|
from scipy.io import wavfile |
|
from fairseq import checkpoint_utils |
|
from lib.audio import load_audio |
|
from lib.infer_pack.models import ( |
|
SynthesizerTrnMs256NSFsid, |
|
SynthesizerTrnMs256NSFsid_nono, |
|
SynthesizerTrnMs768NSFsid, |
|
SynthesizerTrnMs768NSFsid_nono, |
|
) |
|
from vc_infer_pipeline import VC |
|
from multiprocessing import cpu_count |
|
import numpy as np |
|
import torch |
|
import sys |
|
import glob |
|
import argparse |
|
import os |
|
import sys |
|
import pdb |
|
import torch |
|
|
|
now_dir = os.getcwd() |
|
sys.path.append(now_dir) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
using_cli = False |
|
device = "cuda:0" |
|
is_half = False |
|
|
|
if len(sys.argv) > 0: |
|
f0_up_key = int(sys.argv[1]) |
|
input_path = sys.argv[2] |
|
output_path = sys.argv[3] |
|
model_path = sys.argv[4] |
|
file_index = sys.argv[5] |
|
device = sys.argv[6] |
|
f0_method = sys.argv[7] |
|
|
|
using_cli = True |
|
|
|
|
|
|
|
|
|
|
|
|
|
print(sys.argv) |
|
|
|
|
|
class Config: |
|
def __init__(self, device, is_half): |
|
self.device = device |
|
self.is_half = is_half |
|
self.n_cpu = 0 |
|
self.gpu_name = None |
|
self.gpu_mem = None |
|
self.x_pad, self.x_query, self.x_center, self.x_max = self.device_config() |
|
|
|
def device_config(self) -> tuple: |
|
if torch.cuda.is_available() and device != "cpu": |
|
i_device = int(self.device.split(":")[-1]) |
|
self.gpu_name = torch.cuda.get_device_name(i_device) |
|
if ( |
|
("16" in self.gpu_name and "V100" not in self.gpu_name.upper()) |
|
or "P40" in self.gpu_name.upper() |
|
or "1060" in self.gpu_name |
|
or "1070" in self.gpu_name |
|
or "1080" in self.gpu_name |
|
): |
|
print("16系/10系显卡和P40强制单精度") |
|
self.is_half = False |
|
for config_file in ["32k.json", "40k.json", "48k.json"]: |
|
with open(f"configs/{config_file}", "r") as f: |
|
strr = f.read().replace("true", "false") |
|
with open(f"configs/{config_file}", "w") as f: |
|
f.write(strr) |
|
with open("trainset_preprocess_pipeline_print.py", "r") as f: |
|
strr = f.read().replace("3.7", "3.0") |
|
with open("trainset_preprocess_pipeline_print.py", "w") as f: |
|
f.write(strr) |
|
else: |
|
self.gpu_name = None |
|
self.gpu_mem = int( |
|
torch.cuda.get_device_properties(i_device).total_memory |
|
/ 1024 |
|
/ 1024 |
|
/ 1024 |
|
+ 0.4 |
|
) |
|
if self.gpu_mem <= 4: |
|
with open("trainset_preprocess_pipeline_print.py", "r") as f: |
|
strr = f.read().replace("3.7", "3.0") |
|
with open("trainset_preprocess_pipeline_print.py", "w") as f: |
|
f.write(strr) |
|
elif torch.backends.mps.is_available(): |
|
print("没有发现支持的N卡, 使用MPS进行推理") |
|
self.device = "mps" |
|
else: |
|
print("没有发现支持的N卡, 使用CPU进行推理") |
|
self.device = "cpu" |
|
self.is_half = False |
|
|
|
if self.n_cpu == 0: |
|
self.n_cpu = cpu_count() |
|
|
|
if self.is_half: |
|
|
|
x_pad = 3 |
|
x_query = 10 |
|
x_center = 60 |
|
x_max = 65 |
|
else: |
|
|
|
x_pad = 1 |
|
x_query = 6 |
|
x_center = 38 |
|
x_max = 41 |
|
|
|
if self.gpu_mem != None and self.gpu_mem <= 4: |
|
x_pad = 1 |
|
x_query = 5 |
|
x_center = 30 |
|
x_max = 32 |
|
|
|
return x_pad, x_query, x_center, x_max |
|
|
|
|
|
config = Config(device, is_half) |
|
now_dir = os.getcwd() |
|
sys.path.append(now_dir) |
|
|
|
hubert_model = None |
|
|
|
|
|
def load_hubert(): |
|
global hubert_model |
|
models, _, _ = checkpoint_utils.load_model_ensemble_and_task( |
|
["hubert_base.pt"], |
|
suffix="", |
|
) |
|
hubert_model = models[0] |
|
hubert_model = hubert_model.to(config.device) |
|
if config.is_half: |
|
hubert_model = hubert_model.half() |
|
else: |
|
hubert_model = hubert_model.float() |
|
hubert_model.eval() |
|
|
|
|
|
def vc_single( |
|
sid=0, |
|
input_audio_path=None, |
|
f0_up_key=0, |
|
f0_file=None, |
|
f0_method="pm", |
|
file_index="", |
|
file_index2="", |
|
|
|
index_rate=1.0, |
|
filter_radius=3, |
|
resample_sr=0, |
|
rms_mix_rate=1.0, |
|
model_path="", |
|
output_path="", |
|
protect=0.33, |
|
): |
|
global tgt_sr, net_g, vc, hubert_model, version |
|
get_vc(model_path) |
|
if input_audio_path is None: |
|
return "You need to upload an audio file", None |
|
|
|
f0_up_key = int(f0_up_key) |
|
audio = load_audio(input_audio_path, 16000) |
|
audio_max = np.abs(audio).max() / 0.95 |
|
|
|
if audio_max > 1: |
|
audio /= audio_max |
|
times = [0, 0, 0] |
|
|
|
if hubert_model == None: |
|
load_hubert() |
|
|
|
if_f0 = cpt.get("f0", 1) |
|
|
|
file_index = ( |
|
( |
|
file_index.strip(" ") |
|
.strip('"') |
|
.strip("\n") |
|
.strip('"') |
|
.strip(" ") |
|
.replace("trained", "added") |
|
) |
|
if file_index != "" |
|
else file_index2 |
|
) |
|
|
|
audio_opt = vc.pipeline( |
|
hubert_model, |
|
net_g, |
|
sid, |
|
audio, |
|
input_audio_path, |
|
times, |
|
f0_up_key, |
|
f0_method, |
|
file_index, |
|
|
|
index_rate, |
|
if_f0, |
|
filter_radius, |
|
tgt_sr, |
|
resample_sr, |
|
rms_mix_rate, |
|
version, |
|
f0_file=f0_file, |
|
protect=protect, |
|
) |
|
wavfile.write(output_path, tgt_sr, audio_opt) |
|
return "processed" |
|
|
|
|
|
def get_vc(model_path): |
|
global n_spk, tgt_sr, net_g, vc, cpt, device, is_half, version |
|
print("loading pth %s" % model_path) |
|
cpt = torch.load(model_path, map_location="cpu") |
|
tgt_sr = cpt["config"][-1] |
|
cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0] |
|
if_f0 = cpt.get("f0", 1) |
|
version = cpt.get("version", "v1") |
|
if version == "v1": |
|
if if_f0 == 1: |
|
net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=is_half) |
|
else: |
|
net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"]) |
|
elif version == "v2": |
|
if if_f0 == 1: |
|
net_g = SynthesizerTrnMs768NSFsid(*cpt["config"], is_half=is_half) |
|
else: |
|
net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"]) |
|
del net_g.enc_q |
|
print(net_g.load_state_dict(cpt["weight"], strict=False)) |
|
net_g.eval().to(device) |
|
if is_half: |
|
net_g = net_g.half() |
|
else: |
|
net_g = net_g.float() |
|
vc = VC(tgt_sr, config) |
|
n_spk = cpt["config"][-3] |
|
|
|
|
|
|
|
if using_cli: |
|
vc_single( |
|
sid=0, |
|
input_audio_path=input_path, |
|
f0_up_key=f0_up_key, |
|
f0_file=None, |
|
f0_method=f0_method, |
|
file_index=file_index, |
|
file_index2="", |
|
index_rate=1, |
|
filter_radius=3, |
|
resample_sr=0, |
|
rms_mix_rate=0, |
|
model_path=model_path, |
|
output_path=output_path, |
|
) |
|
|