ariG23498 HF Staff commited on
Commit
6eaec82
Β·
verified Β·
1 Parent(s): d963afb

Upload google_embeddinggemma-300m_7.py with huggingface_hub

Browse files
Files changed (1) hide show
  1. google_embeddinggemma-300m_7.py +32 -18
google_embeddinggemma-300m_7.py CHANGED
@@ -11,19 +11,26 @@
11
  # ///
12
 
13
  try:
14
- def check_word_similarities():
15
- # Calculate the embedding similarities
16
- print("similarity function: ", model.similarity_fn_name)
17
- similarities = model.similarity(embeddings[0], embeddings[1:])
18
- print(similarities)
19
 
20
- for idx, word in enumerate(words[1:]):
21
- print("πŸ™‹β€β™‚οΈ apple vs.", word, "-> πŸ€– score: ", similarities.numpy()[0][idx])
 
 
22
 
23
  # Calculate embeddings by calling model.encode()
24
- embeddings = model.encode(words, prompt_name="STS")
 
25
 
26
- check_word_similarities()
 
 
 
 
 
 
 
 
27
  with open('google_embeddinggemma-300m_7.txt', 'w', encoding='utf-8') as f:
28
  f.write('Everything was good in google_embeddinggemma-300m_7.txt')
29
  except Exception as e:
@@ -38,19 +45,26 @@ except Exception as e:
38
  with open('google_embeddinggemma-300m_7.txt', 'a', encoding='utf-8') as f:
39
  import traceback
40
  f.write('''```CODE:
41
- def check_word_similarities():
42
- # Calculate the embedding similarities
43
- print("similarity function: ", model.similarity_fn_name)
44
- similarities = model.similarity(embeddings[0], embeddings[1:])
45
- print(similarities)
46
 
47
- for idx, word in enumerate(words[1:]):
48
- print("πŸ™‹β€β™‚οΈ apple vs.", word, "-> πŸ€– score: ", similarities.numpy()[0][idx])
 
 
49
 
50
  # Calculate embeddings by calling model.encode()
51
- embeddings = model.encode(words, prompt_name="STS")
 
 
 
 
 
 
 
 
52
 
53
- check_word_similarities()
 
54
  ```
55
 
56
  ERROR:
 
11
  # ///
12
 
13
  try:
14
+ labels = ["Billing Issue", "Technical Support", "Sales Inquiry"]
 
 
 
 
15
 
16
+ sentence = [
17
+ "Excuse me, the app freezes on the login screen. It won't work even when I try to reset my password.",
18
+ "I would like to inquire about your enterprise plan pricing and features for a team of 50 people.",
19
+ ]
20
 
21
  # Calculate embeddings by calling model.encode()
22
+ label_embeddings = model.encode(labels, prompt_name="Classification")
23
+ embeddings = model.encode(sentence, prompt_name="Classification")
24
 
25
+ # Calculate the embedding similarities
26
+ similarities = model.similarity(embeddings, label_embeddings)
27
+ print(similarities)
28
+
29
+ idx = similarities.argmax(1)
30
+ print(idx)
31
+
32
+ for example in sentence:
33
+ print("πŸ™‹β€β™‚οΈ", example, "-> πŸ€–", labels[idx[sentence.index(example)]])
34
  with open('google_embeddinggemma-300m_7.txt', 'w', encoding='utf-8') as f:
35
  f.write('Everything was good in google_embeddinggemma-300m_7.txt')
36
  except Exception as e:
 
45
  with open('google_embeddinggemma-300m_7.txt', 'a', encoding='utf-8') as f:
46
  import traceback
47
  f.write('''```CODE:
48
+ labels = ["Billing Issue", "Technical Support", "Sales Inquiry"]
 
 
 
 
49
 
50
+ sentence = [
51
+ "Excuse me, the app freezes on the login screen. It won't work even when I try to reset my password.",
52
+ "I would like to inquire about your enterprise plan pricing and features for a team of 50 people.",
53
+ ]
54
 
55
  # Calculate embeddings by calling model.encode()
56
+ label_embeddings = model.encode(labels, prompt_name="Classification")
57
+ embeddings = model.encode(sentence, prompt_name="Classification")
58
+
59
+ # Calculate the embedding similarities
60
+ similarities = model.similarity(embeddings, label_embeddings)
61
+ print(similarities)
62
+
63
+ idx = similarities.argmax(1)
64
+ print(idx)
65
 
66
+ for example in sentence:
67
+ print("πŸ™‹β€β™‚οΈ", example, "-> πŸ€–", labels[idx[sentence.index(example)]])
68
  ```
69
 
70
  ERROR: