ariG23498 HF Staff commited on
Commit
5cba8c4
·
verified ·
1 Parent(s): 6eaec82

Upload google_embeddinggemma-300m_8.py with huggingface_hub

Browse files
Files changed (1) hide show
  1. google_embeddinggemma-300m_8.py +20 -8
google_embeddinggemma-300m_8.py CHANGED
@@ -11,12 +11,18 @@
11
  # ///
12
 
13
  try:
14
- embeddings = model.encode(words, truncate_dim=512, normalize_embeddings=True)
 
 
 
 
15
 
16
- for idx, embedding in enumerate(embeddings):
17
- print(f"Embedding {idx+1}: {embedding.shape}")
 
 
 
18
 
19
- print("-"*80)
20
  check_word_similarities()
21
  with open('google_embeddinggemma-300m_8.txt', 'w', encoding='utf-8') as f:
22
  f.write('Everything was good in google_embeddinggemma-300m_8.txt')
@@ -32,12 +38,18 @@ except Exception as e:
32
  with open('google_embeddinggemma-300m_8.txt', 'a', encoding='utf-8') as f:
33
  import traceback
34
  f.write('''```CODE:
35
- embeddings = model.encode(words, truncate_dim=512, normalize_embeddings=True)
 
 
 
 
 
 
 
36
 
37
- for idx, embedding in enumerate(embeddings):
38
- print(f"Embedding {idx+1}: {embedding.shape}")
39
 
40
- print("-"*80)
41
  check_word_similarities()
42
  ```
43
 
 
11
  # ///
12
 
13
  try:
14
+ def check_word_similarities():
15
+ # Calculate the embedding similarities
16
+ print("similarity function: ", model.similarity_fn_name)
17
+ similarities = model.similarity(embeddings[0], embeddings[1:])
18
+ print(similarities)
19
 
20
+ for idx, word in enumerate(words[1:]):
21
+ print("🙋‍♂️ apple vs.", word, "-> 🤖 score: ", similarities.numpy()[0][idx])
22
+
23
+ # Calculate embeddings by calling model.encode()
24
+ embeddings = model.encode(words, prompt_name="STS")
25
 
 
26
  check_word_similarities()
27
  with open('google_embeddinggemma-300m_8.txt', 'w', encoding='utf-8') as f:
28
  f.write('Everything was good in google_embeddinggemma-300m_8.txt')
 
38
  with open('google_embeddinggemma-300m_8.txt', 'a', encoding='utf-8') as f:
39
  import traceback
40
  f.write('''```CODE:
41
+ def check_word_similarities():
42
+ # Calculate the embedding similarities
43
+ print("similarity function: ", model.similarity_fn_name)
44
+ similarities = model.similarity(embeddings[0], embeddings[1:])
45
+ print(similarities)
46
+
47
+ for idx, word in enumerate(words[1:]):
48
+ print("🙋‍♂️ apple vs.", word, "-> 🤖 score: ", similarities.numpy()[0][idx])
49
 
50
+ # Calculate embeddings by calling model.encode()
51
+ embeddings = model.encode(words, prompt_name="STS")
52
 
 
53
  check_word_similarities()
54
  ```
55