|
""" |
|
格式:直接cid为自带的index位;aid放不下了,通过字典来查,反正就5w个 |
|
""" |
|
import faiss, numpy as np, os |
|
from sklearn.cluster import MiniBatchKMeans |
|
import traceback |
|
from multiprocessing import cpu_count |
|
|
|
|
|
n_cpu = 0 |
|
if n_cpu == 0: |
|
n_cpu = cpu_count() |
|
inp_root = r"./logs/anz/3_feature768" |
|
npys = [] |
|
listdir_res = list(os.listdir(inp_root)) |
|
for name in sorted(listdir_res): |
|
phone = np.load("%s/%s" % (inp_root, name)) |
|
npys.append(phone) |
|
big_npy = np.concatenate(npys, 0) |
|
big_npy_idx = np.arange(big_npy.shape[0]) |
|
np.random.shuffle(big_npy_idx) |
|
big_npy = big_npy[big_npy_idx] |
|
print(big_npy.shape) |
|
if big_npy.shape[0] > 2e5: |
|
|
|
info = "Trying doing kmeans %s shape to 10k centers." % big_npy.shape[0] |
|
print(info) |
|
try: |
|
big_npy = ( |
|
MiniBatchKMeans( |
|
n_clusters=10000, |
|
verbose=True, |
|
batch_size=256 * n_cpu, |
|
compute_labels=False, |
|
init="random", |
|
) |
|
.fit(big_npy) |
|
.cluster_centers_ |
|
) |
|
except: |
|
info = traceback.format_exc() |
|
print(info) |
|
|
|
np.save("tools/infer/big_src_feature_mi.npy", big_npy) |
|
|
|
|
|
|
|
n_ivf = min(int(16 * np.sqrt(big_npy.shape[0])), big_npy.shape[0] // 39) |
|
index = faiss.index_factory(768, "IVF%s,Flat" % n_ivf) |
|
print("training") |
|
index_ivf = faiss.extract_index_ivf(index) |
|
index_ivf.nprobe = 1 |
|
index.train(big_npy) |
|
faiss.write_index( |
|
index, "tools/infer/trained_IVF%s_Flat_baseline_src_feat_v2.index" % (n_ivf) |
|
) |
|
print("adding") |
|
batch_size_add = 8192 |
|
for i in range(0, big_npy.shape[0], batch_size_add): |
|
index.add(big_npy[i : i + batch_size_add]) |
|
faiss.write_index( |
|
index, "tools/infer/added_IVF%s_Flat_mi_baseline_src_feat.index" % (n_ivf) |
|
) |
|
""" |
|
大小(都是FP32) |
|
big_src_feature 2.95G |
|
(3098036, 256) |
|
big_emb 4.43G |
|
(6196072, 192) |
|
big_emb双倍是因为求特征要repeat后再加pitch |
|
|
|
""" |
|
|