|
--- |
|
dataset_info: |
|
features: |
|
- name: image |
|
dtype: image |
|
- name: image_id |
|
dtype: int64 |
|
- name: annotations |
|
sequence: |
|
- name: file_name |
|
dtype: string |
|
- name: image_id |
|
dtype: int64 |
|
- name: category_id |
|
dtype: |
|
class_label: |
|
names: |
|
'0': bin |
|
'1': hand |
|
'2': not_bin |
|
'3': not_hand |
|
'4': not_trash |
|
'5': trash |
|
'6': trash_arm |
|
- name: bbox |
|
sequence: float32 |
|
length: 4 |
|
- name: iscrowd |
|
dtype: int64 |
|
- name: area |
|
dtype: float32 |
|
- name: label_source |
|
dtype: string |
|
- name: image_source |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 1022952485.728 |
|
num_examples: 1128 |
|
download_size: 1026537298 |
|
dataset_size: 1022952485.728 |
|
configs: |
|
- config_name: default |
|
data_files: |
|
- split: train |
|
path: data/train-* |
|
--- |
|
|
|
## Load data |
|
|
|
```python |
|
import datasets |
|
|
|
dataset = datasets.load_dataset("mrdbourke/trashify_manual_labelled_images") |
|
dataset |
|
``` |
|
|
|
## View a sample |
|
|
|
```python |
|
dataset["train"][0] |
|
``` |
|
|
|
Output: |
|
|
|
``` |
|
{'image': <PIL.Image.Image image mode=RGB size=960x1280>, |
|
'image_id': 292, |
|
'annotations': {'file_name': ['00347467-13f1-4cb9-94aa-4e4369457e0c.jpeg', |
|
'00347467-13f1-4cb9-94aa-4e4369457e0c.jpeg'], |
|
'image_id': [292, 292], |
|
'category_id': [1, 0], |
|
'bbox': [[523.7000122070312, |
|
545.0999755859375, |
|
402.79998779296875, |
|
336.1000061035156], |
|
[10.399999618530273, |
|
163.6999969482422, |
|
943.4000244140625, |
|
1101.9000244140625]], |
|
'iscrowd': [0, 0], |
|
'area': [135381.078125, 1039532.4375]}, |
|
'label_source': 'manual_prodigy_label', |
|
'image_source': 'manual_taken_photo'} |
|
``` |
|
|
|
**Note:** Boxes in "bbox" key are in `XYWH` format or `[x_min, y_min, box_width, box_height]`. If you'd like them in `XYXY` format, you'll have to convert them. |
|
|
|
## Get categories |
|
|
|
```python |
|
# Get the categories from the dataset |
|
# Note: this requires the dataset to have been uploaded with this feature setup |
|
categories = dataset["train"].features["annotations"].feature["category_id"] |
|
|
|
# Get the names attribute |
|
categories.names |
|
|
|
>>> ['bin', 'hand', 'not_bin', 'not_hand', 'not_trash', 'trash', 'trash_arm'] |
|
``` |
|
|
|
## Create label2id and id2label |
|
|
|
```python |
|
id2label = {i: class_name for i, class_name in enumerate(categories.names)} |
|
label2id = {value: key for key, value in id2label.items()} |
|
|
|
id2label, label2id |
|
``` |
|
|
|
Output: |
|
|
|
``` |
|
({0: 'bin', |
|
1: 'hand', |
|
2: 'not_bin', |
|
3: 'not_hand', |
|
4: 'not_trash', |
|
5: 'trash', |
|
6: 'trash_arm'}, |
|
{'bin': 0, |
|
'hand': 1, |
|
'not_bin': 2, |
|
'not_hand': 3, |
|
'not_trash': 4, |
|
'trash': 5, |
|
'trash_arm': 6}) |
|
``` |