|
import os, sys |
|
|
|
if sys.platform == "darwin": |
|
os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1" |
|
|
|
now_dir = os.getcwd() |
|
sys.path.append(now_dir) |
|
import multiprocessing |
|
|
|
|
|
class Harvest(multiprocessing.Process): |
|
def __init__(self, inp_q, opt_q): |
|
multiprocessing.Process.__init__(self) |
|
self.inp_q = inp_q |
|
self.opt_q = opt_q |
|
|
|
def run(self): |
|
import numpy as np, pyworld |
|
|
|
while 1: |
|
idx, x, res_f0, n_cpu, ts = self.inp_q.get() |
|
f0, t = pyworld.harvest( |
|
x.astype(np.double), |
|
fs=16000, |
|
f0_ceil=1100, |
|
f0_floor=50, |
|
frame_period=10, |
|
) |
|
res_f0[idx] = f0 |
|
if len(res_f0.keys()) >= n_cpu: |
|
self.opt_q.put(ts) |
|
|
|
|
|
if __name__ == "__main__": |
|
from multiprocessing import Queue |
|
from queue import Empty |
|
import numpy as np |
|
import multiprocessing |
|
import traceback, re |
|
import json |
|
import PySimpleGUI as sg |
|
import sounddevice as sd |
|
import noisereduce as nr |
|
from multiprocessing import cpu_count |
|
import librosa, torch, time, threading |
|
import torch.nn.functional as F |
|
import torchaudio.transforms as tat |
|
from i18n import I18nAuto |
|
|
|
i18n = I18nAuto() |
|
device = torch.device( |
|
"cuda" |
|
if torch.cuda.is_available() |
|
else ("mps" if torch.backends.mps.is_available() else "cpu") |
|
) |
|
current_dir = os.getcwd() |
|
inp_q = Queue() |
|
opt_q = Queue() |
|
n_cpu = min(cpu_count(), 8) |
|
for _ in range(n_cpu): |
|
Harvest(inp_q, opt_q).start() |
|
from rvc_for_realtime import RVC |
|
|
|
class GUIConfig: |
|
def __init__(self) -> None: |
|
self.pth_path: str = "" |
|
self.index_path: str = "" |
|
self.pitch: int = 12 |
|
self.samplerate: int = 40000 |
|
self.block_time: float = 1.0 |
|
self.buffer_num: int = 1 |
|
self.threhold: int = -30 |
|
self.crossfade_time: float = 0.08 |
|
self.extra_time: float = 0.04 |
|
self.I_noise_reduce = False |
|
self.O_noise_reduce = False |
|
self.index_rate = 0.3 |
|
self.n_cpu = min(n_cpu, 8) |
|
self.f0method = "harvest" |
|
self.sg_input_device = "" |
|
self.sg_output_device = "" |
|
|
|
class GUI: |
|
def __init__(self) -> None: |
|
self.config = GUIConfig() |
|
self.flag_vc = False |
|
|
|
self.launcher() |
|
|
|
def load(self): |
|
input_devices, output_devices, _, _ = self.get_devices() |
|
try: |
|
with open("values1.json", "r") as j: |
|
data = json.load(j) |
|
data["pm"] = data["f0method"] == "pm" |
|
data["harvest"] = data["f0method"] == "harvest" |
|
data["crepe"] = data["f0method"] == "crepe" |
|
data["rmvpe"] = data["f0method"] == "rmvpe" |
|
except: |
|
with open("values1.json", "w") as j: |
|
data = { |
|
"pth_path": " ", |
|
"index_path": " ", |
|
"sg_input_device": input_devices[sd.default.device[0]], |
|
"sg_output_device": output_devices[sd.default.device[1]], |
|
"threhold": "-45", |
|
"pitch": "0", |
|
"index_rate": "0", |
|
"block_time": "1", |
|
"crossfade_length": "0.04", |
|
"extra_time": "1", |
|
"f0method": "rmvpe", |
|
} |
|
return data |
|
|
|
def launcher(self): |
|
data = self.load() |
|
sg.theme("LightBlue3") |
|
input_devices, output_devices, _, _ = self.get_devices() |
|
layout = [ |
|
[ |
|
sg.Frame( |
|
title=i18n("加载模型"), |
|
layout=[ |
|
[ |
|
sg.Input( |
|
default_text=data.get("pth_path", ""), |
|
key="pth_path", |
|
), |
|
sg.FileBrowse( |
|
i18n("选择.pth文件"), |
|
initial_folder=os.path.join(os.getcwd(), "weights"), |
|
file_types=((". pth"),), |
|
), |
|
], |
|
[ |
|
sg.Input( |
|
default_text=data.get("index_path", ""), |
|
key="index_path", |
|
), |
|
sg.FileBrowse( |
|
i18n("选择.index文件"), |
|
initial_folder=os.path.join(os.getcwd(), "logs"), |
|
file_types=((". index"),), |
|
), |
|
], |
|
], |
|
) |
|
], |
|
[ |
|
sg.Frame( |
|
layout=[ |
|
[ |
|
sg.Text(i18n("输入设备")), |
|
sg.Combo( |
|
input_devices, |
|
key="sg_input_device", |
|
default_value=data.get("sg_input_device", ""), |
|
), |
|
], |
|
[ |
|
sg.Text(i18n("输出设备")), |
|
sg.Combo( |
|
output_devices, |
|
key="sg_output_device", |
|
default_value=data.get("sg_output_device", ""), |
|
), |
|
], |
|
[sg.Button(i18n("重载设备列表"), key="reload_devices")], |
|
], |
|
title=i18n("音频设备(请使用同种类驱动)"), |
|
) |
|
], |
|
[ |
|
sg.Frame( |
|
layout=[ |
|
[ |
|
sg.Text(i18n("响应阈值")), |
|
sg.Slider( |
|
range=(-60, 0), |
|
key="threhold", |
|
resolution=1, |
|
orientation="h", |
|
default_value=data.get("threhold", ""), |
|
), |
|
], |
|
[ |
|
sg.Text(i18n("音调设置")), |
|
sg.Slider( |
|
range=(-24, 24), |
|
key="pitch", |
|
resolution=1, |
|
orientation="h", |
|
default_value=data.get("pitch", ""), |
|
), |
|
], |
|
[ |
|
sg.Text(i18n("Index Rate")), |
|
sg.Slider( |
|
range=(0.0, 1.0), |
|
key="index_rate", |
|
resolution=0.01, |
|
orientation="h", |
|
default_value=data.get("index_rate", ""), |
|
), |
|
], |
|
[ |
|
sg.Text(i18n("音高算法")), |
|
sg.Radio( |
|
"pm", |
|
"f0method", |
|
key="pm", |
|
default=data.get("pm", "") == True, |
|
), |
|
sg.Radio( |
|
"harvest", |
|
"f0method", |
|
key="harvest", |
|
default=data.get("harvest", "") == True, |
|
), |
|
sg.Radio( |
|
"crepe", |
|
"f0method", |
|
key="crepe", |
|
default=data.get("crepe", "") == True, |
|
), |
|
sg.Radio( |
|
"rmvpe", |
|
"f0method", |
|
key="rmvpe", |
|
default=data.get("rmvpe", "") == True, |
|
), |
|
], |
|
], |
|
title=i18n("常规设置"), |
|
), |
|
sg.Frame( |
|
layout=[ |
|
[ |
|
sg.Text(i18n("采样长度")), |
|
sg.Slider( |
|
range=(0.12, 2.4), |
|
key="block_time", |
|
resolution=0.03, |
|
orientation="h", |
|
default_value=data.get("block_time", ""), |
|
), |
|
], |
|
[ |
|
sg.Text(i18n("harvest进程数")), |
|
sg.Slider( |
|
range=(1, n_cpu), |
|
key="n_cpu", |
|
resolution=1, |
|
orientation="h", |
|
default_value=data.get( |
|
"n_cpu", min(self.config.n_cpu, n_cpu) |
|
), |
|
), |
|
], |
|
[ |
|
sg.Text(i18n("淡入淡出长度")), |
|
sg.Slider( |
|
range=(0.01, 0.15), |
|
key="crossfade_length", |
|
resolution=0.01, |
|
orientation="h", |
|
default_value=data.get("crossfade_length", ""), |
|
), |
|
], |
|
[ |
|
sg.Text(i18n("额外推理时长")), |
|
sg.Slider( |
|
range=(0.05, 3.00), |
|
key="extra_time", |
|
resolution=0.01, |
|
orientation="h", |
|
default_value=data.get("extra_time", ""), |
|
), |
|
], |
|
[ |
|
sg.Checkbox(i18n("输入降噪"), key="I_noise_reduce"), |
|
sg.Checkbox(i18n("输出降噪"), key="O_noise_reduce"), |
|
], |
|
], |
|
title=i18n("性能设置"), |
|
), |
|
], |
|
[ |
|
sg.Button(i18n("开始音频转换"), key="start_vc"), |
|
sg.Button(i18n("停止音频转换"), key="stop_vc"), |
|
sg.Text(i18n("推理时间(ms):")), |
|
sg.Text("0", key="infer_time"), |
|
], |
|
] |
|
self.window = sg.Window("RVC - GUI", layout=layout) |
|
self.event_handler() |
|
|
|
def event_handler(self): |
|
while True: |
|
event, values = self.window.read() |
|
if event == sg.WINDOW_CLOSED: |
|
self.flag_vc = False |
|
exit() |
|
if event == "reload_devices": |
|
prev_input = self.window["sg_input_device"].get() |
|
prev_output = self.window["sg_output_device"].get() |
|
input_devices, output_devices, _, _ = self.get_devices(update=True) |
|
if prev_input not in input_devices: |
|
self.config.sg_input_device = input_devices[0] |
|
else: |
|
self.config.sg_input_device = prev_input |
|
self.window["sg_input_device"].Update(values=input_devices) |
|
self.window["sg_input_device"].Update( |
|
value=self.config.sg_input_device |
|
) |
|
if prev_output not in output_devices: |
|
self.config.sg_output_device = output_devices[0] |
|
else: |
|
self.config.sg_output_device = prev_output |
|
self.window["sg_output_device"].Update(values=output_devices) |
|
self.window["sg_output_device"].Update( |
|
value=self.config.sg_output_device |
|
) |
|
if event == "start_vc" and self.flag_vc == False: |
|
if self.set_values(values) == True: |
|
print("using_cuda:" + str(torch.cuda.is_available())) |
|
self.start_vc() |
|
settings = { |
|
"pth_path": values["pth_path"], |
|
"index_path": values["index_path"], |
|
"sg_input_device": values["sg_input_device"], |
|
"sg_output_device": values["sg_output_device"], |
|
"threhold": values["threhold"], |
|
"pitch": values["pitch"], |
|
"index_rate": values["index_rate"], |
|
"block_time": values["block_time"], |
|
"crossfade_length": values["crossfade_length"], |
|
"extra_time": values["extra_time"], |
|
"n_cpu": values["n_cpu"], |
|
"f0method": ["pm", "harvest", "crepe", "rmvpe"][ |
|
[ |
|
values["pm"], |
|
values["harvest"], |
|
values["crepe"], |
|
values["rmvpe"], |
|
].index(True) |
|
], |
|
} |
|
with open("values1.json", "w") as j: |
|
json.dump(settings, j) |
|
if event == "stop_vc" and self.flag_vc == True: |
|
self.flag_vc = False |
|
|
|
def set_values(self, values): |
|
if len(values["pth_path"].strip()) == 0: |
|
sg.popup(i18n("请选择pth文件")) |
|
return False |
|
if len(values["index_path"].strip()) == 0: |
|
sg.popup(i18n("请选择index文件")) |
|
return False |
|
pattern = re.compile("[^\x00-\x7F]+") |
|
if pattern.findall(values["pth_path"]): |
|
sg.popup(i18n("pth文件路径不可包含中文")) |
|
return False |
|
if pattern.findall(values["index_path"]): |
|
sg.popup(i18n("index文件路径不可包含中文")) |
|
return False |
|
self.set_devices(values["sg_input_device"], values["sg_output_device"]) |
|
self.config.pth_path = values["pth_path"] |
|
self.config.index_path = values["index_path"] |
|
self.config.threhold = values["threhold"] |
|
self.config.pitch = values["pitch"] |
|
self.config.block_time = values["block_time"] |
|
self.config.crossfade_time = values["crossfade_length"] |
|
self.config.extra_time = values["extra_time"] |
|
self.config.I_noise_reduce = values["I_noise_reduce"] |
|
self.config.O_noise_reduce = values["O_noise_reduce"] |
|
self.config.index_rate = values["index_rate"] |
|
self.config.n_cpu = values["n_cpu"] |
|
self.config.f0method = ["pm", "harvest", "crepe", "rmvpe"][ |
|
[ |
|
values["pm"], |
|
values["harvest"], |
|
values["crepe"], |
|
values["rmvpe"], |
|
].index(True) |
|
] |
|
return True |
|
|
|
def start_vc(self): |
|
torch.cuda.empty_cache() |
|
self.flag_vc = True |
|
self.rvc = RVC( |
|
self.config.pitch, |
|
self.config.pth_path, |
|
self.config.index_path, |
|
self.config.index_rate, |
|
self.config.n_cpu, |
|
inp_q, |
|
opt_q, |
|
device, |
|
) |
|
self.config.samplerate = self.rvc.tgt_sr |
|
self.config.crossfade_time = min( |
|
self.config.crossfade_time, self.config.block_time |
|
) |
|
self.block_frame = int(self.config.block_time * self.config.samplerate) |
|
self.crossfade_frame = int( |
|
self.config.crossfade_time * self.config.samplerate |
|
) |
|
self.sola_search_frame = int(0.01 * self.config.samplerate) |
|
self.extra_frame = int(self.config.extra_time * self.config.samplerate) |
|
self.zc = self.rvc.tgt_sr // 100 |
|
self.input_wav: np.ndarray = np.zeros( |
|
int( |
|
np.ceil( |
|
( |
|
self.extra_frame |
|
+ self.crossfade_frame |
|
+ self.sola_search_frame |
|
+ self.block_frame |
|
) |
|
/ self.zc |
|
) |
|
* self.zc |
|
), |
|
dtype="float32", |
|
) |
|
self.output_wav_cache: torch.Tensor = torch.zeros( |
|
int( |
|
np.ceil( |
|
( |
|
self.extra_frame |
|
+ self.crossfade_frame |
|
+ self.sola_search_frame |
|
+ self.block_frame |
|
) |
|
/ self.zc |
|
) |
|
* self.zc |
|
), |
|
device=device, |
|
dtype=torch.float32, |
|
) |
|
self.pitch: np.ndarray = np.zeros( |
|
self.input_wav.shape[0] // self.zc, |
|
dtype="int32", |
|
) |
|
self.pitchf: np.ndarray = np.zeros( |
|
self.input_wav.shape[0] // self.zc, |
|
dtype="float64", |
|
) |
|
self.output_wav: torch.Tensor = torch.zeros( |
|
self.block_frame, device=device, dtype=torch.float32 |
|
) |
|
self.sola_buffer: torch.Tensor = torch.zeros( |
|
self.crossfade_frame, device=device, dtype=torch.float32 |
|
) |
|
self.fade_in_window: torch.Tensor = torch.linspace( |
|
0.0, 1.0, steps=self.crossfade_frame, device=device, dtype=torch.float32 |
|
) |
|
self.fade_out_window: torch.Tensor = 1 - self.fade_in_window |
|
self.resampler = tat.Resample( |
|
orig_freq=self.config.samplerate, new_freq=16000, dtype=torch.float32 |
|
).to(device) |
|
thread_vc = threading.Thread(target=self.soundinput) |
|
thread_vc.start() |
|
|
|
def soundinput(self): |
|
""" |
|
接受音频输入 |
|
""" |
|
channels = 1 if sys.platform == "darwin" else 2 |
|
with sd.Stream( |
|
channels=channels, |
|
callback=self.audio_callback, |
|
blocksize=self.block_frame, |
|
samplerate=self.config.samplerate, |
|
dtype="float32", |
|
): |
|
while self.flag_vc: |
|
time.sleep(self.config.block_time) |
|
print("Audio block passed.") |
|
print("ENDing VC") |
|
|
|
def audio_callback( |
|
self, indata: np.ndarray, outdata: np.ndarray, frames, times, status |
|
): |
|
""" |
|
音频处理 |
|
""" |
|
start_time = time.perf_counter() |
|
indata = librosa.to_mono(indata.T) |
|
if self.config.I_noise_reduce: |
|
indata[:] = nr.reduce_noise(y=indata, sr=self.config.samplerate) |
|
"""noise gate""" |
|
frame_length = 2048 |
|
hop_length = 1024 |
|
rms = librosa.feature.rms( |
|
y=indata, frame_length=frame_length, hop_length=hop_length |
|
) |
|
if self.config.threhold > -60: |
|
db_threhold = ( |
|
librosa.amplitude_to_db(rms, ref=1.0)[0] < self.config.threhold |
|
) |
|
for i in range(db_threhold.shape[0]): |
|
if db_threhold[i]: |
|
indata[i * hop_length : (i + 1) * hop_length] = 0 |
|
self.input_wav[:] = np.append(self.input_wav[self.block_frame :], indata) |
|
|
|
inp = torch.from_numpy(self.input_wav).to(device) |
|
|
|
res1 = self.resampler(inp) |
|
|
|
rate1 = self.block_frame / ( |
|
self.extra_frame |
|
+ self.crossfade_frame |
|
+ self.sola_search_frame |
|
+ self.block_frame |
|
) |
|
rate2 = ( |
|
self.crossfade_frame + self.sola_search_frame + self.block_frame |
|
) / ( |
|
self.extra_frame |
|
+ self.crossfade_frame |
|
+ self.sola_search_frame |
|
+ self.block_frame |
|
) |
|
res2 = self.rvc.infer( |
|
res1, |
|
res1[-self.block_frame :].cpu().numpy(), |
|
rate1, |
|
rate2, |
|
self.pitch, |
|
self.pitchf, |
|
self.config.f0method, |
|
) |
|
self.output_wav_cache[-res2.shape[0] :] = res2 |
|
infer_wav = self.output_wav_cache[ |
|
-self.crossfade_frame - self.sola_search_frame - self.block_frame : |
|
] |
|
|
|
cor_nom = F.conv1d( |
|
infer_wav[None, None, : self.crossfade_frame + self.sola_search_frame], |
|
self.sola_buffer[None, None, :], |
|
) |
|
cor_den = torch.sqrt( |
|
F.conv1d( |
|
infer_wav[ |
|
None, None, : self.crossfade_frame + self.sola_search_frame |
|
] |
|
** 2, |
|
torch.ones(1, 1, self.crossfade_frame, device=device), |
|
) |
|
+ 1e-8 |
|
) |
|
if sys.platform == "darwin": |
|
_, sola_offset = torch.max(cor_nom[0, 0] / cor_den[0, 0]) |
|
sola_offset = sola_offset.item() |
|
else: |
|
sola_offset = torch.argmax(cor_nom[0, 0] / cor_den[0, 0]) |
|
print("sola offset: " + str(int(sola_offset))) |
|
self.output_wav[:] = infer_wav[sola_offset : sola_offset + self.block_frame] |
|
self.output_wav[: self.crossfade_frame] *= self.fade_in_window |
|
self.output_wav[: self.crossfade_frame] += self.sola_buffer[:] |
|
|
|
if sola_offset < self.sola_search_frame: |
|
self.sola_buffer[:] = ( |
|
infer_wav[ |
|
-self.sola_search_frame |
|
- self.crossfade_frame |
|
+ sola_offset : -self.sola_search_frame |
|
+ sola_offset |
|
] |
|
* self.fade_out_window |
|
) |
|
else: |
|
self.sola_buffer[:] = ( |
|
infer_wav[-self.crossfade_frame :] * self.fade_out_window |
|
) |
|
if self.config.O_noise_reduce: |
|
if sys.platform == "darwin": |
|
noise_reduced_signal = nr.reduce_noise( |
|
y=self.output_wav[:].cpu().numpy(), sr=self.config.samplerate |
|
) |
|
outdata[:] = noise_reduced_signal[:, np.newaxis] |
|
else: |
|
outdata[:] = np.tile( |
|
nr.reduce_noise( |
|
y=self.output_wav[:].cpu().numpy(), |
|
sr=self.config.samplerate, |
|
), |
|
(2, 1), |
|
).T |
|
else: |
|
if sys.platform == "darwin": |
|
outdata[:] = self.output_wav[:].cpu().numpy()[:, np.newaxis] |
|
else: |
|
outdata[:] = self.output_wav[:].repeat(2, 1).t().cpu().numpy() |
|
total_time = time.perf_counter() - start_time |
|
self.window["infer_time"].update(int(total_time * 1000)) |
|
print("infer time:" + str(total_time)) |
|
|
|
def get_devices(self, update: bool = True): |
|
"""获取设备列表""" |
|
if update: |
|
sd._terminate() |
|
sd._initialize() |
|
devices = sd.query_devices() |
|
hostapis = sd.query_hostapis() |
|
for hostapi in hostapis: |
|
for device_idx in hostapi["devices"]: |
|
devices[device_idx]["hostapi_name"] = hostapi["name"] |
|
input_devices = [ |
|
f"{d['name']} ({d['hostapi_name']})" |
|
for d in devices |
|
if d["max_input_channels"] > 0 |
|
] |
|
output_devices = [ |
|
f"{d['name']} ({d['hostapi_name']})" |
|
for d in devices |
|
if d["max_output_channels"] > 0 |
|
] |
|
input_devices_indices = [ |
|
d["index"] if "index" in d else d["name"] |
|
for d in devices |
|
if d["max_input_channels"] > 0 |
|
] |
|
output_devices_indices = [ |
|
d["index"] if "index" in d else d["name"] |
|
for d in devices |
|
if d["max_output_channels"] > 0 |
|
] |
|
return ( |
|
input_devices, |
|
output_devices, |
|
input_devices_indices, |
|
output_devices_indices, |
|
) |
|
|
|
def set_devices(self, input_device, output_device): |
|
"""设置输出设备""" |
|
( |
|
input_devices, |
|
output_devices, |
|
input_device_indices, |
|
output_device_indices, |
|
) = self.get_devices() |
|
sd.default.device[0] = input_device_indices[ |
|
input_devices.index(input_device) |
|
] |
|
sd.default.device[1] = output_device_indices[ |
|
output_devices.index(output_device) |
|
] |
|
print("input device:" + str(sd.default.device[0]) + ":" + str(input_device)) |
|
print( |
|
"output device:" + str(sd.default.device[1]) + ":" + str(output_device) |
|
) |
|
|
|
gui = GUI() |
|
|