|
import os |
|
import shutil |
|
import sys |
|
|
|
now_dir = os.getcwd() |
|
sys.path.append(now_dir) |
|
import traceback, pdb |
|
import warnings |
|
|
|
import numpy as np |
|
import torch |
|
|
|
os.environ["OPENBLAS_NUM_THREADS"] = "1" |
|
os.environ["no_proxy"] = "localhost, 127.0.0.1, ::1" |
|
import logging |
|
import threading |
|
from random import shuffle |
|
from subprocess import Popen |
|
from time import sleep |
|
|
|
import faiss |
|
import ffmpeg |
|
import gradio as gr |
|
import soundfile as sf |
|
from config import Config |
|
from fairseq import checkpoint_utils |
|
from i18n import I18nAuto |
|
from lib.infer_pack.models import ( |
|
SynthesizerTrnMs256NSFsid, |
|
SynthesizerTrnMs256NSFsid_nono, |
|
SynthesizerTrnMs768NSFsid, |
|
SynthesizerTrnMs768NSFsid_nono, |
|
) |
|
from lib.infer_pack.models_onnx import SynthesizerTrnMsNSFsidM |
|
from infer_uvr5 import _audio_pre_, _audio_pre_new |
|
from lib.audio import load_audio |
|
from lib.train.process_ckpt import change_info, extract_small_model, merge, show_info |
|
from vc_infer_pipeline import VC |
|
from sklearn.cluster import MiniBatchKMeans |
|
|
|
logging.getLogger("numba").setLevel(logging.WARNING) |
|
|
|
now_dir = os.getcwd() |
|
tmp = os.path.join(now_dir, "TEMP") |
|
shutil.rmtree(tmp, ignore_errors=True) |
|
shutil.rmtree("%s/runtime/Lib/site-packages/infer_pack" % (now_dir), ignore_errors=True) |
|
shutil.rmtree("%s/runtime/Lib/site-packages/uvr5_pack" % (now_dir), ignore_errors=True) |
|
os.makedirs(tmp, exist_ok=True) |
|
os.makedirs(os.path.join(now_dir, "logs"), exist_ok=True) |
|
os.makedirs(os.path.join(now_dir, "weights"), exist_ok=True) |
|
os.environ["TEMP"] = tmp |
|
warnings.filterwarnings("ignore") |
|
torch.manual_seed(114514) |
|
|
|
|
|
config = Config() |
|
i18n = I18nAuto() |
|
i18n.print() |
|
|
|
ngpu = torch.cuda.device_count() |
|
gpu_infos = [] |
|
mem = [] |
|
if_gpu_ok = False |
|
|
|
if torch.cuda.is_available() or ngpu != 0: |
|
for i in range(ngpu): |
|
gpu_name = torch.cuda.get_device_name(i) |
|
if any( |
|
value in gpu_name.upper() |
|
for value in [ |
|
"10", |
|
"16", |
|
"20", |
|
"30", |
|
"40", |
|
"A2", |
|
"A3", |
|
"A4", |
|
"P4", |
|
"A50", |
|
"500", |
|
"A60", |
|
"70", |
|
"80", |
|
"90", |
|
"M4", |
|
"T4", |
|
"TITAN", |
|
] |
|
): |
|
|
|
if_gpu_ok = True |
|
gpu_infos.append("%s\t%s" % (i, gpu_name)) |
|
mem.append( |
|
int( |
|
torch.cuda.get_device_properties(i).total_memory |
|
/ 1024 |
|
/ 1024 |
|
/ 1024 |
|
+ 0.4 |
|
) |
|
) |
|
if if_gpu_ok and len(gpu_infos) > 0: |
|
gpu_info = "\n".join(gpu_infos) |
|
default_batch_size = min(mem) // 2 |
|
else: |
|
gpu_info = i18n("很遗憾您这没有能用的显卡来支持您训练") |
|
default_batch_size = 1 |
|
gpus = "-".join([i[0] for i in gpu_infos]) |
|
|
|
|
|
class ToolButton(gr.Button, gr.components.FormComponent): |
|
"""Small button with single emoji as text, fits inside gradio forms""" |
|
|
|
def __init__(self, **kwargs): |
|
super().__init__(variant="tool", **kwargs) |
|
|
|
def get_block_name(self): |
|
return "button" |
|
|
|
|
|
hubert_model = None |
|
|
|
|
|
def load_hubert(): |
|
global hubert_model |
|
models, _, _ = checkpoint_utils.load_model_ensemble_and_task( |
|
["hubert_base.pt"], |
|
suffix="", |
|
) |
|
hubert_model = models[0] |
|
hubert_model = hubert_model.to(config.device) |
|
if config.is_half: |
|
hubert_model = hubert_model.half() |
|
else: |
|
hubert_model = hubert_model.float() |
|
hubert_model.eval() |
|
|
|
|
|
weight_root = "weights" |
|
weight_uvr5_root = "uvr5_weights" |
|
index_root = "logs" |
|
names = [] |
|
for name in os.listdir(weight_root): |
|
if name.endswith(".pth"): |
|
names.append(name) |
|
index_paths = [] |
|
for root, dirs, files in os.walk(index_root, topdown=False): |
|
for name in files: |
|
if name.endswith(".index") and "trained" not in name: |
|
index_paths.append("%s/%s" % (root, name)) |
|
uvr5_names = [] |
|
for name in os.listdir(weight_uvr5_root): |
|
if name.endswith(".pth") or "onnx" in name: |
|
uvr5_names.append(name.replace(".pth", "")) |
|
|
|
cpt = None |
|
|
|
|
|
def vc_single( |
|
sid, |
|
input_audio_path, |
|
f0_up_key, |
|
f0_file, |
|
f0_method, |
|
file_index, |
|
file_index2, |
|
|
|
index_rate, |
|
filter_radius, |
|
resample_sr, |
|
rms_mix_rate, |
|
protect, |
|
): |
|
global tgt_sr, net_g, vc, hubert_model, version, cpt |
|
if input_audio_path is None: |
|
return "You need to upload an audio", None |
|
f0_up_key = int(f0_up_key) |
|
try: |
|
audio = load_audio(input_audio_path, 16000) |
|
audio_max = np.abs(audio).max() / 0.95 |
|
if audio_max > 1: |
|
audio /= audio_max |
|
times = [0, 0, 0] |
|
if not hubert_model: |
|
load_hubert() |
|
if_f0 = cpt.get("f0", 1) |
|
file_index = ( |
|
( |
|
file_index.strip(" ") |
|
.strip('"') |
|
.strip("\n") |
|
.strip('"') |
|
.strip(" ") |
|
.replace("trained", "added") |
|
) |
|
if file_index != "" |
|
else file_index2 |
|
) |
|
|
|
|
|
|
|
audio_opt = vc.pipeline( |
|
hubert_model, |
|
net_g, |
|
sid, |
|
audio, |
|
input_audio_path, |
|
times, |
|
f0_up_key, |
|
f0_method, |
|
file_index, |
|
|
|
index_rate, |
|
if_f0, |
|
filter_radius, |
|
tgt_sr, |
|
resample_sr, |
|
rms_mix_rate, |
|
version, |
|
protect, |
|
f0_file=f0_file, |
|
) |
|
if tgt_sr != resample_sr >= 16000: |
|
tgt_sr = resample_sr |
|
index_info = ( |
|
"Using index:%s." % file_index |
|
if os.path.exists(file_index) |
|
else "Index not used." |
|
) |
|
return "Success.\n %s\nTime:\n npy:%ss, f0:%ss, infer:%ss" % ( |
|
index_info, |
|
times[0], |
|
times[1], |
|
times[2], |
|
), (tgt_sr, audio_opt) |
|
except: |
|
info = traceback.format_exc() |
|
print(info) |
|
return info, (None, None) |
|
|
|
|
|
def vc_multi( |
|
sid, |
|
dir_path, |
|
opt_root, |
|
paths, |
|
f0_up_key, |
|
f0_method, |
|
file_index, |
|
file_index2, |
|
|
|
index_rate, |
|
filter_radius, |
|
resample_sr, |
|
rms_mix_rate, |
|
protect, |
|
format1, |
|
): |
|
try: |
|
dir_path = ( |
|
dir_path.strip(" ").strip('"').strip("\n").strip('"').strip(" ") |
|
) |
|
opt_root = opt_root.strip(" ").strip('"').strip("\n").strip('"').strip(" ") |
|
os.makedirs(opt_root, exist_ok=True) |
|
try: |
|
if dir_path != "": |
|
paths = [os.path.join(dir_path, name) for name in os.listdir(dir_path)] |
|
else: |
|
paths = [path.name for path in paths] |
|
except: |
|
traceback.print_exc() |
|
paths = [path.name for path in paths] |
|
infos = [] |
|
for path in paths: |
|
info, opt = vc_single( |
|
sid, |
|
path, |
|
f0_up_key, |
|
None, |
|
f0_method, |
|
file_index, |
|
file_index2, |
|
|
|
index_rate, |
|
filter_radius, |
|
resample_sr, |
|
rms_mix_rate, |
|
protect, |
|
) |
|
if "Success" in info: |
|
try: |
|
tgt_sr, audio_opt = opt |
|
if format1 in ["wav", "flac"]: |
|
sf.write( |
|
"%s/%s.%s" % (opt_root, os.path.basename(path), format1), |
|
audio_opt, |
|
tgt_sr, |
|
) |
|
else: |
|
path = "%s/%s.wav" % (opt_root, os.path.basename(path)) |
|
sf.write( |
|
path, |
|
audio_opt, |
|
tgt_sr, |
|
) |
|
if os.path.exists(path): |
|
os.system( |
|
"ffmpeg -i %s -vn %s -q:a 2 -y" |
|
% (path, path[:-4] + ".%s" % format1) |
|
) |
|
except: |
|
info += traceback.format_exc() |
|
infos.append("%s->%s" % (os.path.basename(path), info)) |
|
yield "\n".join(infos) |
|
yield "\n".join(infos) |
|
except: |
|
yield traceback.format_exc() |
|
|
|
|
|
def uvr(model_name, inp_root, save_root_vocal, paths, save_root_ins, agg, format0): |
|
infos = [] |
|
try: |
|
inp_root = inp_root.strip(" ").strip('"').strip("\n").strip('"').strip(" ") |
|
save_root_vocal = ( |
|
save_root_vocal.strip(" ").strip('"').strip("\n").strip('"').strip(" ") |
|
) |
|
save_root_ins = ( |
|
save_root_ins.strip(" ").strip('"').strip("\n").strip('"').strip(" ") |
|
) |
|
if model_name == "onnx_dereverb_By_FoxJoy": |
|
from MDXNet import MDXNetDereverb |
|
|
|
pre_fun = MDXNetDereverb(15) |
|
else: |
|
func = _audio_pre_ if "DeEcho" not in model_name else _audio_pre_new |
|
pre_fun = func( |
|
agg=int(agg), |
|
model_path=os.path.join(weight_uvr5_root, model_name + ".pth"), |
|
device=config.device, |
|
is_half=config.is_half, |
|
) |
|
if inp_root != "": |
|
paths = [os.path.join(inp_root, name) for name in os.listdir(inp_root)] |
|
else: |
|
paths = [path.name for path in paths] |
|
for path in paths: |
|
inp_path = os.path.join(inp_root, path) |
|
need_reformat = 1 |
|
done = 0 |
|
try: |
|
info = ffmpeg.probe(inp_path, cmd="ffprobe") |
|
if ( |
|
info["streams"][0]["channels"] == 2 |
|
and info["streams"][0]["sample_rate"] == "44100" |
|
): |
|
need_reformat = 0 |
|
pre_fun._path_audio_( |
|
inp_path, save_root_ins, save_root_vocal, format0 |
|
) |
|
done = 1 |
|
except: |
|
need_reformat = 1 |
|
traceback.print_exc() |
|
if need_reformat == 1: |
|
tmp_path = "%s/%s.reformatted.wav" % (tmp, os.path.basename(inp_path)) |
|
os.system( |
|
"ffmpeg -i %s -vn -acodec pcm_s16le -ac 2 -ar 44100 %s -y" |
|
% (inp_path, tmp_path) |
|
) |
|
inp_path = tmp_path |
|
try: |
|
if done == 0: |
|
pre_fun._path_audio_( |
|
inp_path, save_root_ins, save_root_vocal, format0 |
|
) |
|
infos.append("%s->Success" % (os.path.basename(inp_path))) |
|
yield "\n".join(infos) |
|
except: |
|
infos.append( |
|
"%s->%s" % (os.path.basename(inp_path), traceback.format_exc()) |
|
) |
|
yield "\n".join(infos) |
|
except: |
|
infos.append(traceback.format_exc()) |
|
yield "\n".join(infos) |
|
finally: |
|
try: |
|
if model_name == "onnx_dereverb_By_FoxJoy": |
|
del pre_fun.pred.model |
|
del pre_fun.pred.model_ |
|
else: |
|
del pre_fun.model |
|
del pre_fun |
|
except: |
|
traceback.print_exc() |
|
print("clean_empty_cache") |
|
if torch.cuda.is_available(): |
|
torch.cuda.empty_cache() |
|
yield "\n".join(infos) |
|
|
|
|
|
def get_index_path_from_model(sid): |
|
sel_index_path = "" |
|
name = os.path.join("logs", sid.split(".")[0], "") |
|
|
|
for f in index_paths: |
|
if name in f: |
|
|
|
sel_index_path = f |
|
break |
|
return sel_index_path |
|
|
|
|
|
|
|
def get_vc(sid, to_return_protect0, to_return_protect1): |
|
global n_spk, tgt_sr, net_g, vc, cpt, version |
|
if sid == "" or sid == []: |
|
global hubert_model |
|
if hubert_model is not None: |
|
print("clean_empty_cache") |
|
del net_g, n_spk, vc, hubert_model, tgt_sr |
|
hubert_model = net_g = n_spk = vc = hubert_model = tgt_sr = None |
|
if torch.cuda.is_available(): |
|
torch.cuda.empty_cache() |
|
|
|
if_f0 = cpt.get("f0", 1) |
|
version = cpt.get("version", "v1") |
|
if version == "v1": |
|
if if_f0 == 1: |
|
net_g = SynthesizerTrnMs256NSFsid( |
|
*cpt["config"], is_half=config.is_half |
|
) |
|
else: |
|
net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"]) |
|
elif version == "v2": |
|
if if_f0 == 1: |
|
net_g = SynthesizerTrnMs768NSFsid( |
|
*cpt["config"], is_half=config.is_half |
|
) |
|
else: |
|
net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"]) |
|
del net_g, cpt |
|
if torch.cuda.is_available(): |
|
torch.cuda.empty_cache() |
|
return {"visible": False, "__type__": "update"} |
|
person = "%s/%s" % (weight_root, sid) |
|
print("loading %s" % person) |
|
|
|
cpt = torch.load(person, map_location="cpu") |
|
tgt_sr = cpt["config"][-1] |
|
cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0] |
|
if_f0 = cpt.get("f0", 1) |
|
if if_f0 == 0: |
|
to_return_protect0 = to_return_protect1 = { |
|
"visible": False, |
|
"value": 0.5, |
|
"__type__": "update", |
|
} |
|
else: |
|
to_return_protect0 = { |
|
"visible": True, |
|
"value": to_return_protect0, |
|
"__type__": "update", |
|
} |
|
to_return_protect1 = { |
|
"visible": True, |
|
"value": to_return_protect1, |
|
"__type__": "update", |
|
} |
|
version = cpt.get("version", "v1") |
|
if version == "v1": |
|
if if_f0 == 1: |
|
net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=config.is_half) |
|
else: |
|
net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"]) |
|
elif version == "v2": |
|
if if_f0 == 1: |
|
net_g = SynthesizerTrnMs768NSFsid(*cpt["config"], is_half=config.is_half) |
|
else: |
|
net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"]) |
|
del net_g.enc_q |
|
print(net_g.load_state_dict(cpt["weight"], strict=False)) |
|
net_g.eval().to(config.device) |
|
if config.is_half: |
|
net_g = net_g.half() |
|
else: |
|
net_g = net_g.float() |
|
vc = VC(tgt_sr, config) |
|
n_spk = cpt["config"][-3] |
|
return ( |
|
{"visible": True, "maximum": n_spk, "__type__": "update"}, |
|
to_return_protect0, |
|
to_return_protect1, |
|
get_index_path_from_model(sid), |
|
) |
|
|
|
|
|
def change_choices(): |
|
names = [] |
|
for name in os.listdir(weight_root): |
|
if name.endswith(".pth"): |
|
names.append(name) |
|
index_paths = [] |
|
for root, dirs, files in os.walk(index_root, topdown=False): |
|
for name in files: |
|
if name.endswith(".index") and "trained" not in name: |
|
index_paths.append("%s/%s" % (root, name)) |
|
return {"choices": sorted(names), "__type__": "update"}, { |
|
"choices": sorted(index_paths), |
|
"__type__": "update", |
|
} |
|
|
|
|
|
def clean(): |
|
return {"value": "", "__type__": "update"} |
|
|
|
|
|
sr_dict = { |
|
"32k": 32000, |
|
"40k": 40000, |
|
"48k": 48000, |
|
} |
|
|
|
|
|
def if_done(done, p): |
|
while 1: |
|
if p.poll() is None: |
|
sleep(0.5) |
|
else: |
|
break |
|
done[0] = True |
|
|
|
|
|
def if_done_multi(done, ps): |
|
while 1: |
|
|
|
|
|
flag = 1 |
|
for p in ps: |
|
if p.poll() is None: |
|
flag = 0 |
|
sleep(0.5) |
|
break |
|
if flag == 1: |
|
break |
|
done[0] = True |
|
|
|
|
|
def preprocess_dataset(trainset_dir, exp_dir, sr, n_p): |
|
sr = sr_dict[sr] |
|
os.makedirs("%s/logs/%s" % (now_dir, exp_dir), exist_ok=True) |
|
f = open("%s/logs/%s/preprocess.log" % (now_dir, exp_dir), "w") |
|
f.close() |
|
cmd = ( |
|
config.python_cmd |
|
+ ' trainset_preprocess_pipeline_print.py "%s" %s %s "%s/logs/%s" ' |
|
% (trainset_dir, sr, n_p, now_dir, exp_dir) |
|
+ str(config.noparallel) |
|
) |
|
print(cmd) |
|
p = Popen(cmd, shell=True) |
|
|
|
done = [False] |
|
threading.Thread( |
|
target=if_done, |
|
args=( |
|
done, |
|
p, |
|
), |
|
).start() |
|
while 1: |
|
with open("%s/logs/%s/preprocess.log" % (now_dir, exp_dir), "r") as f: |
|
yield (f.read()) |
|
sleep(1) |
|
if done[0]: |
|
break |
|
with open("%s/logs/%s/preprocess.log" % (now_dir, exp_dir), "r") as f: |
|
log = f.read() |
|
print(log) |
|
yield log |
|
|
|
|
|
|
|
def extract_f0_feature(gpus, n_p, f0method, if_f0, exp_dir, version19, gpus_rmvpe): |
|
gpus = gpus.split("-") |
|
os.makedirs("%s/logs/%s" % (now_dir, exp_dir), exist_ok=True) |
|
f = open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "w") |
|
f.close() |
|
if if_f0: |
|
if f0method != "rmvpe_gpu": |
|
cmd = config.python_cmd + ' extract_f0_print.py "%s/logs/%s" %s %s' % ( |
|
now_dir, |
|
exp_dir, |
|
n_p, |
|
f0method, |
|
) |
|
print(cmd) |
|
p = Popen( |
|
cmd, shell=True, cwd=now_dir |
|
) |
|
|
|
done = [False] |
|
threading.Thread( |
|
target=if_done, |
|
args=( |
|
done, |
|
p, |
|
), |
|
).start() |
|
while 1: |
|
with open( |
|
"%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r" |
|
) as f: |
|
yield (f.read()) |
|
sleep(1) |
|
if done[0]: |
|
break |
|
with open( |
|
"%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r" |
|
) as f: |
|
log = f.read() |
|
print(log) |
|
yield log |
|
else: |
|
gpus_rmvpe = gpus_rmvpe.split("-") |
|
leng = len(gpus_rmvpe) |
|
ps = [] |
|
for idx, n_g in enumerate(gpus_rmvpe): |
|
cmd = ( |
|
config.python_cmd |
|
+ ' extract_f0_rmvpe.py %s %s %s "%s/logs/%s" %s ' |
|
% (leng, idx, n_g, now_dir, exp_dir, config.is_half) |
|
) |
|
print(cmd) |
|
p = Popen( |
|
cmd, shell=True, cwd=now_dir |
|
) |
|
ps.append(p) |
|
|
|
done = [False] |
|
threading.Thread( |
|
target=if_done_multi, |
|
args=( |
|
done, |
|
ps, |
|
), |
|
).start() |
|
while 1: |
|
with open( |
|
"%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r" |
|
) as f: |
|
yield (f.read()) |
|
sleep(1) |
|
if done[0]: |
|
break |
|
with open( |
|
"%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r" |
|
) as f: |
|
log = f.read() |
|
print(log) |
|
yield log |
|
|
|
""" |
|
n_part=int(sys.argv[1]) |
|
i_part=int(sys.argv[2]) |
|
i_gpu=sys.argv[3] |
|
exp_dir=sys.argv[4] |
|
os.environ["CUDA_VISIBLE_DEVICES"]=str(i_gpu) |
|
""" |
|
leng = len(gpus) |
|
ps = [] |
|
for idx, n_g in enumerate(gpus): |
|
cmd = ( |
|
config.python_cmd |
|
+ ' extract_feature_print.py %s %s %s %s "%s/logs/%s" %s' |
|
% ( |
|
config.device, |
|
leng, |
|
idx, |
|
n_g, |
|
now_dir, |
|
exp_dir, |
|
version19, |
|
) |
|
) |
|
print(cmd) |
|
p = Popen( |
|
cmd, shell=True, cwd=now_dir |
|
) |
|
ps.append(p) |
|
|
|
done = [False] |
|
threading.Thread( |
|
target=if_done_multi, |
|
args=( |
|
done, |
|
ps, |
|
), |
|
).start() |
|
while 1: |
|
with open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r") as f: |
|
yield (f.read()) |
|
sleep(1) |
|
if done[0]: |
|
break |
|
with open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r") as f: |
|
log = f.read() |
|
print(log) |
|
yield log |
|
|
|
|
|
def change_sr2(sr2, if_f0_3, version19): |
|
path_str = "" if version19 == "v1" else "_v2" |
|
f0_str = "f0" if if_f0_3 else "" |
|
if_pretrained_generator_exist = os.access( |
|
"pretrained%s/%sG%s.pth" % (path_str, f0_str, sr2), os.F_OK |
|
) |
|
if_pretrained_discriminator_exist = os.access( |
|
"pretrained%s/%sD%s.pth" % (path_str, f0_str, sr2), os.F_OK |
|
) |
|
if not if_pretrained_generator_exist: |
|
print( |
|
"pretrained%s/%sG%s.pth" % (path_str, f0_str, sr2), |
|
"not exist, will not use pretrained model", |
|
) |
|
if not if_pretrained_discriminator_exist: |
|
print( |
|
"pretrained%s/%sD%s.pth" % (path_str, f0_str, sr2), |
|
"not exist, will not use pretrained model", |
|
) |
|
return ( |
|
"pretrained%s/%sG%s.pth" % (path_str, f0_str, sr2) |
|
if if_pretrained_generator_exist |
|
else "", |
|
"pretrained%s/%sD%s.pth" % (path_str, f0_str, sr2) |
|
if if_pretrained_discriminator_exist |
|
else "", |
|
) |
|
|
|
|
|
def change_version19(sr2, if_f0_3, version19): |
|
path_str = "" if version19 == "v1" else "_v2" |
|
if sr2 == "32k" and version19 == "v1": |
|
sr2 = "40k" |
|
to_return_sr2 = ( |
|
{"choices": ["40k", "48k"], "__type__": "update", "value": sr2} |
|
if version19 == "v1" |
|
else {"choices": ["40k", "48k", "32k"], "__type__": "update", "value": sr2} |
|
) |
|
f0_str = "f0" if if_f0_3 else "" |
|
if_pretrained_generator_exist = os.access( |
|
"pretrained%s/%sG%s.pth" % (path_str, f0_str, sr2), os.F_OK |
|
) |
|
if_pretrained_discriminator_exist = os.access( |
|
"pretrained%s/%sD%s.pth" % (path_str, f0_str, sr2), os.F_OK |
|
) |
|
if not if_pretrained_generator_exist: |
|
print( |
|
"pretrained%s/%sG%s.pth" % (path_str, f0_str, sr2), |
|
"not exist, will not use pretrained model", |
|
) |
|
if not if_pretrained_discriminator_exist: |
|
print( |
|
"pretrained%s/%sD%s.pth" % (path_str, f0_str, sr2), |
|
"not exist, will not use pretrained model", |
|
) |
|
return ( |
|
"pretrained%s/%sG%s.pth" % (path_str, f0_str, sr2) |
|
if if_pretrained_generator_exist |
|
else "", |
|
"pretrained%s/%sD%s.pth" % (path_str, f0_str, sr2) |
|
if if_pretrained_discriminator_exist |
|
else "", |
|
to_return_sr2, |
|
) |
|
|
|
|
|
def change_f0(if_f0_3, sr2, version19): |
|
path_str = "" if version19 == "v1" else "_v2" |
|
if_pretrained_generator_exist = os.access( |
|
"pretrained%s/f0G%s.pth" % (path_str, sr2), os.F_OK |
|
) |
|
if_pretrained_discriminator_exist = os.access( |
|
"pretrained%s/f0D%s.pth" % (path_str, sr2), os.F_OK |
|
) |
|
if not if_pretrained_generator_exist: |
|
print( |
|
"pretrained%s/f0G%s.pth" % (path_str, sr2), |
|
"not exist, will not use pretrained model", |
|
) |
|
if not if_pretrained_discriminator_exist: |
|
print( |
|
"pretrained%s/f0D%s.pth" % (path_str, sr2), |
|
"not exist, will not use pretrained model", |
|
) |
|
if if_f0_3: |
|
return ( |
|
{"visible": True, "__type__": "update"}, |
|
"pretrained%s/f0G%s.pth" % (path_str, sr2) |
|
if if_pretrained_generator_exist |
|
else "", |
|
"pretrained%s/f0D%s.pth" % (path_str, sr2) |
|
if if_pretrained_discriminator_exist |
|
else "", |
|
) |
|
return ( |
|
{"visible": False, "__type__": "update"}, |
|
("pretrained%s/G%s.pth" % (path_str, sr2)) |
|
if if_pretrained_generator_exist |
|
else "", |
|
("pretrained%s/D%s.pth" % (path_str, sr2)) |
|
if if_pretrained_discriminator_exist |
|
else "", |
|
) |
|
|
|
|
|
|
|
def click_train( |
|
exp_dir1, |
|
sr2, |
|
if_f0_3, |
|
spk_id5, |
|
save_epoch10, |
|
total_epoch11, |
|
batch_size12, |
|
if_save_latest13, |
|
pretrained_G14, |
|
pretrained_D15, |
|
gpus16, |
|
if_cache_gpu17, |
|
if_save_every_weights18, |
|
version19, |
|
): |
|
|
|
exp_dir = "%s/logs/%s" % (now_dir, exp_dir1) |
|
os.makedirs(exp_dir, exist_ok=True) |
|
gt_wavs_dir = "%s/0_gt_wavs" % (exp_dir) |
|
feature_dir = ( |
|
"%s/3_feature256" % (exp_dir) |
|
if version19 == "v1" |
|
else "%s/3_feature768" % (exp_dir) |
|
) |
|
if if_f0_3: |
|
f0_dir = "%s/2a_f0" % (exp_dir) |
|
f0nsf_dir = "%s/2b-f0nsf" % (exp_dir) |
|
names = ( |
|
set([name.split(".")[0] for name in os.listdir(gt_wavs_dir)]) |
|
& set([name.split(".")[0] for name in os.listdir(feature_dir)]) |
|
& set([name.split(".")[0] for name in os.listdir(f0_dir)]) |
|
& set([name.split(".")[0] for name in os.listdir(f0nsf_dir)]) |
|
) |
|
else: |
|
names = set([name.split(".")[0] for name in os.listdir(gt_wavs_dir)]) & set( |
|
[name.split(".")[0] for name in os.listdir(feature_dir)] |
|
) |
|
opt = [] |
|
for name in names: |
|
if if_f0_3: |
|
opt.append( |
|
"%s/%s.wav|%s/%s.npy|%s/%s.wav.npy|%s/%s.wav.npy|%s" |
|
% ( |
|
gt_wavs_dir.replace("\\", "\\\\"), |
|
name, |
|
feature_dir.replace("\\", "\\\\"), |
|
name, |
|
f0_dir.replace("\\", "\\\\"), |
|
name, |
|
f0nsf_dir.replace("\\", "\\\\"), |
|
name, |
|
spk_id5, |
|
) |
|
) |
|
else: |
|
opt.append( |
|
"%s/%s.wav|%s/%s.npy|%s" |
|
% ( |
|
gt_wavs_dir.replace("\\", "\\\\"), |
|
name, |
|
feature_dir.replace("\\", "\\\\"), |
|
name, |
|
spk_id5, |
|
) |
|
) |
|
fea_dim = 256 if version19 == "v1" else 768 |
|
if if_f0_3: |
|
for _ in range(2): |
|
opt.append( |
|
"%s/logs/mute/0_gt_wavs/mute%s.wav|%s/logs/mute/3_feature%s/mute.npy|%s/logs/mute/2a_f0/mute.wav.npy|%s/logs/mute/2b-f0nsf/mute.wav.npy|%s" |
|
% (now_dir, sr2, now_dir, fea_dim, now_dir, now_dir, spk_id5) |
|
) |
|
else: |
|
for _ in range(2): |
|
opt.append( |
|
"%s/logs/mute/0_gt_wavs/mute%s.wav|%s/logs/mute/3_feature%s/mute.npy|%s" |
|
% (now_dir, sr2, now_dir, fea_dim, spk_id5) |
|
) |
|
shuffle(opt) |
|
with open("%s/filelist.txt" % exp_dir, "w") as f: |
|
f.write("\n".join(opt)) |
|
print("write filelist done") |
|
|
|
|
|
print("use gpus:", gpus16) |
|
if pretrained_G14 == "": |
|
print("no pretrained Generator") |
|
if pretrained_D15 == "": |
|
print("no pretrained Discriminator") |
|
if gpus16: |
|
cmd = ( |
|
config.python_cmd |
|
+ ' train_nsf_sim_cache_sid_load_pretrain.py -e "%s" -sr %s -f0 %s -bs %s -g %s -te %s -se %s %s %s -l %s -c %s -sw %s -v %s' |
|
% ( |
|
exp_dir1, |
|
sr2, |
|
1 if if_f0_3 else 0, |
|
batch_size12, |
|
gpus16, |
|
total_epoch11, |
|
save_epoch10, |
|
"-pg %s" % pretrained_G14 if pretrained_G14 != "" else "", |
|
"-pd %s" % pretrained_D15 if pretrained_D15 != "" else "", |
|
1 if if_save_latest13 == i18n("是") else 0, |
|
1 if if_cache_gpu17 == i18n("是") else 0, |
|
1 if if_save_every_weights18 == i18n("是") else 0, |
|
version19, |
|
) |
|
) |
|
else: |
|
cmd = ( |
|
config.python_cmd |
|
+ ' train_nsf_sim_cache_sid_load_pretrain.py -e "%s" -sr %s -f0 %s -bs %s -te %s -se %s %s %s -l %s -c %s -sw %s -v %s' |
|
% ( |
|
exp_dir1, |
|
sr2, |
|
1 if if_f0_3 else 0, |
|
batch_size12, |
|
total_epoch11, |
|
save_epoch10, |
|
"-pg %s" % pretrained_G14 if pretrained_G14 != "" else "\b", |
|
"-pd %s" % pretrained_D15 if pretrained_D15 != "" else "\b", |
|
1 if if_save_latest13 == i18n("是") else 0, |
|
1 if if_cache_gpu17 == i18n("是") else 0, |
|
1 if if_save_every_weights18 == i18n("是") else 0, |
|
version19, |
|
) |
|
) |
|
print(cmd) |
|
p = Popen(cmd, shell=True, cwd=now_dir) |
|
p.wait() |
|
return "训练结束, 您可查看控制台训练日志或实验文件夹下的train.log" |
|
|
|
|
|
|
|
def train_index(exp_dir1, version19): |
|
exp_dir = "%s/logs/%s" % (now_dir, exp_dir1) |
|
os.makedirs(exp_dir, exist_ok=True) |
|
feature_dir = ( |
|
"%s/3_feature256" % (exp_dir) |
|
if version19 == "v1" |
|
else "%s/3_feature768" % (exp_dir) |
|
) |
|
if not os.path.exists(feature_dir): |
|
return "请先进行特征提取!" |
|
listdir_res = list(os.listdir(feature_dir)) |
|
if len(listdir_res) == 0: |
|
return "请先进行特征提取!" |
|
infos = [] |
|
npys = [] |
|
for name in sorted(listdir_res): |
|
phone = np.load("%s/%s" % (feature_dir, name)) |
|
npys.append(phone) |
|
big_npy = np.concatenate(npys, 0) |
|
big_npy_idx = np.arange(big_npy.shape[0]) |
|
np.random.shuffle(big_npy_idx) |
|
big_npy = big_npy[big_npy_idx] |
|
if big_npy.shape[0] > 2e5: |
|
|
|
infos.append("Trying doing kmeans %s shape to 10k centers." % big_npy.shape[0]) |
|
yield "\n".join(infos) |
|
try: |
|
big_npy = ( |
|
MiniBatchKMeans( |
|
n_clusters=10000, |
|
verbose=True, |
|
batch_size=256 * config.n_cpu, |
|
compute_labels=False, |
|
init="random", |
|
) |
|
.fit(big_npy) |
|
.cluster_centers_ |
|
) |
|
except: |
|
info = traceback.format_exc() |
|
print(info) |
|
infos.append(info) |
|
yield "\n".join(infos) |
|
|
|
np.save("%s/total_fea.npy" % exp_dir, big_npy) |
|
n_ivf = min(int(16 * np.sqrt(big_npy.shape[0])), big_npy.shape[0] // 39) |
|
infos.append("%s,%s" % (big_npy.shape, n_ivf)) |
|
yield "\n".join(infos) |
|
index = faiss.index_factory(256 if version19 == "v1" else 768, "IVF%s,Flat" % n_ivf) |
|
|
|
infos.append("training") |
|
yield "\n".join(infos) |
|
index_ivf = faiss.extract_index_ivf(index) |
|
index_ivf.nprobe = 1 |
|
index.train(big_npy) |
|
faiss.write_index( |
|
index, |
|
"%s/trained_IVF%s_Flat_nprobe_%s_%s_%s.index" |
|
% (exp_dir, n_ivf, index_ivf.nprobe, exp_dir1, version19), |
|
) |
|
|
|
infos.append("adding") |
|
yield "\n".join(infos) |
|
batch_size_add = 8192 |
|
for i in range(0, big_npy.shape[0], batch_size_add): |
|
index.add(big_npy[i : i + batch_size_add]) |
|
faiss.write_index( |
|
index, |
|
"%s/added_IVF%s_Flat_nprobe_%s_%s_%s.index" |
|
% (exp_dir, n_ivf, index_ivf.nprobe, exp_dir1, version19), |
|
) |
|
infos.append( |
|
"成功构建索引,added_IVF%s_Flat_nprobe_%s_%s_%s.index" |
|
% (n_ivf, index_ivf.nprobe, exp_dir1, version19) |
|
) |
|
|
|
|
|
yield "\n".join(infos) |
|
|
|
|
|
|
|
def train1key( |
|
exp_dir1, |
|
sr2, |
|
if_f0_3, |
|
trainset_dir4, |
|
spk_id5, |
|
np7, |
|
f0method8, |
|
save_epoch10, |
|
total_epoch11, |
|
batch_size12, |
|
if_save_latest13, |
|
pretrained_G14, |
|
pretrained_D15, |
|
gpus16, |
|
if_cache_gpu17, |
|
if_save_every_weights18, |
|
version19, |
|
gpus_rmvpe, |
|
): |
|
infos = [] |
|
|
|
def get_info_str(strr): |
|
infos.append(strr) |
|
return "\n".join(infos) |
|
|
|
model_log_dir = "%s/logs/%s" % (now_dir, exp_dir1) |
|
preprocess_log_path = "%s/preprocess.log" % model_log_dir |
|
extract_f0_feature_log_path = "%s/extract_f0_feature.log" % model_log_dir |
|
gt_wavs_dir = "%s/0_gt_wavs" % model_log_dir |
|
feature_dir = ( |
|
"%s/3_feature256" % model_log_dir |
|
if version19 == "v1" |
|
else "%s/3_feature768" % model_log_dir |
|
) |
|
|
|
os.makedirs(model_log_dir, exist_ok=True) |
|
|
|
open(preprocess_log_path, "w").close() |
|
cmd = ( |
|
config.python_cmd |
|
+ ' trainset_preprocess_pipeline_print.py "%s" %s %s "%s" ' |
|
% (trainset_dir4, sr_dict[sr2], np7, model_log_dir) |
|
+ str(config.noparallel) |
|
) |
|
yield get_info_str(i18n("step1:正在处理数据")) |
|
yield get_info_str(cmd) |
|
p = Popen(cmd, shell=True) |
|
p.wait() |
|
with open(preprocess_log_path, "r") as f: |
|
print(f.read()) |
|
|
|
open(extract_f0_feature_log_path, "w") |
|
if if_f0_3: |
|
yield get_info_str("step2a:正在提取音高") |
|
if f0method8 != "rmvpe_gpu": |
|
cmd = config.python_cmd + ' extract_f0_print.py "%s" %s %s' % ( |
|
model_log_dir, |
|
np7, |
|
f0method8, |
|
) |
|
yield get_info_str(cmd) |
|
p = Popen(cmd, shell=True, cwd=now_dir) |
|
p.wait() |
|
else: |
|
gpus_rmvpe = gpus_rmvpe.split("-") |
|
leng = len(gpus_rmvpe) |
|
ps = [] |
|
for idx, n_g in enumerate(gpus_rmvpe): |
|
cmd = config.python_cmd + ' extract_f0_rmvpe.py %s %s %s "%s" %s ' % ( |
|
leng, |
|
idx, |
|
n_g, |
|
model_log_dir, |
|
config.is_half, |
|
) |
|
yield get_info_str(cmd) |
|
p = Popen( |
|
cmd, shell=True, cwd=now_dir |
|
) |
|
ps.append(p) |
|
for p in ps: |
|
p.wait() |
|
with open(extract_f0_feature_log_path, "r") as f: |
|
print(f.read()) |
|
else: |
|
yield get_info_str(i18n("step2a:无需提取音高")) |
|
|
|
yield get_info_str(i18n("step2b:正在提取特征")) |
|
gpus = gpus16.split("-") |
|
leng = len(gpus) |
|
ps = [] |
|
for idx, n_g in enumerate(gpus): |
|
cmd = config.python_cmd + ' extract_feature_print.py %s %s %s %s "%s" %s' % ( |
|
config.device, |
|
leng, |
|
idx, |
|
n_g, |
|
model_log_dir, |
|
version19, |
|
) |
|
yield get_info_str(cmd) |
|
p = Popen( |
|
cmd, shell=True, cwd=now_dir |
|
) |
|
ps.append(p) |
|
for p in ps: |
|
p.wait() |
|
with open(extract_f0_feature_log_path, "r") as f: |
|
print(f.read()) |
|
|
|
yield get_info_str(i18n("step3a:正在训练模型")) |
|
|
|
if if_f0_3: |
|
f0_dir = "%s/2a_f0" % model_log_dir |
|
f0nsf_dir = "%s/2b-f0nsf" % model_log_dir |
|
names = ( |
|
set([name.split(".")[0] for name in os.listdir(gt_wavs_dir)]) |
|
& set([name.split(".")[0] for name in os.listdir(feature_dir)]) |
|
& set([name.split(".")[0] for name in os.listdir(f0_dir)]) |
|
& set([name.split(".")[0] for name in os.listdir(f0nsf_dir)]) |
|
) |
|
else: |
|
names = set([name.split(".")[0] for name in os.listdir(gt_wavs_dir)]) & set( |
|
[name.split(".")[0] for name in os.listdir(feature_dir)] |
|
) |
|
opt = [] |
|
for name in names: |
|
if if_f0_3: |
|
opt.append( |
|
"%s/%s.wav|%s/%s.npy|%s/%s.wav.npy|%s/%s.wav.npy|%s" |
|
% ( |
|
gt_wavs_dir.replace("\\", "\\\\"), |
|
name, |
|
feature_dir.replace("\\", "\\\\"), |
|
name, |
|
f0_dir.replace("\\", "\\\\"), |
|
name, |
|
f0nsf_dir.replace("\\", "\\\\"), |
|
name, |
|
spk_id5, |
|
) |
|
) |
|
else: |
|
opt.append( |
|
"%s/%s.wav|%s/%s.npy|%s" |
|
% ( |
|
gt_wavs_dir.replace("\\", "\\\\"), |
|
name, |
|
feature_dir.replace("\\", "\\\\"), |
|
name, |
|
spk_id5, |
|
) |
|
) |
|
fea_dim = 256 if version19 == "v1" else 768 |
|
if if_f0_3: |
|
for _ in range(2): |
|
opt.append( |
|
"%s/logs/mute/0_gt_wavs/mute%s.wav|%s/logs/mute/3_feature%s/mute.npy|%s/logs/mute/2a_f0/mute.wav.npy|%s/logs/mute/2b-f0nsf/mute.wav.npy|%s" |
|
% (now_dir, sr2, now_dir, fea_dim, now_dir, now_dir, spk_id5) |
|
) |
|
else: |
|
for _ in range(2): |
|
opt.append( |
|
"%s/logs/mute/0_gt_wavs/mute%s.wav|%s/logs/mute/3_feature%s/mute.npy|%s" |
|
% (now_dir, sr2, now_dir, fea_dim, spk_id5) |
|
) |
|
shuffle(opt) |
|
with open("%s/filelist.txt" % model_log_dir, "w") as f: |
|
f.write("\n".join(opt)) |
|
yield get_info_str("write filelist done") |
|
if gpus16: |
|
cmd = ( |
|
config.python_cmd |
|
+ ' train_nsf_sim_cache_sid_load_pretrain.py -e "%s" -sr %s -f0 %s -bs %s -g %s -te %s -se %s %s %s -l %s -c %s -sw %s -v %s' |
|
% ( |
|
exp_dir1, |
|
sr2, |
|
1 if if_f0_3 else 0, |
|
batch_size12, |
|
gpus16, |
|
total_epoch11, |
|
save_epoch10, |
|
"-pg %s" % pretrained_G14 if pretrained_G14 != "" else "", |
|
"-pd %s" % pretrained_D15 if pretrained_D15 != "" else "", |
|
1 if if_save_latest13 == i18n("是") else 0, |
|
1 if if_cache_gpu17 == i18n("是") else 0, |
|
1 if if_save_every_weights18 == i18n("是") else 0, |
|
version19, |
|
) |
|
) |
|
else: |
|
cmd = ( |
|
config.python_cmd |
|
+ ' train_nsf_sim_cache_sid_load_pretrain.py -e "%s" -sr %s -f0 %s -bs %s -te %s -se %s %s %s -l %s -c %s -sw %s -v %s' |
|
% ( |
|
exp_dir1, |
|
sr2, |
|
1 if if_f0_3 else 0, |
|
batch_size12, |
|
total_epoch11, |
|
save_epoch10, |
|
"-pg %s" % pretrained_G14 if pretrained_G14 != "" else "", |
|
"-pd %s" % pretrained_D15 if pretrained_D15 != "" else "", |
|
1 if if_save_latest13 == i18n("是") else 0, |
|
1 if if_cache_gpu17 == i18n("是") else 0, |
|
1 if if_save_every_weights18 == i18n("是") else 0, |
|
version19, |
|
) |
|
) |
|
yield get_info_str(cmd) |
|
p = Popen(cmd, shell=True, cwd=now_dir) |
|
p.wait() |
|
yield get_info_str(i18n("训练结束, 您可查看控制台训练日志或实验文件夹下的train.log")) |
|
|
|
npys = [] |
|
listdir_res = list(os.listdir(feature_dir)) |
|
for name in sorted(listdir_res): |
|
phone = np.load("%s/%s" % (feature_dir, name)) |
|
npys.append(phone) |
|
big_npy = np.concatenate(npys, 0) |
|
|
|
big_npy_idx = np.arange(big_npy.shape[0]) |
|
np.random.shuffle(big_npy_idx) |
|
big_npy = big_npy[big_npy_idx] |
|
|
|
if big_npy.shape[0] > 2e5: |
|
|
|
info = "Trying doing kmeans %s shape to 10k centers." % big_npy.shape[0] |
|
print(info) |
|
yield get_info_str(info) |
|
try: |
|
big_npy = ( |
|
MiniBatchKMeans( |
|
n_clusters=10000, |
|
verbose=True, |
|
batch_size=256 * config.n_cpu, |
|
compute_labels=False, |
|
init="random", |
|
) |
|
.fit(big_npy) |
|
.cluster_centers_ |
|
) |
|
except: |
|
info = traceback.format_exc() |
|
print(info) |
|
yield get_info_str(info) |
|
|
|
np.save("%s/total_fea.npy" % model_log_dir, big_npy) |
|
|
|
|
|
n_ivf = min(int(16 * np.sqrt(big_npy.shape[0])), big_npy.shape[0] // 39) |
|
yield get_info_str("%s,%s" % (big_npy.shape, n_ivf)) |
|
index = faiss.index_factory(256 if version19 == "v1" else 768, "IVF%s,Flat" % n_ivf) |
|
yield get_info_str("training index") |
|
index_ivf = faiss.extract_index_ivf(index) |
|
index_ivf.nprobe = 1 |
|
index.train(big_npy) |
|
faiss.write_index( |
|
index, |
|
"%s/trained_IVF%s_Flat_nprobe_%s_%s_%s.index" |
|
% (model_log_dir, n_ivf, index_ivf.nprobe, exp_dir1, version19), |
|
) |
|
yield get_info_str("adding index") |
|
batch_size_add = 8192 |
|
for i in range(0, big_npy.shape[0], batch_size_add): |
|
index.add(big_npy[i : i + batch_size_add]) |
|
faiss.write_index( |
|
index, |
|
"%s/added_IVF%s_Flat_nprobe_%s_%s_%s.index" |
|
% (model_log_dir, n_ivf, index_ivf.nprobe, exp_dir1, version19), |
|
) |
|
yield get_info_str( |
|
"成功构建索引, added_IVF%s_Flat_nprobe_%s_%s_%s.index" |
|
% (n_ivf, index_ivf.nprobe, exp_dir1, version19) |
|
) |
|
yield get_info_str(i18n("全流程结束!")) |
|
|
|
|
|
|
|
def change_info_(ckpt_path): |
|
if not os.path.exists(ckpt_path.replace(os.path.basename(ckpt_path), "train.log")): |
|
return {"__type__": "update"}, {"__type__": "update"}, {"__type__": "update"} |
|
try: |
|
with open( |
|
ckpt_path.replace(os.path.basename(ckpt_path), "train.log"), "r" |
|
) as f: |
|
info = eval(f.read().strip("\n").split("\n")[0].split("\t")[-1]) |
|
sr, f0 = info["sample_rate"], info["if_f0"] |
|
version = "v2" if ("version" in info and info["version"] == "v2") else "v1" |
|
return sr, str(f0), version |
|
except: |
|
traceback.print_exc() |
|
return {"__type__": "update"}, {"__type__": "update"}, {"__type__": "update"} |
|
|
|
|
|
def change_f0_method(f0method8): |
|
if f0method8 == "rmvpe_gpu": |
|
visible = True |
|
else: |
|
visible = False |
|
return {"visible": visible, "__type__": "update"} |
|
|
|
|
|
def export_onnx(ModelPath, ExportedPath): |
|
global cpt |
|
cpt = torch.load(ModelPath, map_location="cpu") |
|
cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0] |
|
vec_channels = 256 if cpt.get("version", "v1") == "v1" else 768 |
|
|
|
test_phone = torch.rand(1, 200, vec_channels) |
|
test_phone_lengths = torch.tensor([200]).long() |
|
test_pitch = torch.randint(size=(1, 200), low=5, high=255) |
|
test_pitchf = torch.rand(1, 200) |
|
test_ds = torch.LongTensor([0]) |
|
test_rnd = torch.rand(1, 192, 200) |
|
|
|
device = "cpu" |
|
|
|
net_g = SynthesizerTrnMsNSFsidM( |
|
*cpt["config"], is_half=False, version=cpt.get("version", "v1") |
|
) |
|
net_g.load_state_dict(cpt["weight"], strict=False) |
|
input_names = ["phone", "phone_lengths", "pitch", "pitchf", "ds", "rnd"] |
|
output_names = [ |
|
"audio", |
|
] |
|
|
|
torch.onnx.export( |
|
net_g, |
|
( |
|
test_phone.to(device), |
|
test_phone_lengths.to(device), |
|
test_pitch.to(device), |
|
test_pitchf.to(device), |
|
test_ds.to(device), |
|
test_rnd.to(device), |
|
), |
|
ExportedPath, |
|
dynamic_axes={ |
|
"phone": [1], |
|
"pitch": [1], |
|
"pitchf": [1], |
|
"rnd": [2], |
|
}, |
|
do_constant_folding=False, |
|
opset_version=13, |
|
verbose=False, |
|
input_names=input_names, |
|
output_names=output_names, |
|
) |
|
return "Finished" |
|
|
|
|
|
with gr.Blocks(title="RVC WebUI") as app: |
|
gr.Markdown( |
|
value=i18n( |
|
"本软件以MIT协议开源, 作者不对软件具备任何控制力, 使用软件者、传播软件导出的声音者自负全责. <br>如不认可该条款, 则不能使用或引用软件包内任何代码和文件. 详见根目录<b>LICENSE</b>." |
|
) |
|
) |
|
with gr.Tabs(): |
|
with gr.TabItem(i18n("模型推理")): |
|
with gr.Row(): |
|
sid0 = gr.Dropdown(label=i18n("推理音色"), choices=sorted(names)) |
|
refresh_button = gr.Button(i18n("刷新音色列表和索引路径"), variant="primary") |
|
clean_button = gr.Button(i18n("卸载音色省显存"), variant="primary") |
|
spk_item = gr.Slider( |
|
minimum=0, |
|
maximum=2333, |
|
step=1, |
|
label=i18n("请选择说话人id"), |
|
value=0, |
|
visible=False, |
|
interactive=True, |
|
) |
|
clean_button.click( |
|
fn=clean, inputs=[], outputs=[sid0], api_name="infer_clean" |
|
) |
|
with gr.Group(): |
|
gr.Markdown( |
|
value=i18n("男转女推荐+12key, 女转男推荐-12key, 如果音域爆炸导致音色失真也可以自己调整到合适音域. ") |
|
) |
|
with gr.Row(): |
|
with gr.Column(): |
|
vc_transform0 = gr.Number( |
|
label=i18n("变调(整数, 半音数量, 升八度12降八度-12)"), value=0 |
|
) |
|
input_audio0 = gr.Textbox( |
|
label=i18n("输入待处理音频文件路径(默认是正确格式示例)"), |
|
value="E:\\codes\\py39\\test-20230416b\\todo-songs\\冬之花clip1.wav", |
|
) |
|
f0method0 = gr.Radio( |
|
label=i18n( |
|
"选择音高提取算法,输入歌声可用pm提速,harvest低音好但巨慢无比,crepe效果好但吃GPU,rmvpe效果最好且微吃GPU" |
|
), |
|
choices=["pm", "harvest", "crepe", "rmvpe"], |
|
value="pm", |
|
interactive=True, |
|
) |
|
filter_radius0 = gr.Slider( |
|
minimum=0, |
|
maximum=7, |
|
label=i18n(">=3则使用对harvest音高识别的结果使用中值滤波,数值为滤波半径,使用可以削弱哑音"), |
|
value=3, |
|
step=1, |
|
interactive=True, |
|
) |
|
with gr.Column(): |
|
file_index1 = gr.Textbox( |
|
label=i18n("特征检索库文件路径,为空则使用下拉的选择结果"), |
|
value="", |
|
interactive=True, |
|
) |
|
file_index2 = gr.Dropdown( |
|
label=i18n("自动检测index路径,下拉式选择(dropdown)"), |
|
choices=sorted(index_paths), |
|
interactive=True, |
|
) |
|
refresh_button.click( |
|
fn=change_choices, |
|
inputs=[], |
|
outputs=[sid0, file_index2], |
|
api_name="infer_refresh", |
|
) |
|
|
|
|
|
|
|
|
|
|
|
index_rate1 = gr.Slider( |
|
minimum=0, |
|
maximum=1, |
|
label=i18n("检索特征占比"), |
|
value=0.75, |
|
interactive=True, |
|
) |
|
with gr.Column(): |
|
resample_sr0 = gr.Slider( |
|
minimum=0, |
|
maximum=48000, |
|
label=i18n("后处理重采样至最终采样率,0为不进行重采样"), |
|
value=0, |
|
step=1, |
|
interactive=True, |
|
) |
|
rms_mix_rate0 = gr.Slider( |
|
minimum=0, |
|
maximum=1, |
|
label=i18n("输入源音量包络替换输出音量包络融合比例,越靠近1越使用输出包络"), |
|
value=0.25, |
|
interactive=True, |
|
) |
|
protect0 = gr.Slider( |
|
minimum=0, |
|
maximum=0.5, |
|
label=i18n( |
|
"保护清辅音和呼吸声,防止电音撕裂等artifact,拉满0.5不开启,调低加大保护力度但可能降低索引效果" |
|
), |
|
value=0.33, |
|
step=0.01, |
|
interactive=True, |
|
) |
|
f0_file = gr.File(label=i18n("F0曲线文件, 可选, 一行一个音高, 代替默认F0及升降调")) |
|
but0 = gr.Button(i18n("转换"), variant="primary") |
|
with gr.Row(): |
|
vc_output1 = gr.Textbox(label=i18n("输出信息")) |
|
vc_output2 = gr.Audio(label=i18n("输出音频(右下角三个点,点了可以下载)")) |
|
but0.click( |
|
vc_single, |
|
[ |
|
spk_item, |
|
input_audio0, |
|
vc_transform0, |
|
f0_file, |
|
f0method0, |
|
file_index1, |
|
file_index2, |
|
|
|
index_rate1, |
|
filter_radius0, |
|
resample_sr0, |
|
rms_mix_rate0, |
|
protect0, |
|
], |
|
[vc_output1, vc_output2], |
|
api_name="infer_convert", |
|
) |
|
with gr.Group(): |
|
gr.Markdown( |
|
value=i18n("批量转换, 输入待转换音频文件夹, 或上传多个音频文件, 在指定文件夹(默认opt)下输出转换的音频. ") |
|
) |
|
with gr.Row(): |
|
with gr.Column(): |
|
vc_transform1 = gr.Number( |
|
label=i18n("变调(整数, 半音数量, 升八度12降八度-12)"), value=0 |
|
) |
|
opt_input = gr.Textbox(label=i18n("指定输出文件夹"), value="opt") |
|
f0method1 = gr.Radio( |
|
label=i18n( |
|
"选择音高提取算法,输入歌声可用pm提速,harvest低音好但巨慢无比,crepe效果好但吃GPU,rmvpe效果最好且微吃GPU" |
|
), |
|
choices=["pm", "harvest", "crepe", "rmvpe"], |
|
value="pm", |
|
interactive=True, |
|
) |
|
filter_radius1 = gr.Slider( |
|
minimum=0, |
|
maximum=7, |
|
label=i18n(">=3则使用对harvest音高识别的结果使用中值滤波,数值为滤波半径,使用可以削弱哑音"), |
|
value=3, |
|
step=1, |
|
interactive=True, |
|
) |
|
with gr.Column(): |
|
file_index3 = gr.Textbox( |
|
label=i18n("特征检索库文件路径,为空则使用下拉的选择结果"), |
|
value="", |
|
interactive=True, |
|
) |
|
file_index4 = gr.Dropdown( |
|
label=i18n("自动检测index路径,下拉式选择(dropdown)"), |
|
choices=sorted(index_paths), |
|
interactive=True, |
|
) |
|
refresh_button.click( |
|
fn=lambda: change_choices()[1], |
|
inputs=[], |
|
outputs=file_index4, |
|
api_name="infer_refresh_batch", |
|
) |
|
|
|
|
|
|
|
|
|
|
|
index_rate2 = gr.Slider( |
|
minimum=0, |
|
maximum=1, |
|
label=i18n("检索特征占比"), |
|
value=1, |
|
interactive=True, |
|
) |
|
with gr.Column(): |
|
resample_sr1 = gr.Slider( |
|
minimum=0, |
|
maximum=48000, |
|
label=i18n("后处理重采样至最终采样率,0为不进行重采样"), |
|
value=0, |
|
step=1, |
|
interactive=True, |
|
) |
|
rms_mix_rate1 = gr.Slider( |
|
minimum=0, |
|
maximum=1, |
|
label=i18n("输入源音量包络替换输出音量包络融合比例,越靠近1越使用输出包络"), |
|
value=1, |
|
interactive=True, |
|
) |
|
protect1 = gr.Slider( |
|
minimum=0, |
|
maximum=0.5, |
|
label=i18n( |
|
"保护清辅音和呼吸声,防止电音撕裂等artifact,拉满0.5不开启,调低加大保护力度但可能降低索引效果" |
|
), |
|
value=0.33, |
|
step=0.01, |
|
interactive=True, |
|
) |
|
with gr.Column(): |
|
dir_input = gr.Textbox( |
|
label=i18n("输入待处理音频文件夹路径(去文件管理器地址栏拷就行了)"), |
|
value="E:\codes\py39\\test-20230416b\\todo-songs", |
|
) |
|
inputs = gr.File( |
|
file_count="multiple", label=i18n("也可批量输入音频文件, 二选一, 优先读文件夹") |
|
) |
|
with gr.Row(): |
|
format1 = gr.Radio( |
|
label=i18n("导出文件格式"), |
|
choices=["wav", "flac", "mp3", "m4a"], |
|
value="flac", |
|
interactive=True, |
|
) |
|
but1 = gr.Button(i18n("转换"), variant="primary") |
|
vc_output3 = gr.Textbox(label=i18n("输出信息")) |
|
but1.click( |
|
vc_multi, |
|
[ |
|
spk_item, |
|
dir_input, |
|
opt_input, |
|
inputs, |
|
vc_transform1, |
|
f0method1, |
|
file_index3, |
|
file_index4, |
|
|
|
index_rate2, |
|
filter_radius1, |
|
resample_sr1, |
|
rms_mix_rate1, |
|
protect1, |
|
format1, |
|
], |
|
[vc_output3], |
|
api_name="infer_convert_batch", |
|
) |
|
sid0.change( |
|
fn=get_vc, |
|
inputs=[sid0, protect0, protect1], |
|
outputs=[spk_item, protect0, protect1, file_index2], |
|
) |
|
with gr.TabItem(i18n("伴奏人声分离&去混响&去回声")): |
|
with gr.Group(): |
|
gr.Markdown( |
|
value=i18n( |
|
"人声伴奏分离批量处理, 使用UVR5模型。 <br>合格的文件夹路径格式举例: E:\\codes\\py39\\vits_vc_gpu\\白鹭霜华测试样例(去文件管理器地址栏拷就行了)。 <br>模型分为三类: <br>1、保留人声:不带和声的音频选这个,对主人声保留比HP5更好。内置HP2和HP3两个模型,HP3可能轻微漏伴奏但对主人声保留比HP2稍微好一丁点; <br>2、仅保留主人声:带和声的音频选这个,对主人声可能有削弱。内置HP5一个模型; <br> 3、去混响、去延迟模型(by FoxJoy):<br> (1)MDX-Net(onnx_dereverb):对于双通道混响是最好的选择,不能去除单通道混响;<br> (234)DeEcho:去除延迟效果。Aggressive比Normal去除得更彻底,DeReverb额外去除混响,可去除单声道混响,但是对高频重的板式混响去不干净。<br>去混响/去延迟,附:<br>1、DeEcho-DeReverb模型的耗时是另外2个DeEcho模型的接近2倍;<br>2、MDX-Net-Dereverb模型挺慢的;<br>3、个人推荐的最干净的配置是先MDX-Net再DeEcho-Aggressive。" |
|
) |
|
) |
|
with gr.Row(): |
|
with gr.Column(): |
|
dir_wav_input = gr.Textbox( |
|
label=i18n("输入待处理音频文件夹路径"), |
|
value="E:\\codes\\py39\\test-20230416b\\todo-songs\\todo-songs", |
|
) |
|
wav_inputs = gr.File( |
|
file_count="multiple", label=i18n("也可批量输入音频文件, 二选一, 优先读文件夹") |
|
) |
|
with gr.Column(): |
|
model_choose = gr.Dropdown(label=i18n("模型"), choices=uvr5_names) |
|
agg = gr.Slider( |
|
minimum=0, |
|
maximum=20, |
|
step=1, |
|
label="人声提取激进程度", |
|
value=10, |
|
interactive=True, |
|
visible=False, |
|
) |
|
opt_vocal_root = gr.Textbox( |
|
label=i18n("指定输出主人声文件夹"), value="opt" |
|
) |
|
opt_ins_root = gr.Textbox( |
|
label=i18n("指定输出非主人声文件夹"), value="opt" |
|
) |
|
format0 = gr.Radio( |
|
label=i18n("导出文件格式"), |
|
choices=["wav", "flac", "mp3", "m4a"], |
|
value="flac", |
|
interactive=True, |
|
) |
|
but2 = gr.Button(i18n("转换"), variant="primary") |
|
vc_output4 = gr.Textbox(label=i18n("输出信息")) |
|
but2.click( |
|
uvr, |
|
[ |
|
model_choose, |
|
dir_wav_input, |
|
opt_vocal_root, |
|
wav_inputs, |
|
opt_ins_root, |
|
agg, |
|
format0, |
|
], |
|
[vc_output4], |
|
api_name="uvr_convert", |
|
) |
|
with gr.TabItem(i18n("训练")): |
|
gr.Markdown( |
|
value=i18n( |
|
"step1: 填写实验配置. 实验数据放在logs下, 每个实验一个文件夹, 需手工输入实验名路径, 内含实验配置, 日志, 训练得到的模型文件. " |
|
) |
|
) |
|
with gr.Row(): |
|
exp_dir1 = gr.Textbox(label=i18n("输入实验名"), value="mi-test") |
|
sr2 = gr.Radio( |
|
label=i18n("目标采样率"), |
|
choices=["40k", "48k"], |
|
value="40k", |
|
interactive=True, |
|
) |
|
if_f0_3 = gr.Radio( |
|
label=i18n("模型是否带音高指导(唱歌一定要, 语音可以不要)"), |
|
choices=[True, False], |
|
value=True, |
|
interactive=True, |
|
) |
|
version19 = gr.Radio( |
|
label=i18n("版本"), |
|
choices=["v1", "v2"], |
|
value="v2", |
|
interactive=True, |
|
visible=True, |
|
) |
|
np7 = gr.Slider( |
|
minimum=0, |
|
maximum=config.n_cpu, |
|
step=1, |
|
label=i18n("提取音高和处理数据使用的CPU进程数"), |
|
value=int(np.ceil(config.n_cpu / 1.5)), |
|
interactive=True, |
|
) |
|
with gr.Group(): |
|
gr.Markdown( |
|
value=i18n( |
|
"step2a: 自动遍历训练文件夹下所有可解码成音频的文件并进行切片归一化, 在实验目录下生成2个wav文件夹; 暂时只支持单人训练. " |
|
) |
|
) |
|
with gr.Row(): |
|
trainset_dir4 = gr.Textbox( |
|
label=i18n("输入训练文件夹路径"), value="E:\\语音音频+标注\\米津玄师\\src" |
|
) |
|
spk_id5 = gr.Slider( |
|
minimum=0, |
|
maximum=4, |
|
step=1, |
|
label=i18n("请指定说话人id"), |
|
value=0, |
|
interactive=True, |
|
) |
|
but1 = gr.Button(i18n("处理数据"), variant="primary") |
|
info1 = gr.Textbox(label=i18n("输出信息"), value="") |
|
but1.click( |
|
preprocess_dataset, |
|
[trainset_dir4, exp_dir1, sr2, np7], |
|
[info1], |
|
api_name="train_preprocess", |
|
) |
|
with gr.Group(): |
|
gr.Markdown(value=i18n("step2b: 使用CPU提取音高(如果模型带音高), 使用GPU提取特征(选择卡号)")) |
|
with gr.Row(): |
|
with gr.Column(): |
|
gpus6 = gr.Textbox( |
|
label=i18n("以-分隔输入使用的卡号, 例如 0-1-2 使用卡0和卡1和卡2"), |
|
value=gpus, |
|
interactive=True, |
|
) |
|
gpu_info9 = gr.Textbox(label=i18n("显卡信息"), value=gpu_info) |
|
with gr.Column(): |
|
f0method8 = gr.Radio( |
|
label=i18n( |
|
"选择音高提取算法:输入歌声可用pm提速,高质量语音但CPU差可用dio提速,harvest质量更好但慢" |
|
), |
|
choices=["pm", "harvest", "dio", "rmvpe", "rmvpe_gpu"], |
|
value="rmvpe_gpu", |
|
interactive=True, |
|
) |
|
gpus_rmvpe = gr.Textbox( |
|
label=i18n( |
|
"rmvpe卡号配置:以-分隔输入使用的不同进程卡号,例如0-0-1使用在卡0上跑2个进程并在卡1上跑1个进程" |
|
), |
|
value="%s-%s" % (gpus, gpus), |
|
interactive=True, |
|
visible=True, |
|
) |
|
but2 = gr.Button(i18n("特征提取"), variant="primary") |
|
info2 = gr.Textbox(label=i18n("输出信息"), value="", max_lines=8) |
|
f0method8.change( |
|
fn=change_f0_method, |
|
inputs=[f0method8], |
|
outputs=[gpus_rmvpe], |
|
) |
|
but2.click( |
|
extract_f0_feature, |
|
[ |
|
gpus6, |
|
np7, |
|
f0method8, |
|
if_f0_3, |
|
exp_dir1, |
|
version19, |
|
gpus_rmvpe, |
|
], |
|
[info2], |
|
api_name="train_extract_f0_feature", |
|
) |
|
with gr.Group(): |
|
gr.Markdown(value=i18n("step3: 填写训练设置, 开始训练模型和索引")) |
|
with gr.Row(): |
|
save_epoch10 = gr.Slider( |
|
minimum=0, |
|
maximum=50, |
|
step=1, |
|
label=i18n("保存频率save_every_epoch"), |
|
value=5, |
|
interactive=True, |
|
) |
|
total_epoch11 = gr.Slider( |
|
minimum=0, |
|
maximum=1000, |
|
step=1, |
|
label=i18n("总训练轮数total_epoch"), |
|
value=20, |
|
interactive=True, |
|
) |
|
batch_size12 = gr.Slider( |
|
minimum=1, |
|
maximum=40, |
|
step=1, |
|
label=i18n("每张显卡的batch_size"), |
|
value=default_batch_size, |
|
interactive=True, |
|
) |
|
if_save_latest13 = gr.Radio( |
|
label=i18n("是否仅保存最新的ckpt文件以节省硬盘空间"), |
|
choices=[i18n("是"), i18n("否")], |
|
value=i18n("否"), |
|
interactive=True, |
|
) |
|
if_cache_gpu17 = gr.Radio( |
|
label=i18n( |
|
"是否缓存所有训练集至显存. 10min以下小数据可缓存以加速训练, 大数据缓存会炸显存也加不了多少速" |
|
), |
|
choices=[i18n("是"), i18n("否")], |
|
value=i18n("否"), |
|
interactive=True, |
|
) |
|
if_save_every_weights18 = gr.Radio( |
|
label=i18n("是否在每次保存时间点将最终小模型保存至weights文件夹"), |
|
choices=[i18n("是"), i18n("否")], |
|
value=i18n("否"), |
|
interactive=True, |
|
) |
|
with gr.Row(): |
|
pretrained_G14 = gr.Textbox( |
|
label=i18n("加载预训练底模G路径"), |
|
value="pretrained_v2/f0G40k.pth", |
|
interactive=True, |
|
) |
|
pretrained_D15 = gr.Textbox( |
|
label=i18n("加载预训练底模D路径"), |
|
value="pretrained_v2/f0D40k.pth", |
|
interactive=True, |
|
) |
|
sr2.change( |
|
change_sr2, |
|
[sr2, if_f0_3, version19], |
|
[pretrained_G14, pretrained_D15], |
|
) |
|
version19.change( |
|
change_version19, |
|
[sr2, if_f0_3, version19], |
|
[pretrained_G14, pretrained_D15, sr2], |
|
) |
|
if_f0_3.change( |
|
change_f0, |
|
[if_f0_3, sr2, version19], |
|
[f0method8, pretrained_G14, pretrained_D15], |
|
) |
|
gpus16 = gr.Textbox( |
|
label=i18n("以-分隔输入使用的卡号, 例如 0-1-2 使用卡0和卡1和卡2"), |
|
value=gpus, |
|
interactive=True, |
|
) |
|
but3 = gr.Button(i18n("训练模型"), variant="primary") |
|
but4 = gr.Button(i18n("训练特征索引"), variant="primary") |
|
but5 = gr.Button(i18n("一键训练"), variant="primary") |
|
info3 = gr.Textbox(label=i18n("输出信息"), value="", max_lines=10) |
|
but3.click( |
|
click_train, |
|
[ |
|
exp_dir1, |
|
sr2, |
|
if_f0_3, |
|
spk_id5, |
|
save_epoch10, |
|
total_epoch11, |
|
batch_size12, |
|
if_save_latest13, |
|
pretrained_G14, |
|
pretrained_D15, |
|
gpus16, |
|
if_cache_gpu17, |
|
if_save_every_weights18, |
|
version19, |
|
], |
|
info3, |
|
api_name="train_start", |
|
) |
|
but4.click(train_index, [exp_dir1, version19], info3) |
|
but5.click( |
|
train1key, |
|
[ |
|
exp_dir1, |
|
sr2, |
|
if_f0_3, |
|
trainset_dir4, |
|
spk_id5, |
|
np7, |
|
f0method8, |
|
save_epoch10, |
|
total_epoch11, |
|
batch_size12, |
|
if_save_latest13, |
|
pretrained_G14, |
|
pretrained_D15, |
|
gpus16, |
|
if_cache_gpu17, |
|
if_save_every_weights18, |
|
version19, |
|
gpus_rmvpe, |
|
], |
|
info3, |
|
api_name="train_start_all", |
|
) |
|
|
|
with gr.TabItem(i18n("ckpt处理")): |
|
with gr.Group(): |
|
gr.Markdown(value=i18n("模型融合, 可用于测试音色融合")) |
|
with gr.Row(): |
|
ckpt_a = gr.Textbox(label=i18n("A模型路径"), value="", interactive=True) |
|
ckpt_b = gr.Textbox(label=i18n("B模型路径"), value="", interactive=True) |
|
alpha_a = gr.Slider( |
|
minimum=0, |
|
maximum=1, |
|
label=i18n("A模型权重"), |
|
value=0.5, |
|
interactive=True, |
|
) |
|
with gr.Row(): |
|
sr_ = gr.Radio( |
|
label=i18n("目标采样率"), |
|
choices=["40k", "48k"], |
|
value="40k", |
|
interactive=True, |
|
) |
|
if_f0_ = gr.Radio( |
|
label=i18n("模型是否带音高指导"), |
|
choices=[i18n("是"), i18n("否")], |
|
value=i18n("是"), |
|
interactive=True, |
|
) |
|
info__ = gr.Textbox( |
|
label=i18n("要置入的模型信息"), value="", max_lines=8, interactive=True |
|
) |
|
name_to_save0 = gr.Textbox( |
|
label=i18n("保存的模型名不带后缀"), |
|
value="", |
|
max_lines=1, |
|
interactive=True, |
|
) |
|
version_2 = gr.Radio( |
|
label=i18n("模型版本型号"), |
|
choices=["v1", "v2"], |
|
value="v1", |
|
interactive=True, |
|
) |
|
with gr.Row(): |
|
but6 = gr.Button(i18n("融合"), variant="primary") |
|
info4 = gr.Textbox(label=i18n("输出信息"), value="", max_lines=8) |
|
but6.click( |
|
merge, |
|
[ |
|
ckpt_a, |
|
ckpt_b, |
|
alpha_a, |
|
sr_, |
|
if_f0_, |
|
info__, |
|
name_to_save0, |
|
version_2, |
|
], |
|
info4, |
|
api_name="ckpt_merge", |
|
) |
|
with gr.Group(): |
|
gr.Markdown(value=i18n("修改模型信息(仅支持weights文件夹下提取的小模型文件)")) |
|
with gr.Row(): |
|
ckpt_path0 = gr.Textbox( |
|
label=i18n("模型路径"), value="", interactive=True |
|
) |
|
info_ = gr.Textbox( |
|
label=i18n("要改的模型信息"), value="", max_lines=8, interactive=True |
|
) |
|
name_to_save1 = gr.Textbox( |
|
label=i18n("保存的文件名, 默认空为和源文件同名"), |
|
value="", |
|
max_lines=8, |
|
interactive=True, |
|
) |
|
with gr.Row(): |
|
but7 = gr.Button(i18n("修改"), variant="primary") |
|
info5 = gr.Textbox(label=i18n("输出信息"), value="", max_lines=8) |
|
but7.click( |
|
change_info, |
|
[ckpt_path0, info_, name_to_save1], |
|
info5, |
|
api_name="ckpt_modify", |
|
) |
|
with gr.Group(): |
|
gr.Markdown(value=i18n("查看模型信息(仅支持weights文件夹下提取的小模型文件)")) |
|
with gr.Row(): |
|
ckpt_path1 = gr.Textbox( |
|
label=i18n("模型路径"), value="", interactive=True |
|
) |
|
but8 = gr.Button(i18n("查看"), variant="primary") |
|
info6 = gr.Textbox(label=i18n("输出信息"), value="", max_lines=8) |
|
but8.click(show_info, [ckpt_path1], info6, api_name="ckpt_show") |
|
with gr.Group(): |
|
gr.Markdown( |
|
value=i18n( |
|
"模型提取(输入logs文件夹下大文件模型路径),适用于训一半不想训了模型没有自动提取保存小文件模型,或者想测试中间模型的情况" |
|
) |
|
) |
|
with gr.Row(): |
|
ckpt_path2 = gr.Textbox( |
|
label=i18n("模型路径"), |
|
value="E:\\codes\\py39\\logs\\mi-test_f0_48k\\G_23333.pth", |
|
interactive=True, |
|
) |
|
save_name = gr.Textbox( |
|
label=i18n("保存名"), value="", interactive=True |
|
) |
|
sr__ = gr.Radio( |
|
label=i18n("目标采样率"), |
|
choices=["32k", "40k", "48k"], |
|
value="40k", |
|
interactive=True, |
|
) |
|
if_f0__ = gr.Radio( |
|
label=i18n("模型是否带音高指导,1是0否"), |
|
choices=["1", "0"], |
|
value="1", |
|
interactive=True, |
|
) |
|
version_1 = gr.Radio( |
|
label=i18n("模型版本型号"), |
|
choices=["v1", "v2"], |
|
value="v2", |
|
interactive=True, |
|
) |
|
info___ = gr.Textbox( |
|
label=i18n("要置入的模型信息"), value="", max_lines=8, interactive=True |
|
) |
|
but9 = gr.Button(i18n("提取"), variant="primary") |
|
info7 = gr.Textbox(label=i18n("输出信息"), value="", max_lines=8) |
|
ckpt_path2.change( |
|
change_info_, [ckpt_path2], [sr__, if_f0__, version_1] |
|
) |
|
but9.click( |
|
extract_small_model, |
|
[ckpt_path2, save_name, sr__, if_f0__, info___, version_1], |
|
info7, |
|
api_name="ckpt_extract", |
|
) |
|
|
|
with gr.TabItem(i18n("Onnx导出")): |
|
with gr.Row(): |
|
ckpt_dir = gr.Textbox(label=i18n("RVC模型路径"), value="", interactive=True) |
|
with gr.Row(): |
|
onnx_dir = gr.Textbox( |
|
label=i18n("Onnx输出路径"), value="", interactive=True |
|
) |
|
with gr.Row(): |
|
infoOnnx = gr.Label(label="info") |
|
with gr.Row(): |
|
butOnnx = gr.Button(i18n("导出Onnx模型"), variant="primary") |
|
butOnnx.click( |
|
export_onnx, [ckpt_dir, onnx_dir], infoOnnx, api_name="export_onnx" |
|
) |
|
|
|
tab_faq = i18n("常见问题解答") |
|
with gr.TabItem(tab_faq): |
|
try: |
|
if tab_faq == "常见问题解答": |
|
with open("docs/faq.md", "r", encoding="utf8") as f: |
|
info = f.read() |
|
else: |
|
with open("docs/faq_en.md", "r", encoding="utf8") as f: |
|
info = f.read() |
|
gr.Markdown(value=info) |
|
except: |
|
gr.Markdown(traceback.format_exc()) |
|
|
|
|
|
|
|
|
|
|
|
|
|
if config.iscolab: |
|
app.queue(concurrency_count=511, max_size=1022).launch(share=True) |
|
else: |
|
app.queue(concurrency_count=511, max_size=1022).launch( |
|
server_name="0.0.0.0", |
|
inbrowser=not config.noautoopen, |
|
server_port=config.listen_port, |
|
quiet=True, |
|
) |
|
|