Austin, Texas 78712.
|
25 |
-
|
26 |
-
4. Relevant Information:
|
27 |
-
The dataset format is described below. Note: the format of this
|
28 |
-
database was modified on 2/26/90 to conform with the format of all
|
29 |
-
the other databases in the UCI repository of machine learning databases.
|
30 |
-
|
31 |
-
5. Number of Instances: 3196 total
|
32 |
-
|
33 |
-
6. Number of Attributes: 36
|
34 |
-
|
35 |
-
7. Attribute Summaries:
|
36 |
-
Classes (2): -- White-can-win ("won") and White-cannot-win ("nowin").
|
37 |
-
I believe that White is deemed to be unable to win if the Black pawn
|
38 |
-
can safely advance.
|
39 |
-
Attributes: see Shapiro's book.
|
40 |
-
|
41 |
-
8. Missing Attributes: -- none
|
42 |
-
|
43 |
-
9. Class Distribution:
|
44 |
-
In 1669 of the positions (52%), White can win.
|
45 |
-
In 1527 of the positions (48%), White cannot win.
|
46 |
-
|
47 |
-
The format for instances in this database is a sequence of 37 attribute values.
|
48 |
-
Each instance is a board-descriptions for this chess endgame. The first
|
49 |
-
36 attributes describe the board. The last (37th) attribute is the
|
50 |
-
classification: "win" or "nowin". There are 0 missing values.
|
51 |
-
A typical board-description is
|
52 |
-
|
53 |
-
f,f,f,f,f,f,f,f,f,f,f,f,l,f,n,f,f,t,f,f,f,f,f,f,f,t,f,f,f,f,f,f,f,t,t,n,won
|
54 |
-
|
55 |
-
The names of the features do not appear in the board-descriptions.
|
56 |
-
Instead, each feature correponds to a particular position in the
|
57 |
-
feature-value list. For example, the head of this list is the value
|
58 |
-
for the feature "bkblk". The following is the list of features, in
|
59 |
-
the order in which their values appear in the feature-value list:
|
60 |
-
|
61 |
-
[bkblk,bknwy,bkon8,bkona,bkspr,bkxbq,bkxcr,bkxwp,blxwp,bxqsq,cntxt,dsopp,dwipd,
|
62 |
-
hdchk,katri,mulch,qxmsq,r2ar8,reskd,reskr,rimmx,rkxwp,rxmsq,simpl,skach,skewr,
|
63 |
-
skrxp,spcop,stlmt,thrsk,wkcti,wkna8,wknck,wkovl,wkpos,wtoeg]
|
64 |
-
|
65 |
-
In the file, there is one instance (board position) per line.
|
66 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|