car / car.py
mstz's picture
Update car.py
ffe71c5
raw
history blame
3.91 kB
from typing import List
from functools import partial
import datasets
import pandas
VERSION = datasets.Version("1.0.0")
DESCRIPTION = "Car dataset from the UCI repository."
_HOMEPAGE = "https://archive-beta.ics.uci.edu/dataset/19/car+evaluation"
_URLS = ("https://archive-beta.ics.uci.edu/dataset/19/car+evaluation")
_CITATION = """
@misc{misc_car_evaluation_19,
author = {Bohanec,Marko},
title = {{Car Evaluation}},
year = {1997},
howpublished = {UCI Machine Learning Repository},
note = {{DOI}: \\url{10.24432/C5JP48}}
}
"""
# Dataset info
_BASE_FEATURE_NAMES = [
"buying",
"maint",
"doors",
"persons",
"lug_boot",
"safety",
"acceptability_level"
]
urls_per_split = {
"train": "https://huggingface.co/datasets/mstz/car/raw/main/car.data"
}
features_types_per_config = {
"car": {
"buying": datasets.Value("int8"),
"maint": datasets.Value("int8"),
"doors": datasets.Value("int8"),
"persons": datasets.Value("int8"),
"lug_boot": datasets.Value("int8"),
"safety": datasets.Value("int8"),
"acceptability_level": datasets.ClassLabel(num_classes=4,
names=("unacceptable", "acceptable", "good", "very good"))
},
"car_binary": {
"buying": datasets.Value("int8"),
"maint": datasets.Value("int8"),
"doors": datasets.Value("int8"),
"persons": datasets.Value("int8"),
"lug_boot": datasets.Value("int8"),
"safety": datasets.Value("int8"),
"acceptability_level": datasets.ClassLabel(num_classes=2,
names=("unacceptable", "acceptable"))
},
}
features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config}
_ENCODING_DICS = {
"buying": {
"vhigh": 3,
"high": 2,
"med": 1,
"low": 0
},
"maint": {
"vhigh": 3,
"high": 2,
"med": 1,
"low": 0
},
"doors": {
"0": 0,
"1": 1,
"2": 2,
"3": 3,
"4": 4,
"5more": 5
},
"persons": {
"0": 0,
"1": 1,
"2": 2,
"3": 3,
"4": 4,
"more": 5
},
"lug_boot": {
"big": 2,
"med": 1,
"small": 0,
},
"safety": {
"high": 2,
"med": 1,
"low": 0,
},
"acceptability_level": {
"unacc": 0,
"acc": 1,
"good": 2,
"vgood": 3
}
}
class CarConfig(datasets.BuilderConfig):
def __init__(self, **kwargs):
super(CarConfig, self).__init__(version=VERSION, **kwargs)
self.features = features_per_config[kwargs["name"]]
class Car(datasets.GeneratorBasedBuilder):
# dataset versions
DEFAULT_CONFIG = "car"
BUILDER_CONFIGS = [
CarConfig(name="car",
description="Car for 4-ary classification."),
CarConfig(name="car_binary",
description="Car for binary classification."),
]
def _info(self):
info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE,
features=features_per_config[self.config.name])
return info
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
downloads = dl_manager.download_and_extract(urls_per_split)
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]})
]
def _generate_examples(self, filepath: str):
data = pandas.read_csv(filepath, header=None)
data = self.preprocess(data)
for row_id, row in data.iterrows():
data_row = dict(row)
yield row_id, data_row
def preprocess(self, data: pandas.DataFrame, config: str = DEFAULT_CONFIG) -> pandas.DataFrame:
data.columns = _BASE_FEATURE_NAMES
for feature in _ENCODING_DICS:
encoding_function = partial(self.encode, feature)
data.loc[:, feature] = data[feature].apply(encoding_function)
if config == "car_binary":
data.loc[:, "acceptability_level"] = data["acceptability_level"].apply(lambda x: x if x == 0 else 1)
return data
def encode(self, feature, value):
if feature in _ENCODING_DICS:
return _ENCODING_DICS[feature][value]
raise ValueError(f"Unknown feature: {feature}")