repo_name
stringlengths
9
75
topic
stringclasses
30 values
issue_number
int64
1
203k
title
stringlengths
1
976
body
stringlengths
0
254k
state
stringclasses
2 values
created_at
stringlengths
20
20
updated_at
stringlengths
20
20
url
stringlengths
38
105
labels
sequencelengths
0
9
user_login
stringlengths
1
39
comments_count
int64
0
452
saulpw/visidata
pandas
2,272
[tsv] add CLI option to use NUL as delimiter
It's useful to parse output from GNU grep's `-Z` option. That produces lines that in Python are `f'{filename}\0{line}\n'`, instead of the usual `f'{filename}:{line}\n'`. Right now the command line can't be used to specify a NUL delimiter, as in `vd --delimiter="\0"`, because `sys.argv` strings are NUL-terminated and can't ever contain NUL. My workarounds for now are to use .visidatarc, either add a temporary line: `vd.option('delimiter', '\x00', 'field delimiter to use for tsv/usv filetype', replay=True)`. or add a new filetype to allow `vd -f nsv`: ``` @VisiData.api def open_nsv(vd, p): tsv = TsvSheet(p.base_stem, source=p) tsv.delimiter = '\x00' tsv.reload() return tsv ``` Can `open_nsv()` be written without `reload()` right now? I couldn't think of another way to set `delimiter` for TsvSheet.
closed
2024-01-26T00:29:50Z
2024-05-25T06:18:08Z
https://github.com/saulpw/visidata/issues/2272
[ "wishlist", "wish granted" ]
midichef
8
ultralytics/ultralytics
deep-learning
18,711
Why the mAP increase only 0.001 percent every epoch. Any suggestion how to make fast?
### Search before asking - [x] I have searched the Ultralytics YOLO [issues](https://github.com/ultralytics/ultralytics/issues) and [discussions](https://github.com/ultralytics/ultralytics/discussions) and found no similar questions. ### Question Hello, I’ve been training a YOLO model on a custom dataset and have noticed that the mean Average Precision (mAP) increases by approximately 0.001% with each epoch. The training process doesn't provide clear guidance on when to stop, and I'm concerned that the model might be overfitting. However, the confusion matrix at epoch 400 doesn't seem to indicate overfitting. Do you have any suggestions on how to determine the optimal stopping point or strategies to prevent potential overfitting? Thank you! <img width="855" alt="Image" src="https://github.com/user-attachments/assets/3cd039bc-5ed8-4ea2-b646-1b47bfd0c1f5" /> Thanks ### Additional _No response_
open
2025-01-16T12:15:37Z
2025-01-16T13:59:07Z
https://github.com/ultralytics/ultralytics/issues/18711
[ "question", "detect" ]
khandriod
2
polakowo/vectorbt
data-visualization
651
Bug: Stop loss results is very largely different between from_signals(sl_stop=0.1) and generate_ohlc_stop_exits(sl_stop=0.1)
I'm trying to compare the stop loss mechanisms implemented with different ways such as model 1: `from_signals(sl_stop=0.1, sl_trail=False)`, model 2: `generate_ohlc_stop_exits(sl_stop=0.1, sl_trail=False) ` and model 3: `vbt.OHLCSTX.run(sl_stop=[0.1])`. I found that model 2 and model 3 gave the exact same results (i.e., total return=459.05%) , but for model 1, the results are very different (i.e., total return = 47.47%) as displayed below: Model 1: `from_signals(sl_stop=0.1, sl_trail=False)` ![image](https://github.com/polakowo/vectorbt/assets/64836390/839148cc-9744-422b-8b80-8753a8f92500) Model 2: `generate_ohlc_stop_exits(sl_stop=0.1, sl_trail=False)` ![image](https://github.com/polakowo/vectorbt/assets/64836390/2cd0ff4a-f49f-466e-8487-84b09c670166) Model 3: `vbt.OHLCSTX.run(sl_stop=[0.1])` ![image](https://github.com/polakowo/vectorbt/assets/64836390/46008428-f564-46ed-81d8-f7819e254465) Is it a bug? Or is it my implementation error? And btw, here is where I got the reference from: https://github.com/polakowo/vectorbt/issues/181 Below are the codes for these 3 models: -------------------------------------------------- Model 1: Using `from_signals(sl_stop=0.1, sl_trail=False)` ``` # Reference: stop exits with RANDENEX indicator: https://github.com/polakowo/vectorbt/issues/181 import vectorbt as vbt ohlcv = vbt.YFData.download( "BTC-USD", start='2017-01-01 UTC', end='2020-01-01 UTC' ).concat() # Random enter signal generator based on the number of signals. rand = vbt.RAND.run(ohlcv["Close"].shape, n=10, seed=42) # Random exit signal generator based on the number of signals. randx = vbt.RANDX.run(rand.entries, seed=42) pf1 = vbt.Portfolio.from_signals(ohlcv["Close"], rand.entries, randx.exits, open=ohlcv["Open"], high=ohlcv["High"], low=ohlcv["Low"], sl_stop=0.1, sl_trail=False, ) pf1.stats() ``` Model 2: Using `generate_ohlc_stop_exits(sl_stop=0.1, sl_trail=False) ` ``` import vectorbt as vbt ohlcv = vbt.YFData.download( "BTC-USD", start='2017-01-01 UTC', end='2020-01-01 UTC' ).concat() # Random enter signal generator based on the number of signals. rand = vbt.RAND.run(ohlcv["Close"].shape, n=10, seed=42) # Random exit signal generator based on the number of signals. randx = vbt.RANDX.run(rand.entries, seed=42) stop_exits = rand.entries.vbt.signals.generate_ohlc_stop_exits( open=ohlcv["Open"], high=ohlcv['High'], low=ohlcv['Low'], close=ohlcv['Close'], sl_stop=0.1, sl_trail=False, ) exits = randx.exits.vbt | stop_exits # optional: combine exit signals such that the first exit of two conditions wins entries, exits = rand.entries.vbt.signals.clean(exits) # optional: automatically remove ignored exit signals pf2 = vbt.Portfolio.from_signals(ohlcv['Close'], entries, exits, open=ohlcv["Open"],high=ohlcv["High"], low=ohlcv["Low"]) pf2.stats() ``` Model 3: Using `vbt.OHLCSTX.run(sl_stop=[0.1])` ``` import numpy import vectorbt as vbt ohlcv = vbt.YFData.download( "BTC-USD", start='2017-01-01 UTC', end='2020-01-01 UTC' ).concat() # Random enter signal generator based on the number of signals. rand = vbt.RAND.run(ohlcv["Close"].shape, n=10, seed=42) # Random exit signal generator based on the number of signals. randx = vbt.RANDX.run(rand.entries, seed=42) stops = [0.1,] sl_exits = vbt.OHLCSTX.run( rand.entries, ohlcv['Open'], ohlcv['High'], ohlcv['Low'], ohlcv['Close'], sl_stop=list(stops), stop_type=None, stop_price=None ).exits exits = randx.exits.vbt | sl_exits pf3 = vbt.Portfolio.from_signals(ohlcv['Close'], rand.entries, exits) # with SL pf3.stats() ```
closed
2023-08-27T05:34:07Z
2024-02-19T01:48:21Z
https://github.com/polakowo/vectorbt/issues/651
[ "stale" ]
tan-yong-sheng
4
tensorpack/tensorpack
tensorflow
943
"buffer_size" error in the middle of training
I faced "buffer_size cannot be larger than the size of the DataFlow!" error in the middle of training (e.g., after epoch 10). I'm trying to minimize reproducible codes for debugging, but couldn't yet find. Meanwhile, can I ask your advice about where to look at? ### training code ``` df = MyDataFlow(config, 'trainvalminusminival') df = MultiThreadMapData(df, 10, df.mapf, buffer_size=32, strict=True) df = PrefetchDataZMQ(df, 10) df = BatchData(df, config.TRAIN.BATCH_SIZE, remainder=False) vdf = MyDataFlow(config, 'minival') vdf = MultiThreadMapData(vdf, 10, vdf.mapf, buffer_size=32, strict=True) vdf = PrefetchDataZMQ(vdf, 10) vdf = BatchData(vdf, config.TRAIN.BATCH_SIZE) model = MyModel(config) traincfg = get_train_config(model, df, vdf, config) nr_tower = max(get_num_gpu(), 1) trainer = SyncMultiGPUTrainerReplicated(nr_tower) launch_train_with_config(traincfg, trainer) ``` ### data flow ``` class MyDataFlow(RNGDataFlow): def __init__(self, config, split, path, aug=False): super(MyDataFlow, self).__init__() self.config = config self.image_size = config.DATA.IMAGE_SIZE self.aug = aug ... tfrecord file grapping and generator using tf.python_io.tf_record_iterator ... logger.info('{}: grabbed {} TFRecords.'.format(split, len(tfrecords))) logger.info('{}: grabbed {} examples.'.format(split, self.num_samples)) def __len__(self): return self.num_samples def __iter__(self): while True: example = next(self.generator) ... parsing using tf.train.Example.FromString(example) ... yield key, points, label def mapf(self, example): ... some preprocessing ... ``` ### log ```` [1021 15:51:58 @base.py:250] Start Epoch 8 ... [1021 16:12:30 @base.py:260] Epoch 8 (global_step 2500000) finished, time:20 minutes 31 seconds. [1021 16:12:30 @graph.py:73] Running Op sync_variables/sync_variables_from_main_tower ... [1021 16:12:30 @saver.py:77] Model saved to train_log/config/model-2500000. [1021 16:12:31 @misc.py:109] Estimated Time Left: 15 hours 45 minutes 23 seconds [1021 16:14:30 @monitor.py:459] DataParallelInferenceRunner/QueueInput/queue_size: 25 [1021 16:14:30 @monitor.py:459] GPUUtil/0: 19.745 [1021 16:14:30 @monitor.py:459] QueueInput/queue_size: 49.969 [1021 16:14:30 @monitor.py:459] cost: 5.802 [1021 16:14:30 @monitor.py:459] learning_rate: 0.01 [1021 16:14:30 @monitor.py:459] train-error-top1: 0.98717 [1021 16:14:30 @monitor.py:459] train-error-top3: 0.96963 [1021 16:14:30 @monitor.py:459] val-error-top1: 0.99726 [1021 16:14:30 @monitor.py:459] val-error-top3: 0.99152 [1021 16:14:30 @group.py:48] Callbacks took 119.715 sec in total. DataParallelInferenceRunner: 1 minute 59 seconds [1021 16:14:30 @base.py:250] Start Epoch 9 ... [1021 16:35:00 @base.py:260] Epoch 9 (global_step 2812500) finished, time:20 minutes 30 seconds. [1021 16:35:00 @graph.py:73] Running Op sync_variables/sync_variables_from_main_tower ... [1021 16:35:00 @saver.py:77] Model saved to train_log/config/model-2812500. [1021 16:35:01 @misc.py:109] Estimated Time Left: 15 hours 22 minutes 47 seconds [1021 16:37:01 @monitor.py:459] DataParallelInferenceRunner/QueueInput/queue_size: 25 [1021 16:37:01 @monitor.py:459] GPUUtil/0: 19.735 [1021 16:37:01 @monitor.py:459] QueueInput/queue_size: 49.858 [1021 16:37:01 @monitor.py:459] cost: 5.8078 [1021 16:37:01 @monitor.py:459] learning_rate: 0.01 [1021 16:37:01 @monitor.py:459] train-error-top1: 0.99174 [1021 16:37:01 @monitor.py:459] train-error-top3: 0.9626 [1021 16:37:01 @monitor.py:459] val-error-top1: 0.99711 [1021 16:37:01 @monitor.py:459] val-error-top3: 0.99116 [1021 16:37:01 @group.py:48] Callbacks took 120.659 sec in total. DataParallelInferenceRunner: 2 minutes [1021 16:37:01 @base.py:250] Start Epoch 10 ... [1021 16:57:34 @base.py:260] Epoch 10 (global_step 3125000) finished, time:20 minutes 32 seconds. [1021 16:57:34 @graph.py:73] Running Op sync_variables/sync_variables_from_main_tower ... [1021 16:57:34 @saver.py:77] Model saved to train_log/config/model-3125000. [1021 16:57:34 @misc.py:109] Estimated Time Left: 15 hours 36 seconds [1021 16:59:32 @parallel_map.py:53] [4m [5m [31mERR [0m [MultiThreadMapData] buffer_size cannot be larger than the size of the DataFlow! [1021 16:59:32 @parallel_map.py:53] [4m [5m [31mERR [0m [MultiThreadMapData] buffer_size cannot be larger than the size of the DataFlow! ```` ### error related code: `parallel_map.py` ``` def _fill_buffer(self, cnt=None): if cnt is None: cnt = self._buffer_size - self._buffer_occupancy try: for _ in range(cnt): dp = next(self._iter) self._send(dp) except StopIteration: logger.error( "[{}] buffer_size cannot be larger than the size of the DataFlow!".format(type(self).__name__)) raise self._buffer_occupancy += cnt ``` Is it possible for `data source` to get empty (the end of its data), during the for loop in `_fill_buffer`? Python version: 3.5 TF version: 1.11.0 Tensorpack version: 0.8.9
closed
2018-10-22T06:42:00Z
2018-10-22T16:21:02Z
https://github.com/tensorpack/tensorpack/issues/943
[ "duplicate" ]
ywpkwon
1
streamlit/streamlit
streamlit
10,768
Support `background` CSS property in `st.dataframe()`
### Checklist - [x] I have searched the [existing issues](https://github.com/streamlit/streamlit/issues) for similar feature requests. - [x] I added a descriptive title and summary to this issue. ### Summary Support setting the `background` CSS property via `df.styler` in `st.dataframe()`. ### Why? Pandas' beautiful [`Styler.bar()`](https://pandas.pydata.org/docs/reference/api/pandas.io.formats.style.Styler.bar.html) feature uses the `background` CSS property. It's also possible to add CSS directly via [`Styler.map()`](https://pandas.pydata.org/docs/reference/api/pandas.io.formats.style.Styler.map.html). See examples below. I should note that the `background-color` CSS property works as expected, but not `background` or `background-image`. Also, they all work in `st.table()`. Only `background` and `background-image` don't work in `st.dataframe()`. [![Open in Streamlit Cloud](https://static.streamlit.io/badges/streamlit_badge_black_white.svg)](https://issues.streamlitapp.com/?issue=gh-10768) ```py import pandas as pd import streamlit as st df = pd.DataFrame({"solid": [0.1, 0.2, 0.3], "gradient": [0.4, 0.5, 0.6], "bar": [0.7, 0.8, 0.9]}) styler = df.style styler.format(lambda x: f"{x:.0%}") styler.map(lambda x: f"background-color: green;", subset="solid") styler.map(lambda x: f"background-image: linear-gradient(to right, green {x:%}, transparent {x:%});", subset="gradient") styler.bar(subset="bar", vmin=0, vmax=1, color="green") # Uses a `background: linear-gradient` under the hood. st.code("st.table()") st.table(styler) # Both the solid color and the gradient work as expected. st.divider() st.code("st.dataframe()") st.dataframe(styler) # The solid color works as expected, but not the gradient. ``` ![Image](https://github.com/user-attachments/assets/dc3be7db-3648-4332-aa22-d8bac89bf242) ### How? _No response_ ### Additional Context _No response_
open
2025-03-13T14:56:28Z
2025-03-21T21:35:03Z
https://github.com/streamlit/streamlit/issues/10768
[ "type:enhancement", "feature:st.dataframe" ]
JosephMarinier
1
indico/indico
sqlalchemy
6,629
Make the minimum password length configurable
Just 8 characters are not that great anymore according to recent standards. 12 or 15 is a more common minimum nowadays (TODO check the NIST guidelines). However, I could imagine that many Indico instances do not want to enforce such long passwords, so I'd prefer to not change the global default. - Add `LOCAL_PASSWORD_MIN_LENGTH` setting, default to the current hardcoded value of `8`. - Do not allow anything shorter unless debug mode is enabled (fail in `IndicoConfig.validate`). - In `validate_secure_password`, keep the hard check for less than 8 chars (we want to keep forcing a password change for existing users with a shorter password), but also add a check for the new limit when the context is `set-user-password`. - Maybe populate the config file in the setup wizard with a longer minimum length, so newly installed instances get a better default? Alternatively, we could just raise the minimum length but still with the context check to avoid forcing an "upgrade" from everyone who has a shorter one that's still 8+ chars right now. Any opinions?
closed
2024-11-25T14:38:51Z
2025-02-24T14:44:09Z
https://github.com/indico/indico/issues/6629
[ "enhancement", "trivial" ]
ThiefMaster
0
unit8co/darts
data-science
1,781
What is the best way to get the predicted values of the training set in Darts?
I am trying to get the **predicted values of my training set** in Darts. In SKlearn, one can simply do: ``` model.fit(training_set) model.predict(training_set) ``` What is the equivalent method in Darts assuming I have target lags, past covariate lags and future covariate lags? From what I've tried, the .predict() method is only forward looking after you fit your data so I won't be able to get the predictions of my training set. Thanks in advance.
closed
2023-05-17T15:35:09Z
2024-04-17T07:12:27Z
https://github.com/unit8co/darts/issues/1781
[ "question" ]
ETTAN93
4
keras-team/keras
data-science
20,873
Inconsistencies with the behavior of bias initializers, leading to poor performance in some cases
Hello, I've noticed some (potentially harmful) inconsistencies in bias initializers when running a simple test of the keras package, i.e. using a shallow MLP to learn a sine wave function in the [-1, 1] interval. # Context Most of the times (or for deep enough networks), using the default zero-initialization for biases is fine. However, for this simple problem having randomized biases is essential, since without them the neurons end up being too similar (redundant) and training converges to a very poor local optimum. The [official guide](https://keras.io/api/layers/initializers/#variancescaling-class) suggests to use weight initializers for biases as well. Now: * The default initialization from _native_ PyTorch leads to good results that improve as expected as the network size grows. * Several keras initializers are expected to be similar or identical to the PyTorch behavior (i.e. `VarianceScaling` and all its subclasses), but they fail to produce good results, regardless of the number of neurons in the hidden layer. # Issues The issues are due to the fact that all [RandomInitializer](https://github.com/keras-team/keras/blob/fbf0af76130beecae2273a513242255826b42c04/keras/src/initializers/random_initializers.py#L10) subclasses in their `__call__` function only have access to the shape they need to fill. In case of bias vectors for `Dense` layers, this shape is a one element tuple, i.e. `(n,)` where `n` is the number of units in the current layer. The [compute_fans function](https://github.com/keras-team/keras/blob/fbf0af76130beecae2273a513242255826b42c04/keras/src/initializers/random_initializers.py#L612) in this case reports a fan in of `n`, which is actually the number of units, i.e. the fan out. Unfortunately, the correct fan in is not accessible, since the number of layer inputs is not included in the shape of the bias vector. This makes the [official description of the VarianceScaling initializer](https://keras.io/api/layers/initializers/#variancescaling-class) incorrect when applied to neuron biases. The same holds for the description of the Glorot, He, LeCun initializers, which are implemented as `VarianceScaling` subclasses. In my simple example, as soon as the shallow network has more than very few neurons, all size-dependent initializers have so little variability that they behave very similar to a zero initialization (i.e. incredibly poorly). What stumped me (before understanding the problem) is that the larger is the network, the worse the behavior. # About possible fixes I can now easily fix the issue by computing bounds for `RandomUniform` initializers externally so as to replicate the default PyTorch behavior, but this is not an elegant solution -- and I am worried other users may have encountered similar problems without noticing. If the goal is correctly computing the fan in, I am afraid that I see no easy fix, short of restructuring the `RandomInitializer` API and giving it access to more information. However, the real goal here is not actually computing the fan in, but preserving the properties that the size-dependent initializers were attempting to enforce. I would need to read more literature on the topic before suggesting a theoretically sound fix from this perspective. I would be willing to do that, in case the keras teams is fine with going in this direction.
open
2025-02-07T13:44:16Z
2025-03-07T15:35:08Z
https://github.com/keras-team/keras/issues/20873
[ "type:bug/performance" ]
lompabo
4
allenai/allennlp
nlp
4,773
SNLI-VE dataset reader and model
SNLI-VE is here: https://github.com/necla-ml/SNLI-VE The VQA reader and model should serve as an example, but there will likely be significant differences.
closed
2020-11-07T00:01:16Z
2020-12-24T00:31:57Z
https://github.com/allenai/allennlp/issues/4773
[]
dirkgr
3
junyanz/pytorch-CycleGAN-and-pix2pix
deep-learning
1,347
about generate images from simulation to real world
Hi, I 'm a new guy about image translation. Hope for your help. >This is domain A. 1920×1080 images from unity3D. >![图片1](https://user-images.githubusercontent.com/59331333/144011576-106a0a15-5cd8-4f2f-9607-444575e9e731.png) > >And this is domain B. 1920×1080 underwater images from onboard camera. >![图片2](https://user-images.githubusercontent.com/59331333/144011585-a8b35166-0653-4370-88a5-dab61f6c03f7.png) I trained with cycle GAN by --crop size 512, and tested by --preprocess none. But the result looks like bad. I guess wether the random crop may not include the small target every times,or any other reason. I really don't know why and how to solve it. I hope that you can give me some tips or a little inspiration. >This is the input image. >![20211123_183443_real](https://user-images.githubusercontent.com/59331333/144018986-b4f6e29f-764c-44cc-a48f-b9aa0544d72f.png) > >And this is the output with epoch 110. >![20211123_183443_fake](https://user-images.githubusercontent.com/59331333/144018333-2003a347-86d7-44d9-bf9d-cb5494b65a7e.png)
open
2021-11-30T09:38:21Z
2021-12-02T20:49:25Z
https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/issues/1347
[]
julingers
1
aidlearning/AidLearning-FrameWork
jupyter
180
hardlink count not equal to hardlinked file count
hardlink count less than hardlinked file count, it seems as if 2 hidden hardlinked files automatically generated by aidlux are not counted, whose file name have ".l2s." as prefix, and one has "0001" as suffix, the other has '0001.000#" as suffix. there are no such two hardlinked hidden files on an ordinary linux system. when a hidden hardlink is deleted, the left hardlinks will lose hardlink and become not accessible. this situation always lead to problems when apt upgrade debian of aidlux, or when installing packages. especially, when installing packages from source code, the problem shows up more often and with a faillure result. ====the following are the steps to show the issue: root@localhost:/tmp/tmp# date>x root@localhost:/tmp/tmp# ls -ali 总用量 16 533961 drwx------. 2 root root 3488 8月 2 23:08 . 207221 drwx------. 49 root root 8192 8月 2 23:04 .. 1104231 -rw-------. 1 root root 43 8月 2 23:08 x root@localhost:/tmp/tmp# ln x y root@localhost:/tmp/tmp# ls -ali 总用量 28 533961 drwx------. 2 root root 3488 8月 2 23:08 . 207221 drwx------. 49 root root 8192 8月 2 23:04 .. 1104231 -rw-------. 2 root root 43 8月 2 23:08 .l2s.x0001 1104231 -rw-------. 2 root root 43 8月 2 23:08 .l2s.x0001.0002 1104231 -rw-------. 2 root root 43 8月 2 23:08 x 1104231 -rw-------. 2 root root 43 8月 2 23:08 y root@localhost:/tmp/tmp# ln x z root@localhost:/tmp/tmp# ls -ali 总用量 32 533961 drwx------. 2 root root 3488 8月 2 23:09 . 207221 drwx------. 49 root root 8192 8月 2 23:04 .. 1104231 -rw-------. 3 root root 43 8月 2 23:08 .l2s.x0001 1104231 -rw-------. 3 root root 43 8月 2 23:08 .l2s.x0001.0003 1104231 -rw-------. 3 root root 43 8月 2 23:08 x 1104231 -rw-------. 3 root root 43 8月 2 23:08 y 1104231 -rw-------. 3 root root 43 8月 2 23:08 z root@localhost:/tmp/tmp# find . -type l ./.l2s.x0001 ./z ./x ./y root@localhost:/tmp/tmp# cat x 2021年 08月 02日 星期一 23:49:59 UTC root@localhost:/tmp/tmp# rm .l2s.x0001 root@localhost:/tmp/tmp# cat x cat: x: 没有那个文件或目录 root@localhost:/tmp/tmp# ls -ali ls: 无法访问'z': 不允许的操作 ls: 无法访问'x': 不允许的操作 ls: 无法访问'y': 不允许的操作 总用量 16 533961 drwx------. 2 root root 3488 8月 2 23:48 . 207221 drwx------. 49 root root 8192 8月 2 23:04 .. 1104231 -rw-------. 3 root root 43 8月 2 23:08 .l2s.x0001.0003 ? l?????????? ? ? ? ? ? x ? l?????????? ? ? ? ? ? y ? l?????????? ? ? ? ? ? z root@localhost:/tmp/tmp#
closed
2021-08-03T00:00:08Z
2021-08-28T13:40:26Z
https://github.com/aidlearning/AidLearning-FrameWork/issues/180
[]
zxq432
2
streamlit/streamlit
python
9,904
Stale output from a long-running computation erroneously shows as not stale when app rerun
### Checklist - [X] I have searched the [existing issues](https://github.com/streamlit/streamlit/issues) for similar issues. - [X] I added a very descriptive title to this issue. - [X] I have provided sufficient information below to help reproduce this issue. ### Summary This is a bug report on behalf of Thiago in order to keep it tracked. When a Streamlit app with long-running computation is stopped and then re-run, old stale data from the previous run show up as if it was not stale until the old thread completes execution, at which point the data is properly cleaned up. ### Reproducible Code Example ```Python import platform import time import streamlit as st st.caption( f""" Running with Python {platform.python_version()} and Streamlit {st.__version__}. """ ) """ This is an app!! """ def slow_computation(x): st.write("Starting slow computation...") time.sleep(10) st.write("Stopping slow computation...") return f"Done, {x + 1}" out = slow_computation(1) st.write(out) ``` ### Steps To Reproduce This is a Playwright test that simulates the current behavior (which is to say, this test currently passes, but should fail once the underlying issue is fixed). There are `NOTE`s inline that describe expected behavior ```py import time from playwright.sync_api import Page, expect def test_threading_behavior(page: Page): # This uses `localhost:8501` since I was running different versions of Streamlit # in an attempt to bisect this issue in case it was introduced at some point in time page.goto("http://localhost:8501/") page.get_by_text("Stopping slow computation...").wait_for(timeout=20000) expect(page.get_by_text("Stopping slow computation...")).to_be_visible() print(page.query_selector_all(".element-container")[0].inner_text()) # At this point, the first run of the thread completed expect(page.get_by_text("Done, 2")).to_be_visible() # conditional logic to make it work with older versions of Streamlit if page.query_selector('div[data-testid="stMainMenu"]'): page.get_by_test_id("stMainMenu").click() elif page.query_selector('[id="MainMenu"]'): main_menu = page.query_selector('[id="MainMenu"]') if main_menu: main_menu.click() # Now we are re-running the app page.get_by_text("Rerun").click() # Some time delay so that the new thread is started and some elements are marked as stable time.sleep(2) # Expect some of the elements to be marked as stale assert len(page.query_selector_all('div[data-stale="true"]')) == 2 expect(page.get_by_text("Stopping slow computation...")).to_be_visible() expect(page.get_by_text("Done, 2")).to_be_visible() # Stop the new thread page.get_by_role("button", name="Stop").click() time.sleep(2) # NOTE: This should not pass. Stale elements shouldn't suddenly be marked as not stale # since these are old results from a thread that was supposed to have been stopped assert len(page.query_selector_all('div[data-stale="true"]')) == 0 # NOTE: This should not pass. It is unexpected that the results from the old thread # are still showing up, despite us re-running expect(page.get_by_text("Stopping slow computation...")).to_be_visible() expect(page.get_by_text("Done, 2")).to_be_visible() # wait for the thread to complete time.sleep(10) # Expect old elements to be cleared out expect(page.get_by_text("Stopping slow computation...")).not_to_be_visible() expect(page.get_by_text("Done, 2")).not_to_be_visible() ``` ### Expected Behavior _No response_ ### Current Behavior _No response_ ### Is this a regression? - [ ] Yes, this used to work in a previous version. ### Debug info - Streamlit version: 1.0.0 -> 1.40.1 all show this behavior (I didn't test versions before) - Python version: 3.8 - Operating System: Mac - Browser: Chrome ### Additional Information _No response_
open
2024-11-22T00:07:11Z
2024-11-25T19:15:37Z
https://github.com/streamlit/streamlit/issues/9904
[ "type:bug", "status:confirmed", "priority:P3" ]
sfc-gh-bnisco
1
A3M4/YouTube-Report
matplotlib
15
Time format error?
Generating Heat Map..... Traceback (most recent call last): File "/home/server/Scrivania/Personal-YouTube-PDF-Report-Generator/report.py", line 252, in <module> visual.heat_map() File "/home/server/Scrivania/Personal-YouTube-PDF-Report-Generator/report.py", line 46, in heat_map Mon = html.dataframe_heatmap('Mon') File "/home/server/Scrivania/Personal-YouTube-PDF-Report-Generator/parse.py", line 97, in dataframe_heatmap times = self.find_times() File "/home/server/Scrivania/Personal-YouTube-PDF-Report-Generator/parse.py", line 52, in find_times dayOfWeek = datetime.datetime.strptime(time[0:12], '%b %d, %Y').strftime('%a') File "/usr/lib/python3.6/_strptime.py", line 565, in _strptime_datetime tt, fraction = _strptime(data_string, format) File "/usr/lib/python3.6/_strptime.py", line 362, in _strptime (data_string, format)) ValueError: time data 'Dec 15, 2019' does not match format '%b %d, %Y'
closed
2019-12-16T10:59:17Z
2019-12-25T21:11:28Z
https://github.com/A3M4/YouTube-Report/issues/15
[]
andreaponza
0
huggingface/datasets
nlp
6,833
Super slow iteration with trivial custom transform
### Describe the bug Dataset is 10X slower when applying trivial transforms: ``` import time import numpy as np from datasets import Dataset, Features, Array2D a = np.zeros((800, 800)) a = np.stack([a] * 1000) features = Features({"a": Array2D(shape=(800, 800), dtype="uint8")}) ds1 = Dataset.from_dict({"a": a}, features=features).with_format('numpy') def transform(batch): return batch ds2 = ds1.with_transform(transform) %time sum(1 for _ in ds1) %time sum(1 for _ in ds2) ``` ``` CPU times: user 472 ms, sys: 319 ms, total: 791 ms Wall time: 794 ms CPU times: user 9.32 s, sys: 443 ms, total: 9.76 s Wall time: 9.78 s ``` In my real code I'm using set_transform to apply some post-processing on-the-fly for the 2d array, but it significantly slows down the dataset even if the transform itself is trivial. Related issue: https://github.com/huggingface/datasets/issues/5841 ### Steps to reproduce the bug Use code in the description to reproduce. ### Expected behavior Trivial custom transform in the example should not slowdown the dataset iteration. ### Environment info - `datasets` version: 2.18.0 - Platform: Linux-5.15.0-79-generic-x86_64-with-glibc2.35 - Python version: 3.11.4 - `huggingface_hub` version: 0.20.2 - PyArrow version: 15.0.0 - Pandas version: 1.5.3 - `fsspec` version: 2023.12.2
open
2024-04-23T20:40:59Z
2024-10-08T15:41:18Z
https://github.com/huggingface/datasets/issues/6833
[]
xslittlegrass
7
mwaskom/seaborn
pandas
2,966
Don't apply a layout algorithm by default when provided with matplotlib axes in Plot.on
If `Plot.on` is provided with a matplotlib axes, it probably makes sense to defer the choice of a layout algorithm to the caller. The expected behavior is less obvious when given a figure or subfigure.
closed
2022-08-20T20:42:59Z
2022-08-25T11:50:33Z
https://github.com/mwaskom/seaborn/issues/2966
[ "objects-plot" ]
mwaskom
0
huggingface/datasets
deep-learning
7,394
Using load_dataset with data_files and split arguments yields an error
### Describe the bug It seems the list of valid splits recorded by the package becomes incorrectly overwritten when using the `data_files` argument. If I run ```python from datasets import load_dataset load_dataset("allenai/super", split="all_examples", data_files="tasks/expert.jsonl") ``` then I get the error ``` ValueError: Unknown split "all_examples". Should be one of ['train']. ``` However, if I run ```python from datasets import load_dataset load_dataset("allenai/super", split="train", name="Expert") ``` then I get ``` ValueError: Unknown split "train". Should be one of ['all_examples']. ``` ### Steps to reproduce the bug Run ```python from datasets import load_dataset load_dataset("allenai/super", split="all_examples", data_files="tasks/expert.jsonl") ``` ### Expected behavior No error. ### Environment info Python = 3.12 datasets = 3.2.0
open
2025-02-12T04:50:11Z
2025-02-12T04:50:11Z
https://github.com/huggingface/datasets/issues/7394
[]
devon-research
0
DistrictDataLabs/yellowbrick
scikit-learn
1,165
AttributeError: 'LogisticRegression' object has no attribute 'classes'
Hi everyone, that's my first help request, so I'm sorry if I do something wrong; so: **Description** I used for evaluate the classification models the classification_report class and it worked until I setted up `imblearn`(I don't think that it change something but, it happen when I set up that), now when i run the program I had the error `AttributeError: 'LogisticRegression' object has no attribute 'classes'` That's the "core" of the code called into question: ``` X_train, X_test, y_train, y_test = train_test_split(features, labels,test_size=0.25,shuffle=True, random_state = 0) from sklearn.linear_model import LogisticRegression logisticRegr = LogisticRegression(random_state=0) from yellowbrick.classifier import ClassificationReport visualizer = ClassificationReport(logisticRegr) visualizer.fit(X_train, y_train) # Fit the visualizer and the model visualizer.score(X_test, y_test) # Evaluate the model on the test data visualizer.show() # Draw/show the data ``` someone can help me to fix that? Thank you **Versions** scikit-learn 0.24.1 yellowbrick 1.2 python 3.7 Environment Anaconda 1.9.12 <!-- If you have a question, note that you can email us via our listserve: https://groups.google.com/forum/#!forum/yellowbrick --> <!-- This line alerts the Yellowbrick maintainers, feel free to use this @ address to alert us directly in follow up comments --> @DistrictDataLabs/team-oz-maintainers
closed
2021-03-23T10:24:51Z
2021-04-02T08:11:43Z
https://github.com/DistrictDataLabs/yellowbrick/issues/1165
[ "type: question" ]
Albembo
2
Yorko/mlcourse.ai
seaborn
361
questions about the form of the course
should we just read the course web, or there are some videos? thx
closed
2018-10-04T13:59:17Z
2018-10-04T14:13:38Z
https://github.com/Yorko/mlcourse.ai/issues/361
[ "invalid" ]
ZizhenWang
2
ludwig-ai/ludwig
computer-vision
3,571
Unpin `transformers` when a newer version > 4.32.1 is released
Ludwig also runs into the same issue flagged here: https://github.com/huggingface/transformers/issues/25805
closed
2023-08-31T20:28:34Z
2023-09-08T07:37:45Z
https://github.com/ludwig-ai/ludwig/issues/3571
[]
arnavgarg1
1
aimhubio/aim
data-visualization
2,573
RocksIOError: ....../CURRENT: no such file or directory
## 🐛 Bug <!-- A clear and concise description of what the bug is. --> ### To reproduce When I created hundreds of runs, I sometimes encounter the following error. ![image](https://user-images.githubusercontent.com/8064242/223209925-d70b930a-3337-42cd-b5f6-0f6e8f696ecf.png) The script I run is as follows: ![image](https://user-images.githubusercontent.com/8064242/223210386-bc90c5a5-8147-4306-a0b9-9f365039cc75.png) The command is : python create_runs.py -n 900 <!-- Reproduction steps. --> ### Environment - Aim Version (e.g., 3.0.1): 3.16.1 - Python version: 3.9.15 - pip version: 22.3.1 - OS (e.g., Linux): Centos-8
open
2023-03-06T19:26:06Z
2024-07-08T23:32:48Z
https://github.com/aimhubio/aim/issues/2573
[ "type / bug", "help wanted", "area / SDK-storage" ]
thuzhf
8
mars-project/mars
pandas
2,636
Refactor storage service to increase efficiency and stability
# Motivation Many problems exist with current implementation of Mars storage. 1. No flexible way to control data location When loading data from other endpoints, we may prefer multiple locations for fallback. Current implementation does not support this and may introduce unnecessary spill operations. 2. No support for remote reader / writer Remote readers and writers provide flexible way to handle data transfer, enabling shuffle and client-side data manipulation without high memory cost. Current implementation only handles readers and writers locally. 3. Mix of lower-level code and higher-level code Data transfer and spill should be implemented upon a common IO layer to make the whole storage more maintainable. Current implementation mixes all things up. 4. Race condition exists when spilling data on shuffle In current implementation, when starting a reader and data spill is launched, it is possible that the data is spilled and we get a KeyError afterward. 5. Unnecessary IPC calls In current implementation, we need to do quota request, put data info, update quota and deal with spill, all introducing more than one IPC call. The number of calls can be reduced to no more than 2. # Design The new design of Mars storage can be divided into two parts: the kernel storage and the user storage. The kernel storage is a thin wrap of storage backends plus necessary access controls. The user storage is constructed over the kernel storage with spill and transfer support. <img width="745" alt="image" src="https://user-images.githubusercontent.com/8284922/155280541-1e061963-2045-45a6-bca3-89261cca3862.png"> ## Kernel Storage The principle of kernel storage is to make thing simple. That is, the API does not handle complicated retries and redirections. When encountering storage full or lock errors, it raises straightforwardly (instead of performing wait or retry). `KernelStorageAPI` will look like ```python class KernelStorageAPI: @classmethod async def create(cls, band_name: str, worker_address: str) -> "KernelStorageAPI": """ Create a band-specific API """ async def open_reader( self, session_id: str, data_key: str, level: StorageLevel = None, ) -> KernelStorageFileObject: """ Create a reader on a specific file """ async def open_writer( self, session_id: str, data_key: str, size: int, level: StorageLevel = None, ) -> KernelStorageFileObject: """ Create a writer on a specific file """ async def delete(self, session_id: str, data_key: str, error: str = "raise"): """ Delete a file with specified keys """ async def get_capacity(self) -> Dict[StorageLevel, StorageCapacity]: """ Get capacities of levels of the band """ async def list( self, level: StorageLevel, lock_free_only: bool = False, ) -> List[InternalDataInfo]: """ Get information of all data in the band """ async def put( self, session_id: str, data_key: str, obj: Any, level: StorageLevel = None, ) -> InternalDataInfo: """ Put an object into the band storage """ async def get( self, session_id: str, data_key: str, conditions: List = None, level: StorageLevel = None, error: str = "raise", ) -> Any: """ Get an object into the band storage. Slicing support is also provided. """ async def get_info( self, session_id: str, data_key: str, level: StorageLevel = None, ) -> List[InternalDataInfo]: """ Get internal information of an object """ async def pin( self, session_id: str, data_key: str, level: StorageLevel = None, error: str = "raise", ): """ Pin specific data on a specific level. The object will get a read-only lock until unpinned """ async def unpin( self, session_id: str, data_key: str, level: StorageLevel = None, error: str = "raise", ): """ Unpin specific data on a specific level """ ``` A `StorageItemManagerActor` will hold all information necessary for kernel data management. It comprises of four separate handlers, namely `QuotaHandler`, `LockHandler`, `MetaHandler` and `ReferenceHandler`, implemented separately to reduce potential call overhead. Note that this actor only deal with data metas, not data themselves. Data are handled in caller actors with storage backends. ## User Storage User storage API wraps kernel storage and provides more capabilities including multiple level handling, spill and transfer. The API can look like ```python StorageLevels = Optional[List[StorageLevel]] class UserStorageAPI: @classmethod async def create( cls, session_id: str, band_name: str, worker_address: str, ) -> "UserStorageAPI": """ Create a session and band specific API """ async def fetch( self, data_key: str, levels: StorageLevels = None, band_name: str = None, remote_address: str = None, error: str = "raise", ): """ Fetch object from remote worker or load object from disk """ async def open_reader( self, data_key: str, levels: StorageLevels = None, ) -> UserStorageFileObject: """ Create a reader on a specific file """ async def open_writer( self, data_key: str, size: int, levels: StorageLevels = None, band_name: str = None, ) -> UserStorageFileObject: """ Create a writer on a specific file """ async def delete(self, data_key: str, error: str = "raise"): """ Delete a file with specified keys """ async def put( self, data_key: str, obj: Any, levels: StorageLevels = None, band_name: str = None, ) -> InternalDataInfo: """ Put an object into the band storage """ async def get( self, data_key: str, conditions: List = None, levels: StorageLevels = None, band_name: str = None, error: str = "raise", ) -> Any: """ Get an object into the band storage. Slicing support is also provided. """ async def get_info( self, data_key: str, levels: StorageLevels = None, band_name: str = None, ) -> List[InternalDataInfo]: """ Get internal information of an object """ async def pin( self, data_key: str, levels: StorageLevels = None, band_name: str = None, error: str = "raise", ): """ Pin specific data on a specific level. The object will get a read-only lock until unpinned """ async def unpin( self, session_id: str, data_key: str, level: StorageLevel = None, band_name: str = None, error: str = "raise", ): """ Unpin specific data on a specific level """ ``` ## Spill To implement spill, We need a `SpillManagerActor` to coordinate spill actions. A spill actor will be look like ```python class SpillManagerActor(mo.StatelessActor): @classmethod def gen_uid(cls, band_name: str, storage_level: int) -> str: pass def notify_spillable(self, data_key: str, size: int): """ Register a spillable data key. Only called when spill state is True. """ async def acquire_spill_lock(self, size: int) -> List[str]: """ Acquire certain size for spill and lock the actor for spill. Keys will be returned for the caller to spill. """ def release_spill_lock(self): """ Release the actor when spill ends. """ def wait_spill_state_change(self, last_state: bool) -> bool: """ Wait until the state of spill changes. """ ``` Inside the actor, we define a boolean state to indicate whether the storage level is under spill. When the state changes to True, it will be broadcasted to all subscribers to notify them to notify data changes. When the storage is about to spill, it calls `acquire_spill_lock` and supply some sizes. Then the actor enters spill state, locks the actor and then checks for keys to spill. When sizes to spill is available, it will return keys to spill and spill is started from the caller. When spill ends (finishes or encounters an error), the caller calls `release_spill_lock` to release the spill lock for other callers. When there is no pending callers, the state of the actor turns into False. ## Transfer / Remote IO To implement data transfer, we propose a two-actor solution. We will add a `SenderManagerActor` and a `RemoteIOActor` to do all required things. The `SenderManagerActor` masters data transfer initiated between workers, and `RemoteIOActor` handles remote readers and writers both for inter-worker data transfer as well as `UserStorageAPI`. When starting an inter-worker transfer, a request is sent to `SenderManagerActor` at the worker hosting the data to send to the calling worker. It calls `RemoteIOActor.create_writer` at receiver site and then `write_data` with batch calls. `RemoteIOActor` will look like ```python class RemoteIOActor(mo.StatelessActor): @mo.batch async def create_reader( self, session_id: str, data_key: str, levels: StorageLevels, ) -> List[str]: pass @mo.batch async def create_writer( self, session_id: str, data_key: str, data_size: int, levels: StorageLevels, ) -> List[str]: pass @mo.batch async def read_data( self, session_id: str, reader_key: str, data_buffer: bytes, size: int, ): pass @mo.batch async def write_data( self, session_id: str, writer_key: str, data_buffer: bytes, is_eof: bool, ): pass @mo.batch async def close( self, session_id: str, key: str, ): pass ``` And `SenderManagerActor` will look like ```python class SenderManagerActor(mo.StatelessActor): @mo.extensible async def send_batch_data( self, session_id: str, data_keys: List[str], address: str, level: StorageLevel, band_name: str = "numa-0", block_size: int = None, error: str = "raise", ): pass ```
open
2022-01-17T11:49:17Z
2022-02-23T08:01:54Z
https://github.com/mars-project/mars/issues/2636
[ "type: enhancement", "mod: storage" ]
wjsi
1
httpie/cli
api
1,565
Failed to use {{key}}={{value}} for nested JSON
Hi! I wanna write a function to [create a GitHub gist](https://docs.github.com/en/rest/gists/gists?apiVersion=2022-11-28#create-a-gist). This is what I wrote: ```fish function gists__new --description "Create a gist for the authenticated user" argparse l/login= p/pat= d/description= P/public f/file= c/content= -- $argv set login $_flag_login set pat $_flag_pat set description $_flag_description set public false set --query _flag_public && set public true set file $_flag_file set content $_flag_content set body "$(jq --null-input '{ "description": $description, "public": $public, "files": { ($file): { "content": $content } } }' \ --arg description $description \ --arg public $public \ --arg file $file \ --arg content $content)" https --auth "$login:$pat" POST api.github.com/gists \ Accept:application/vnd.github+json \ X-GitHub-Api-Version:$api_version \ --raw $body end ``` It works, but requires `jq`. According to [HTTPie docs](https://httpie.io/docs/cli/nested-json) I can get rid of it. I tried to use `{{key}}={{value}}` but failed: ``` fish function gists__new --description "Create a gist for the authenticated user" argparse l/login= p/pat= d/description= P/public f/file= c/content= -- $argv set login $_flag_login set pat $_flag_pat set description $_flag_description set public false set --query _flag_public && set public true set file $_flag_file set content $_flag_content https --auth "$login:$pat" POST api.github.com/gists \ "description=$description" \ "public=$public" \ "files[$file][content]=$content" \ Accept:application/vnd.github+json \ X-GitHub-Api-Version:$api_version \ end ``` The response I get is: ```json { "documentation_url": "https://docs.github.com/rest/gists/gists#create-a-gist", "message": "Invalid request.\n\nInvalid input: object is missing required key: files." } ``` What am I doing wrong?
closed
2024-02-27T19:53:40Z
2024-02-27T20:15:53Z
https://github.com/httpie/cli/issues/1565
[ "new" ]
EmilyGraceSeville7cf
1
autogluon/autogluon
computer-vision
3,860
[BUG] interpretable predictor interpretable_models_summary print_interpretable_rules not available
**Bug Report Checklist** <!-- Please ensure at least one of the following to help the developers troubleshoot the problem: --> - [x] I provided code that demonstrates a minimal reproducible example. <!-- Ideal, especially via source install --> - [ ] I confirmed bug exists on the latest mainline of AutoGluon via source install. <!-- Preferred --> - [x] I confirmed bug exists on the latest stable version of AutoGluon. <!-- Unnecessary if prior items are checked --> **Describe the bug** Following usage example from documentation (of version 0.5.1?) training works but no summary and no interpretable rules https://auto.gluon.ai/0.5.1/tutorials/tabular_prediction/tabular-interpretability.html **Expected behavior** as described in documentation **To Reproduce** <!-- A minimal script to reproduce the issue. Links to Colab notebooks or similar tools are encouraged. If the code is too long, feel free to put it in a public gist and link it in the issue: https://gist.github.com. In short, we are going to copy-paste your code to run it and we expect to get the same result as you. --> ``` from autogluon.tabular import TabularDataset, TabularPredictor train_data = TabularDataset('https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv') subsample_size = 500 # subsample subset of data for faster demo, try setting this to much larger values train_data = train_data.sample(n=subsample_size, random_state=0) train_data.head() predictor = TabularPredictor(label='class') predictor.fit(train_data, presets='interpretable') predictor.leaderboard() predictor.interpretable_models_summary() predictor.print_interpretable_rules() # can optionally specify a model name or complexity threshold ``` **Screenshots / Logs** --------------------------------------------------------------------------- AttributeError Traceback (most recent call last) Cell In[3], line 1 ----> 1 predictor.interpretable_models_summary() AttributeError: 'TabularPredictor' object has no attribute 'interpretable_models_summary' --------------------------------------------------------------------------- AttributeError Traceback (most recent call last) Cell In[4], line 1 ----> 1 predictor.print_interpretable_rules() AttributeError: 'TabularPredictor' object has no attribute 'print_interpretable_rules' **Installed Versions** <!-- Please run the following code snippet: --> <details> ```python INSTALLED VERSIONS ------------------ date : 2024-01-14 time : 12:06:25.974741 python : 3.10.12.final.0 OS : Linux OS-release : 6.2.0-1017-aws Version : #17~22.04.1-Ubuntu SMP Fri Nov 17 21:07:13 UTC 2023 machine : x86_64 processor : x86_64 num_cores : 128 cpu_ram_mb : 253829.41015625 cuda version : None num_gpus : 0 gpu_ram_mb : [] avail_disk_size_mb : 98683 accelerate : 0.21.0 async-timeout : 4.0.3 autogluon : 1.0.0 autogluon.common : 1.0.0 autogluon.core : 1.0.0 autogluon.features : 1.0.0 autogluon.multimodal : 1.0.0 autogluon.tabular : 1.0.0 autogluon.timeseries : 1.0.0 boto3 : 1.34.16 catboost : 1.2.2 defusedxml : 0.7.1 evaluate : 0.4.1 fastai : 2.7.13 gluonts : 0.14.3 hyperopt : 0.2.7 imodels : 1.4.1 jinja2 : 3.0.3 joblib : 1.3.2 jsonschema : 4.20.0 lightgbm : 4.1.0 lightning : 2.0.9.post0 matplotlib : 3.8.2 mlforecast : 0.10.0 networkx : 3.2.1 nlpaug : 1.1.11 nltk : 3.8.1 nptyping : 2.4.1 numpy : 1.26.3 nvidia-ml-py3 : 7.352.0 omegaconf : 2.2.3 onnxruntime-gpu : None openmim : 0.3.9 orjson : 3.9.10 pandas : 2.1.4 Pillow : 10.2.0 psutil : 5.9.7 PyMuPDF : None pytesseract : 0.3.10 pytorch-lightning : 2.0.9.post0 pytorch-metric-learning: 1.7.3 ray : 2.6.3 requests : 2.31.0 scikit-image : 0.20.0 scikit-learn : 1.3.2 scikit-learn-intelex : None scipy : 1.11.4 seqeval : 1.2.2 setuptools : 60.2.0 skl2onnx : None statsforecast : 1.4.0 statsmodels : 0.14.1 tabpfn : None tensorboard : 2.15.1 text-unidecode : 1.3 timm : 0.9.12 torch : 2.0.1 torchmetrics : 1.1.2 torchvision : 0.15.2 tqdm : 4.65.2 transformers : 4.31.0 utilsforecast : 0.0.10 vowpalwabbit : None xgboost : 2.0.3 ``` </details>
closed
2024-01-14T12:22:36Z
2024-06-24T23:13:35Z
https://github.com/autogluon/autogluon/issues/3860
[ "bug: unconfirmed", "Needs Triage" ]
Pagey
1
jina-ai/clip-as-service
pytorch
648
序列过长的问题
序列过长时设置max_seq_len None,资料显示会自动根据batch传递,是否会存在截断导致语义信息不全? 语料都是较长文本,根据真实情况设置服务基本运行不动了,若是序列截断了该如何?
open
2022-01-12T20:40:03Z
2022-03-09T09:30:51Z
https://github.com/jina-ai/clip-as-service/issues/648
[]
anoobnewhere
1
Sanster/IOPaint
pytorch
490
[Feature Request] python api
Currently, the tool supports inpainting through cli and ui but having a python api is extremely helpful since it gives a better control on the process. Any possibility of working on a python api?
closed
2024-03-18T12:27:47Z
2025-01-13T02:03:32Z
https://github.com/Sanster/IOPaint/issues/490
[ "stale" ]
LokeshBadisa
3
napari/napari
numpy
6,907
Default to adding a newline for everything before the `extra_tooltip_text` when binding an action to a button
Follow up issue from the feedback at https://github.com/napari/napari/pull/6794#discussion_r1592792932 > Nice! Now wondering if we should default to adding a newline for everything before the `extra_tooltip_text`... _Originally posted by @brisvag in https://github.com/napari/napari/pull/6794#discussion_r1595128310_ > That makes sense! From a quick check seems like the only other button that has some extra text is pan/zoom: > > ![imagen](https://github.com/napari/napari/assets/16781833/be524560-9ccb-4565-896e-0e70e2e56e8c) > > Maybe something like `Temporarily re-enable by holding Space` could be used as text in case the extra text is added always in a new line? > > ![imagen](https://github.com/napari/napari/assets/16781833/0bf88973-1fef-4560-a55d-c1b4e4a7ef7f) > > Also, should an issue be made to tackle that later or maybe is something worthy to be done here? _Originally posted by @dalthviz in https://github.com/napari/napari/pull/6794#discussion_r1595648027_ > I mean I feel like the new line would be safe as a default... > but I don't think I would change it in this PR--if at all. It's easy to add the new line, harder to remove it if someone does want a one-liner. _Originally posted by @psobolewskiPhD in https://github.com/napari/napari/pull/6794#discussion_r1595982004_
closed
2024-05-10T15:02:08Z
2024-06-06T16:17:19Z
https://github.com/napari/napari/issues/6907
[ "needs:discussion" ]
dalthviz
5
howie6879/owllook
asyncio
63
榜单爬虫失败
榜单爬虫失败,这个应该是哪里出问题了呢? ` object async_generator can't be used in 'await' expression`
closed
2019-03-29T03:24:22Z
2019-04-01T05:33:35Z
https://github.com/howie6879/owllook/issues/63
[]
imzhyp
2
biosustain/potion
sqlalchemy
180
Query to only return specific fields set
In order to reduce the amount of data being transferred from a resource, is it possible to provide a query args to return a set of fields? Sometimes, we don't need all attributes of an object but a couple of them. It would require too many custom routes to expose the different set of attributes we would need. Here a few examples to describe it: ``` /users?include_fields=['first_name', 'last_name'] /users?include_fields=['email'] /users?include_fields=['city', 'country'] ```
open
2020-04-28T03:09:08Z
2020-07-27T12:27:33Z
https://github.com/biosustain/potion/issues/180
[]
matdrapeau
1
huggingface/datasets
computer-vision
7,303
DataFilesNotFoundError for datasets LM1B
### Describe the bug Cannot load the dataset https://huggingface.co/datasets/billion-word-benchmark/lm1b ### Steps to reproduce the bug `dataset = datasets.load_dataset('lm1b', split=split)` ### Expected behavior `Traceback (most recent call last): File "/home/hml/projects/DeepLearning/Generative_model/Diffusion-BERT/word_freq.py", line 13, in <module> train_data = DiffusionLoader(tokenizer=tokenizer).my_load(task_name='lm1b', splits=['train'])[0] File "/home/hml/projects/DeepLearning/Generative_model/Diffusion-BERT/dataloader.py", line 20, in my_load return [self._load(task_name, name) for name in splits] File "/home/hml/projects/DeepLearning/Generative_model/Diffusion-BERT/dataloader.py", line 20, in <listcomp> return [self._load(task_name, name) for name in splits] File "/home/hml/projects/DeepLearning/Generative_model/Diffusion-BERT/dataloader.py", line 13, in _load dataset = datasets.load_dataset('lm1b', split=split) File "/home/hml/.conda/envs/DB/lib/python3.10/site-packages/datasets/load.py", line 2594, in load_dataset builder_instance = load_dataset_builder( File "/home/hml/.conda/envs/DB/lib/python3.10/site-packages/datasets/load.py", line 2266, in load_dataset_builder dataset_module = dataset_module_factory( File "/home/hml/.conda/envs/DB/lib/python3.10/site-packages/datasets/load.py", line 1827, in dataset_module_factory ).get_module() File "/home/hml/.conda/envs/DB/lib/python3.10/site-packages/datasets/load.py", line 1040, in get_module module_name, default_builder_kwargs = infer_module_for_data_files( File "/home/hml/.conda/envs/DB/lib/python3.10/site-packages/datasets/load.py", line 598, in infer_module_for_data_files raise DataFilesNotFoundError("No (supported) data files found" + (f" in {path}" if path else "")) datasets.exceptions.DataFilesNotFoundError: No (supported) data files found in lm1b` ### Environment info datasets: 2.20.0
closed
2024-11-29T17:27:45Z
2024-12-11T13:22:47Z
https://github.com/huggingface/datasets/issues/7303
[]
hml1996-fight
1
521xueweihan/HelloGitHub
python
2,879
【开源自荐】guyuelan - Windy开源:Windy一个便捷式devops平台、支持需求、缺陷、API管理、流水线、自动化测试等功能。
## 推荐项目 <!-- 这里是 HelloGitHub 月刊推荐项目的入口,欢迎自荐和推荐开源项目,唯一要求:请按照下面的提示介绍项目。--> <!-- 点击上方 “Preview” 立刻查看提交的内容 --> <!--仅收录 GitHub 上的开源项目,请填写 GitHub 的项目地址--> - 项目地址:https://github.com/languyue/Windy <!--请从中选择(C、C#、C++、CSS、Go、Java、JS、Kotlin、Objective-C、PHP、Python、Ruby、Rust、Swift、其它、书籍、机器学习)--> - 类别:Java devops <!--请用 20 个左右的字描述它是做什么的,类似文章标题让人一目了然 --> - 项目标题:Windy一个便捷式devops平台、支持需求、缺陷、API管理、流水线、自动化测试等功能。 <!--这是个什么项目、能用来干什么、有什么特点或解决了什么痛点,适用于什么场景、能够让初学者学到什么。长度 32-256 字符--> - 项目描述: - 项目类型: 使用Windy是一个强大的devops平台工具, - 能干什么: 支持需求迭代的完整生命周期以及研发过程看护能力,可以帮助团队或公司规范研发流程,通过自动构建与部署能力提高研发效率以及通过自动化测试提高研发质量。 - 痛点问题: - 解决研发与需求断层的问题,无法关联联动 - 通过API生成二方包解决产品API随意变更的问题 - 通过流水线简化手动构建与部署的时间成本 - 通过自动化测试,较少测试的成本 - 通过UI编写测试用例,较少编写门槛,研发也可编写服务用例,不需要依赖测试人员介入 - 适用于什么场景: 适用于产品公司/团队迭代开发使用 <!--令人眼前一亮的点是什么?类比同类型项目有什么特点!--> - 亮点: - Windy一个平台提供更完整的迭代研发工具链,支持需求迭代、流水线、测试自动化、基于UI编写测试用例测试门槛更低、API管理工具 - 相对于其他产品,仅仅支持需求与缺陷人工维护,Windy通过研发流水线自动变更状态,状态变更维护的更加实时高效 - Windy依赖的工具更少,只需要mysql即可。 - 示例代码:(可选) - 截图:(可选)gif/png/jpg 登录 ![image](https://github.com/user-attachments/assets/8ac1e05c-8120-45cc-8414-44d55aa191f4) 需求迭代管理 ![image](https://github.com/user-attachments/assets/e43321ea-49ab-4451-96d2-f525aa5ee638) 流水线管理 ![image](https://github.com/user-attachments/assets/bdc993fe-3304-4850-8421-88d1082d68e2) 用例管理 ![image](https://github.com/user-attachments/assets/2620a4f9-3c49-454c-9307-2b2a99b84d9b) 自动化任务 ![image](https://github.com/user-attachments/assets/1ad7b433-58e5-4278-bfce-e13b59563f59) - 后续更新计划: - 支持api审核机制、支持api生成文档 - 生态集成: - 消息通知: 对接三方系统消息通知机制(企业微信、钉钉、飞书等) - 三方系统对接: 对接阐道、JIRA、PingCode等api,将三方系统数据同步至Windy中。 - 代码检查、以及覆盖率校验等 - 指标体系:支持需求、缺陷、研发、测试全流程数字指标建设,完成研发体系可视化,能够查看需求从创建到实现完成的整个生命周期数据 - 战略规划:通过研发体系数据化能力,将组织战略拆分细化能全局查看战略落地情况 - AI建设: - 通过AI分析研发体系数据,提供优化研发效率手段、梳理研发流程阻塞点等 - AI自动添加测试用例
open
2025-01-09T03:02:39Z
2025-01-09T03:02:39Z
https://github.com/521xueweihan/HelloGitHub/issues/2879
[]
languyue
0
mars-project/mars
scikit-learn
2,960
Need a better way to switch backend
Currently, it is not easy to switch to the ray execution backend. We don't want to introduce lots of the new APIs, such as `new_cluster`, `new_ray_session` in the https://github.com/mars-project/mars/blob/master/mars/deploy/oscar/ray.py for the mars on ray. Instead, we want to reuse the mars APIs. For Mars, ```python new_cluster(worker_num=2, worker_cpu=2) # The default backend is mars ``` For Ray, ```python new_cluster(backend="ray", worker_num=2, worker_cpu=2) ```
closed
2022-04-25T07:09:26Z
2022-04-26T09:37:01Z
https://github.com/mars-project/mars/issues/2960
[]
fyrestone
0
FlareSolverr/FlareSolverr
api
1,055
request.post command with Content-Type set to application/x-www-form-urlencoded expect json from FlareSolverr server
### Have you checked our README? - [X] I have checked the README ### Have you followed our Troubleshooting? - [X] I have followed your Troubleshooting ### Is there already an issue for your problem? - [X] I have checked older issues, open and closed ### Have you checked the discussions? - [X] I have read the Discussions ### Environment ```markdown - FlareSolverr version: I freshly `git pull` - Last working FlareSolverr version: Only used the `git` version - Operating system: GNU/Linux - Are you using Docker: [yes/no] No - FlareSolverr User-Agent (see log traces or / endpoint): User-Agent: Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/120.0.0.0 Safari/537.36 - Are you using a VPN: [yes/no] No - Are you using a Proxy: [yes/no] No - Are you using Captcha Solver: [yes/no] No - If using captcha solver, which one: - URL to test this issue: https://www3.yggtorrent.qa/user/login ``` ### Description Hello, I'm trying to perform a `POST` request using the `request.post` command. The parameters of my request is the following: ``` {'cmd': 'request.post', 'url': 'https://www3.yggtorrent.qa/user/login', 'postData': 'id=someuser&pass=somepassword&ci_csrf_token=', 'session': '1234', 'maxTimeout': 60000, 'returnOnlyCookies': False} ``` Before this request I created a session (so I'm using the same `session_id`) and get the challenge. But while sending the `request.post` command above, I got the following error from FlareSolverr logs: ``` 2024-02-03 21:21:00 ERROR 'NoneType' object is not iterable 2024-02-03 21:21:00 INFO 127.0.0.1 POST http://127.0.0.1:8191/v1 500 Internal Server Error ``` So looking at the souce code I discovered the following in `FlareSolverr.py` (from line 48): ``` @app.post('/v1') def controller_v1(): """ Controller v1 """ req = V1RequestBase(request.json) res = flaresolverr_service.controller_v1_endpoint(req) if res.__error_500__: response.status = 500 return utils.object_to_dict(res) ``` The issue is the following line: ``` req = V1RequestBase(request.json) ``` So using `request.post` command with `application/x-www-form-urlencoded` does not seem to produce an expected `JSON`. As a result, `request.json` is empty and thus explain the error logs. ### Logged Error Messages ```text 2024-02-03 21:21:00 ERROR 'NoneType' object is not iterable 2024-02-03 21:21:00 INFO 127.0.0.1 POST http://127.0.0.1:8191/v1 500 Internal Server Error ``` ### Screenshots _No response_
closed
2024-02-03T17:33:15Z
2024-02-05T01:33:48Z
https://github.com/FlareSolverr/FlareSolverr/issues/1055
[ "duplicate" ]
janemba
1
twopirllc/pandas-ta
pandas
299
Roadmap for features, indicators
@twopirllc i'm not sure if this is the place to discuss this, perhaps, hence the ticket. Feel free to correct me if that's not the case. Do you have a roadmap for the features you would like to see implemented, technical indicators, strategies, examples, notebooks, general roadmap targets for Pandas-TA? On the medium to long-term? Perhaps this is of interest to other users and developers here.
closed
2021-05-28T17:43:17Z
2022-02-09T05:15:14Z
https://github.com/twopirllc/pandas-ta/issues/299
[ "help wanted", "info" ]
luisbarrancos
5
xorbitsai/xorbits
numpy
157
BLD: Release Xorbits docker images for multi python versions that we support
Note that the issue tracker is NOT the place for general support. For discussions about development, questions about usage, or any general questions, contact us on https://discuss.xorbits.io/. Docker image supports multi python versions.
closed
2023-01-10T03:22:25Z
2023-02-02T04:46:14Z
https://github.com/xorbitsai/xorbits/issues/157
[ "build" ]
ChengjieLi28
0
twelvedata/twelvedata-python
matplotlib
50
[Feature Request] mic_code instead of exchange as a parameter when fetching data
It would be nice to use the `mic_code` parameter to differentiate between markets when fetching time_series, live & eod prices.
closed
2022-06-22T11:23:23Z
2022-06-22T14:26:03Z
https://github.com/twelvedata/twelvedata-python/issues/50
[]
SimonDamberg
5
Yorko/mlcourse.ai
scikit-learn
724
Topic 6 russian lecture notebook is in english
https://github.com/Yorko/mlcourse.ai/blob/main/jupyter_russian/topic06_features/topic6_feature_engineering_feature_selection_english.ipynb
closed
2022-10-06T13:26:04Z
2022-10-07T09:08:44Z
https://github.com/Yorko/mlcourse.ai/issues/724
[]
mirmozavr
0
ranaroussi/yfinance
pandas
1,299
Weekly data - last week missing
Hi all, The code below, gives me data until the very last day of last week (13th of Jan): ``` yfObj = yf.Ticker(stock) data = yfObj.history(period="3y") ``` But, if I want to have weekly data, using the code here below: ` data = yfObj.history(period="3y",interval="1wk") ` It gives me data until 9th of January. So for some reason the last weekly data isn't available. If I look on yahoo manually though (historical data, weekly), I do see the data of 13th of January. Any idea if there's a setting or parameter that I could include?
closed
2023-01-14T10:35:16Z
2023-01-14T12:33:26Z
https://github.com/ranaroussi/yfinance/issues/1299
[]
Jokke-moose
2
SciTools/cartopy
matplotlib
1,828
ModuleNotFoundError: No module named 'cartopy'
### Description I failed to install the cartopy when I tried conda install cartopy I used python in conda3 which python /home/tools/anaconda3/install/bin/python python -v import 'site' # <_frozen_importlib_external.SourceFileLoader object at 0x2b7ae27a82b0> Python 3.8.8 (default, Apr 13 2021, 19:58:26) [GCC 7.3.0] :: Anaconda, Inc. on linux The error information are shown as below. Any help will be appreciated. Thanks Rong Collecting package metadata (current_repodata.json): done Solving environment: \ The environment is inconsistent, please check the package plan carefully The following packages are causing the inconsistency: - defaults/linux-64::bokeh==2.3.2=py38h06a4308_0 - defaults/linux-64::cython==0.29.23=py38h2531618_0 - defaults/linux-64::nbconvert==6.0.7=py38_0 - defaults/noarch::nbformat==5.1.3=pyhd3eb1b0_0 - defaults/linux-64::anaconda==2021.05=py38_0 - defaults/noarch::jupyterlab==3.0.14=pyhd3eb1b0_1 - defaults/linux-64::clyent==1.2.2=py38_1 - defaults/linux-64::anaconda-navigator==2.0.3=py38_0 - defaults/linux-64::jupyter_server==1.4.1=py38h06a4308_0 - defaults/linux-64::distributed==2021.4.1=py38h06a4308_0 - defaults/linux-64::ipykernel==5.3.4=py38h5ca1d4c_0 - defaults/noarch::flake8==3.9.0=pyhd3eb1b0_0 - defaults/linux-64::gevent==21.1.2=py38h27cfd23_1 - defaults/noarch::pyls-black==0.4.6=hd3eb1b0_0 - defaults/noarch::python-language-server==0.36.2=pyhd3eb1b0_0 - defaults/linux-64::basemap==1.2.0=py38h856778e_4 - defaults/noarch::jupyterlab_pygments==0.1.2=py_0 - defaults/linux-64::astroid==2.5=py38h06a4308_1 - defaults/noarch::anaconda-project==0.9.1=pyhd3eb1b0_1 - defaults/linux-64::zope.event==4.5.0=py38_0 - defaults/noarch::conda-verify==3.4.2=py_1 - defaults/noarch::seaborn==0.11.1=pyhd3eb1b0_0 - defaults/linux-64::astropy==4.2.1=py38h27cfd23_1 - defaults/noarch::networkx==2.5=py_0 - defaults/noarch::pyls-spyder==0.3.2=pyhd3eb1b0_0 - defaults/noarch::nbclient==0.5.3=pyhd3eb1b0_0 - defaults/linux-64::scikit-learn==0.24.1=py38ha9443f7_0 - defaults/noarch::conda-repo-cli==1.0.4=pyhd3eb1b0_0 - defaults/noarch::conda-token==0.3.0=pyhd3eb1b0_0 - defaults/linux-64::spyder-kernels==1.10.2=py38h06a4308_0 - defaults/linux-64::ipython==7.22.0=py38hb070fc8_0 - defaults/noarch::isort==5.8.0=pyhd3eb1b0_0 - defaults/linux-64::matplotlib==3.3.4=py38h06a4308_0 - defaults/noarch::nbclassic==0.2.6=pyhd3eb1b0_0 - defaults/noarch::jupyter-packaging==0.7.12=pyhd3eb1b0_0 - defaults/noarch::flask==1.1.2=pyhd3eb1b0_0 - defaults/noarch::jupyter_console==6.4.0=pyhd3eb1b0_0 - defaults/noarch::jupyterlab_server==2.4.0=pyhd3eb1b0_0 - defaults/noarch::joblib==1.0.1=pyhd3eb1b0_0 - defaults/noarch::backports.functools_lru_cache==1.6.4=pyhd3eb1b0_0 - defaults/linux-64::_ipyw_jlab_nb_ext_conf==0.1.0=py38_0 - defaults/linux-64::anaconda-client==1.7.2=py38_0 - defaults/noarch::pygments==2.8.1=pyhd3eb1b0_0 - defaults/linux-64::jupyter==1.0.0=py38_7 - defaults/linux-64::notebook==6.3.0=py38h06a4308_0 - defaults/linux-64::pylint==2.7.4=py38h06a4308_1 - defaults/linux-64::numba==0.53.1=py38ha9443f7_0 - defaults/noarch::nltk==3.6.1=pyhd3eb1b0_0 - defaults/linux-64::conda-build==3.21.4=py38h06a4308_0 - defaults/linux-64::spyder==4.2.5=py38h06a4308_0 - defaults/noarch::qtconsole==5.0.3=pyhd3eb1b0_0 - defaults/noarch::dask==2021.4.0=pyhd3eb1b0_0 - defaults/noarch::ipywidgets==7.6.3=pyhd3eb1b0_1 - defaults/noarch::sphinx==4.0.1=pyhd3eb1b0_0 - defaults/linux-64::zope.interface==5.3.0=py38h27cfd23_0 - defaults/noarch::jsonschema==3.2.0=py_2 - defaults/linux-64::widgetsnbextension==3.5.1=py38_0 - defaults/linux-64::scikit-image==0.18.1=py38ha9443f7_0 - defaults/noarch::jinja2==2.11.3=pyhd3eb1b0_0 - defaults/noarch::bleach==3.3.0=pyhd3eb1b0_0 - defaults/noarch::numpydoc==1.1.0=pyhd3eb1b0_1 - defaults/linux-64::conda==4.10.3=py38h06a4308_0 failed with initial frozen solve. Retrying with flexible solve. Solving environment: failed with repodata from current_repodata.json, will retry with next repodata source. Collecting package metadata (repodata.json): done Solving environment: / The environment is inconsistent, please check the package plan carefully The following packages are causing the inconsistency: - defaults/linux-64::bokeh==2.3.2=py38h06a4308_0 - defaults/linux-64::cython==0.29.23=py38h2531618_0 - defaults/linux-64::nbconvert==6.0.7=py38_0 - defaults/noarch::nbformat==5.1.3=pyhd3eb1b0_0 - defaults/linux-64::anaconda==2021.05=py38_0 - defaults/noarch::jupyterlab==3.0.14=pyhd3eb1b0_1 - defaults/linux-64::clyent==1.2.2=py38_1 - defaults/linux-64::anaconda-navigator==2.0.3=py38_0 - defaults/linux-64::jupyter_server==1.4.1=py38h06a4308_0 - defaults/linux-64::distributed==2021.4.1=py38h06a4308_0 - defaults/linux-64::ipykernel==5.3.4=py38h5ca1d4c_0 - defaults/noarch::flake8==3.9.0=pyhd3eb1b0_0 - defaults/linux-64::gevent==21.1.2=py38h27cfd23_1 - defaults/noarch::pyls-black==0.4.6=hd3eb1b0_0 - defaults/noarch::python-language-server==0.36.2=pyhd3eb1b0_0 - defaults/linux-64::basemap==1.2.0=py38h856778e_4 - defaults/noarch::jupyterlab_pygments==0.1.2=py_0 - defaults/linux-64::astroid==2.5=py38h06a4308_1 - defaults/noarch::anaconda-project==0.9.1=pyhd3eb1b0_1 - defaults/linux-64::zope.event==4.5.0=py38_0 - defaults/noarch::conda-verify==3.4.2=py_1 - defaults/noarch::seaborn==0.11.1=pyhd3eb1b0_0 - defaults/linux-64::astropy==4.2.1=py38h27cfd23_1 - defaults/noarch::networkx==2.5=py_0 - defaults/noarch::pyls-spyder==0.3.2=pyhd3eb1b0_0 - defaults/noarch::nbclient==0.5.3=pyhd3eb1b0_0 - defaults/linux-64::scikit-learn==0.24.1=py38ha9443f7_0 - defaults/noarch::conda-repo-cli==1.0.4=pyhd3eb1b0_0 - defaults/noarch::conda-token==0.3.0=pyhd3eb1b0_0 - defaults/linux-64::spyder-kernels==1.10.2=py38h06a4308_0 - defaults/linux-64::ipython==7.22.0=py38hb070fc8_0 - defaults/noarch::isort==5.8.0=pyhd3eb1b0_0 - defaults/linux-64::matplotlib==3.3.4=py38h06a4308_0 - defaults/noarch::nbclassic==0.2.6=pyhd3eb1b0_0 - defaults/noarch::jupyter-packaging==0.7.12=pyhd3eb1b0_0 - defaults/noarch::flask==1.1.2=pyhd3eb1b0_0 - defaults/noarch::jupyter_console==6.4.0=pyhd3eb1b0_0 - defaults/noarch::jupyterlab_server==2.4.0=pyhd3eb1b0_0 - defaults/noarch::joblib==1.0.1=pyhd3eb1b0_0 - defaults/noarch::backports.functools_lru_cache==1.6.4=pyhd3eb1b0_0 - defaults/linux-64::_ipyw_jlab_nb_ext_conf==0.1.0=py38_0 - defaults/linux-64::anaconda-client==1.7.2=py38_0 - defaults/noarch::pygments==2.8.1=pyhd3eb1b0_0 - defaults/linux-64::jupyter==1.0.0=py38_7 - defaults/linux-64::notebook==6.3.0=py38h06a4308_0 - defaults/linux-64::pylint==2.7.4=py38h06a4308_1 - defaults/linux-64::numba==0.53.1=py38ha9443f7_0 - defaults/noarch::nltk==3.6.1=pyhd3eb1b0_0 - defaults/linux-64::conda-build==3.21.4=py38h06a4308_0 - defaults/linux-64::spyder==4.2.5=py38h06a4308_0 - defaults/noarch::qtconsole==5.0.3=pyhd3eb1b0_0 - defaults/noarch::dask==2021.4.0=pyhd3eb1b0_0 - defaults/noarch::ipywidgets==7.6.3=pyhd3eb1b0_1 - defaults/noarch::sphinx==4.0.1=pyhd3eb1b0_0 - defaults/linux-64::zope.interface==5.3.0=py38h27cfd23_0 - defaults/noarch::jsonschema==3.2.0=py_2 - defaults/linux-64::widgetsnbextension==3.5.1=py38_0 - defaults/linux-64::scikit-image==0.18.1=py38ha9443f7_0 - defaults/noarch::jinja2==2.11.3=pyhd3eb1b0_0 - defaults/noarch::bleach==3.3.0=pyhd3eb1b0_0 - defaults/noarch::numpydoc==1.1.0=pyhd3eb1b0_1 - defaults/linux-64::conda==4.10.3=py38h06a4308_0 failed with initial frozen solve. Retrying with flexible solve. Solving environment: \ Found conflicts! Looking for incompatible packages. This can take several minutes. Press CTRL-C to abort. pip list Package Version Location ---------------------------------- ----------------- --------------------------------------------------------------- alabaster 0.7.12 anaconda-client 1.7.2 anaconda-navigator 2.0.3 anaconda-project 0.9.1 anyio 2.2.0 appdirs 1.4.4 argh 0.26.2 argon2-cffi 20.1.0 asn1crypto 1.4.0 astroid 2.5 astropy 4.2.1 async-generator 1.10 atomicwrites 1.4.0 attrs 20.3.0 autopep8 1.5.6 Babel 2.9.0 backcall 0.2.0 backports.functools-lru-cache 1.6.4 backports.shutil-get-terminal-size 1.0.0 backports.tempfile 1.0 backports.weakref 1.0.post1 basemap 1.2.0 beautifulsoup4 4.9.3 bitarray 2.1.0 bkcharts 0.2 black 19.10b0 bleach 3.3.0 bokeh 2.3.2 boto 2.49.0 Bottleneck 1.3.2 brotlipy 0.7.0 certifi 2020.12.5 cffi 1.14.5 cftime 1.5.0 chardet 4.0.0 click 7.1.2 cloudpickle 1.6.0 clyent 1.2.2 colorama 0.4.4 conda 4.10.3 conda-build 3.21.4 conda-content-trust 0+unknown conda-package-handling 1.7.3 conda-repo-cli 1.0.4 conda-token 0.3.0 conda-verify 3.4.2 contextlib2 0.6.0.post1 cryptography 3.4.7 cycler 0.10.0 Cython 0.29.23 cytoolz 0.11.0 dask 2021.4.0 decorator 5.0.6 defusedxml 0.7.1 diff-match-patch 20200713 distributed 2021.4.1 docutils 0.17.1 entrypoints 0.3 et-xmlfile 1.0.1 fastcache 1.1.0 filelock 3.0.12 flake8 3.9.0 Flask 1.1.2 fsspec 0.9.0 future 0.18.2 fv3jeditools 0.0.1 gevent 21.1.2 glmtools 0.1.dev0 glob2 0.7 gmpy2 2.0.8 greenlet 1.0.0 h5py 2.9.0 HeapDict 1.0.1 html5lib 1.1 idna 2.10 imageio 2.9.0 imagesize 1.2.0 importlib-metadata 3.10.0 iniconfig 1.1.1 intervaltree 3.1.0 ipykernel 5.3.4 ipython 7.22.0 ipython-genutils 0.2.0 ipywidgets 7.6.3 isort 5.8.0 itsdangerous 1.1.0 jdcal 1.4.1 jedi 0.17.2 jeepney 0.6.0 Jinja2 2.11.3 joblib 1.0.1 json5 0.9.5 jsonschema 3.2.0 jupyter 1.0.0 jupyter-client 6.1.12 jupyter-console 6.4.0 jupyter-core 4.7.1 jupyter-packaging 0.7.12 jupyter-server 1.4.1 jupyterlab 3.0.14 jupyterlab-pygments 0.1.2 jupyterlab-server 2.4.0 jupyterlab-widgets 1.0.0 keyring 22.3.0 kiwisolver 1.3.1 lazy-object-proxy 1.6.0 libarchive-c 2.9 llvmlite 0.36.0 lmatools 0.6a0 locket 0.2.1 lxml 4.6.3 MarkupSafe 1.1.1 matplotlib 3.2.0 mccabe 0.6.1 mistune 0.8.4 mkl-fft 1.3.0 mkl-random 1.2.1 mkl-service 2.3.0 mock 4.0.3 more-itertools 8.7.0 mpi4py 3.0.0 mpmath 1.2.1 msgpack 1.0.2 multipledispatch 0.6.0 mypy-extensions 0.4.3 navigator-updater 0.2.1 nbclassic 0.2.6 nbclient 0.5.3 nbconvert 6.0.7 nbformat 5.1.3 nest-asyncio 1.5.1 netCDF4 1.5.7 networkx 2.5 nltk 3.6.1 nose 1.3.7 notebook 6.3.0 numba 0.53.1 numexpr 2.7.3 numpy 1.20.1 numpydoc 1.1.0 olefile 0.46 openpyxl 3.0.7 packaging 20.9 pandas 1.2.4 pandocfilters 1.4.3 parso 0.7.0 partd 1.2.0 path 15.1.2 pathlib2 2.3.5 pathspec 0.7.0 patsy 0.5.1 pep8 1.7.1 pexpect 4.8.0 pickleshare 0.7.5 Pillow 8.2.0 pip 21.2.4 pkginfo 1.7.0 pluggy 0.13.1 ply 3.11 prometheus-client 0.10.1 prompt-toolkit 3.0.17 psutil 5.8.0 ptyprocess 0.7.0 py 1.10.0 pycodestyle 2.6.0 pycosat 0.6.3 pycparser 2.20 pycurl 7.43.0.6 pydocstyle 6.0.0 pyerfa 1.7.3 pyflakes 2.2.0 Pygments 2.8.1 pylint 2.7.4 pyls-black 0.4.6 pyls-spyder 0.3.2 pyodbc 4.0.0-unsupported pyOpenSSL 20.0.1 pyparsing 2.4.7 pyproj 1.9.6 pyrsistent 0.17.3 pyshp 2.1.3 PySocks 1.7.1 pytest 6.2.3 python-dateutil 2.8.1 python-jsonrpc-server 0.4.0 python-language-server 0.36.2 pytz 2021.1 PyWavelets 1.1.1 pyxdg 0.27 PyYAML 5.4.1 pyzmq 20.0.0 QDarkStyle 2.8.1 QtAwesome 1.0.2 qtconsole 5.0.3 QtPy 1.9.0 regex 2021.4.4 requests 2.25.1 rope 0.18.0 Rtree 0.9.7 ruamel.yaml 0.17.10 ruamel.yaml.clib 0.2.6 ruamel-yaml-conda 0.15.100 scikit-image 0.18.1 scikit-learn 0.24.1 scipy 1.6.2 seaborn 0.11.1 SecretStorage 3.3.1 Send2Trash 1.5.0 setuptools 57.4.0 simplegeneric 0.8.1 singledispatch 0.0.0 sip 4.19.13 six 1.15.0 sniffio 1.2.0 snowballstemmer 2.1.0 sortedcollections 2.1.0 sortedcontainers 2.3.0 soupsieve 2.2.1 Sphinx 4.0.1 sphinxcontrib-applehelp 1.0.2 sphinxcontrib-devhelp 1.0.2 sphinxcontrib-htmlhelp 1.0.3 sphinxcontrib-jsmath 1.0.1 sphinxcontrib-qthelp 1.0.3 sphinxcontrib-serializinghtml 1.1.4 sphinxcontrib-websupport 1.2.4 spyder 4.2.5 spyder-kernels 1.10.2 SQLAlchemy 1.4.15 statsmodels 0.12.2 sympy 1.8 tables 3.6.1 tblib 1.7.0 terminado 0.9.4 testpath 0.4.4 textdistance 4.2.1 threadpoolctl 2.1.0 three-merge 0.1.1 tifffile 2020.10.1 toml 0.10.2 toolz 0.11.1 tornado 6.1 tqdm 4.59.0 traitlets 5.0.5 typed-ast 1.4.2 typing-extensions 3.7.4.3 ujson 4.0.2 unicodecsv 0.14.1 urllib3 1.26.4 watchdog 1.0.2 wcwidth 0.2.5 webencodings 0.5.1 Werkzeug 1.0.1 wheel 0.37.0 widgetsnbextension 3.5.1 wrapt 1.12.1 wurlitzer 2.1.0 xlrd 2.0.1 XlsxWriter 1.3.8 xlwt 1.3.0 xmltodict 0.12.0 yapf 0.31.0 zict 2.0.0 zipp 3.4.1 zope.event 4.5.0 zope.interface 5.3.0 conda list # packages in environment at xxxxxxxxxx: # # Name Version Build Channel _ipyw_jlab_nb_ext_conf 0.1.0 py38_0 _libgcc_mutex 0.1 main alabaster 0.7.12 pyhd3eb1b0_0 anaconda 2021.05 py38_0 anaconda-client 1.7.2 py38_0 anaconda-navigator 2.0.3 py38_0 anaconda-project 0.9.1 pyhd3eb1b0_1 anyio 2.2.0 py38h06a4308_1 appdirs 1.4.4 py_0 argh 0.26.2 py38_0 argon2-cffi 20.1.0 py38h27cfd23_1 asn1crypto 1.4.0 py_0 astroid 2.5 py38h06a4308_1 astropy 4.2.1 py38h27cfd23_1 async_generator 1.10 pyhd3eb1b0_0 atomicwrites 1.4.0 py_0 attrs 20.3.0 pyhd3eb1b0_0 autopep8 1.5.6 pyhd3eb1b0_0 babel 2.9.0 pyhd3eb1b0_0 backcall 0.2.0 pyhd3eb1b0_0 backports 1.0 pyhd3eb1b0_2 backports.functools_lru_cache 1.6.4 pyhd3eb1b0_0 backports.shutil_get_terminal_size 1.0.0 pyhd3eb1b0_3 backports.tempfile 1.0 pyhd3eb1b0_1 backports.weakref 1.0.post1 py_1 basemap 1.2.0 py38h856778e_4 beautifulsoup4 4.9.3 pyha847dfd_0 bitarray 2.1.0 py38h27cfd23_1 bkcharts 0.2 py38_0 black 19.10b0 py_0 blas 1.0 mkl bleach 3.3.0 pyhd3eb1b0_0 blosc 1.21.0 h8c45485_0 bokeh 2.3.2 py38h06a4308_0 boto 2.49.0 py38_0 bottleneck 1.3.2 py38heb32a55_1 brotlipy 0.7.0 py38h27cfd23_1003 bzip2 1.0.8 h7b6447c_0 c-ares 1.17.1 h27cfd23_0 ca-certificates 2021.4.13 h06a4308_1 cairo 1.16.0 hf32fb01_1 certifi 2020.12.5 py38h06a4308_0 cffi 1.14.5 py38h261ae71_0 cftime 1.5.0 pypi_0 pypi chardet 4.0.0 py38h06a4308_1003 click 7.1.2 pyhd3eb1b0_0 cloudpickle 1.6.0 py_0 clyent 1.2.2 py38_1 colorama 0.4.4 pyhd3eb1b0_0 conda 4.10.3 py38h06a4308_0 conda-build 3.21.4 py38h06a4308_0 conda-content-trust 0.1.1 pyhd3eb1b0_0 conda-env 2.6.0 1 conda-package-handling 1.7.3 py38h27cfd23_1 conda-repo-cli 1.0.4 pyhd3eb1b0_0 conda-token 0.3.0 pyhd3eb1b0_0 conda-verify 3.4.2 py_1 contextlib2 0.6.0.post1 py_0 cryptography 3.4.7 py38hd23ed53_0 curl 7.71.1 hbc83047_1 cycler 0.10.0 py38_0 cython 0.29.23 py38h2531618_0 cytoolz 0.11.0 py38h7b6447c_0 dask 2021.4.0 pyhd3eb1b0_0 dask-core 2021.4.0 pyhd3eb1b0_0 dbus 1.13.18 hb2f20db_0 decorator 5.0.6 pyhd3eb1b0_0 defusedxml 0.7.1 pyhd3eb1b0_0 diff-match-patch 20200713 py_0 distributed 2021.4.1 py38h06a4308_0 docutils 0.17.1 py38h06a4308_1 entrypoints 0.3 py38_0 et_xmlfile 1.0.1 py_1001 expat 2.3.0 h2531618_2 fastcache 1.1.0 py38h7b6447c_0 filelock 3.0.12 pyhd3eb1b0_1 flake8 3.9.0 pyhd3eb1b0_0 flask 1.1.2 pyhd3eb1b0_0 fontconfig 2.13.1 h6c09931_0 freetype 2.10.4 h5ab3b9f_0 fribidi 1.0.10 h7b6447c_0 fsspec 0.9.0 pyhd3eb1b0_0 future 0.18.2 py38_1 geos 3.8.0 he6710b0_0 get_terminal_size 1.0.0 haa9412d_0 gevent 21.1.2 py38h27cfd23_1 glib 2.68.1 h36276a3_0 glob2 0.7 pyhd3eb1b0_0 gmp 6.2.1 h2531618_2 gmpy2 2.0.8 py38hd5f6e3b_3 graphite2 1.3.14 h23475e2_0 greenlet 1.0.0 py38h2531618_2 gst-plugins-base 1.14.0 h8213a91_2 gstreamer 1.14.0 h28cd5cc_2 h5py 2.10.0 py38h7918eee_0 harfbuzz 2.8.0 h6f93f22_0 hdf5 1.10.4 hb1b8bf9_0 heapdict 1.0.1 py_0 html5lib 1.1 py_0 icu 58.2 he6710b0_3 idna 2.10 pyhd3eb1b0_0 imageio 2.9.0 pyhd3eb1b0_0 imagesize 1.2.0 pyhd3eb1b0_0 importlib-metadata 3.10.0 py38h06a4308_0 importlib_metadata 3.10.0 hd3eb1b0_0 iniconfig 1.1.1 pyhd3eb1b0_0 intel-openmp 2021.2.0 h06a4308_610 intervaltree 3.1.0 py_0 ipykernel 5.3.4 py38h5ca1d4c_0 ipython 7.22.0 py38hb070fc8_0 ipython_genutils 0.2.0 pyhd3eb1b0_1 ipywidgets 7.6.3 pyhd3eb1b0_1 isort 5.8.0 pyhd3eb1b0_0 itsdangerous 1.1.0 pyhd3eb1b0_0 jbig 2.1 hdba287a_0 jdcal 1.4.1 py_0 jedi 0.17.2 py38h06a4308_1 jeepney 0.6.0 pyhd3eb1b0_0 jinja2 2.11.3 pyhd3eb1b0_0 joblib 1.0.1 pyhd3eb1b0_0 jpeg 9b h024ee3a_2 json5 0.9.5 py_0 jsonschema 3.2.0 py_2 jupyter 1.0.0 py38_7 jupyter-packaging 0.7.12 pyhd3eb1b0_0 jupyter_client 6.1.12 pyhd3eb1b0_0 jupyter_console 6.4.0 pyhd3eb1b0_0 jupyter_core 4.7.1 py38h06a4308_0 jupyter_server 1.4.1 py38h06a4308_0 jupyterlab 3.0.14 pyhd3eb1b0_1 jupyterlab_pygments 0.1.2 py_0 jupyterlab_server 2.4.0 pyhd3eb1b0_0 jupyterlab_widgets 1.0.0 pyhd3eb1b0_1 keyring 22.3.0 py38h06a4308_0 kiwisolver 1.3.1 py38h2531618_0 krb5 1.18.2 h173b8e3_0 lazy-object-proxy 1.6.0 py38h27cfd23_0 lcms2 2.12 h3be6417_0 ld_impl_linux-64 2.33.1 h53a641e_7 libarchive 3.4.2 h62408e4_0 libcurl 7.71.1 h20c2e04_1 libedit 3.1.20210216 h27cfd23_1 libev 4.33 h7b6447c_0 libffi 3.3 he6710b0_2 libgcc-ng 9.1.0 hdf63c60_0 libgfortran-ng 7.3.0 hdf63c60_0 liblief 0.10.1 he6710b0_0 libllvm10 10.0.1 hbcb73fb_5 libpng 1.6.37 hbc83047_0 libsodium 1.0.18 h7b6447c_0 libspatialindex 1.9.3 h2531618_0 libssh2 1.9.0 h1ba5d50_1 libstdcxx-ng 9.1.0 hdf63c60_0 libtiff 4.2.0 h85742a9_0 libtool 2.4.6 h7b6447c_1005 libuuid 1.0.3 h1bed415_2 libuv 1.40.0 h7b6447c_0 libwebp-base 1.2.0 h27cfd23_0 libxcb 1.14 h7b6447c_0 libxml2 2.9.10 hb55368b_3 libxslt 1.1.34 hc22bd24_0 llvmlite 0.36.0 py38h612dafd_4 locket 0.2.1 py38h06a4308_1 lxml 4.6.3 py38h9120a33_0 lz4-c 1.9.3 h2531618_0 lzo 2.10 h7b6447c_2 markupsafe 1.1.1 py38h7b6447c_0 matplotlib 3.2.0 pypi_0 pypi mccabe 0.6.1 py38_1 mistune 0.8.4 py38h7b6447c_1000 mkl 2021.2.0 h06a4308_296 mkl-service 2.3.0 py38h27cfd23_1 mkl_fft 1.3.0 py38h42c9631_2 mkl_random 1.2.1 py38ha9443f7_2 mock 4.0.3 pyhd3eb1b0_0 more-itertools 8.7.0 pyhd3eb1b0_0 mpc 1.1.0 h10f8cd9_1 mpfr 4.0.2 hb69a4c5_1 mpmath 1.2.1 py38h06a4308_0 msgpack-python 1.0.2 py38hff7bd54_1 multipledispatch 0.6.0 py38_0 mypy_extensions 0.4.3 py38_0 navigator-updater 0.2.1 py38_0 nbclassic 0.2.6 pyhd3eb1b0_0 nbclient 0.5.3 pyhd3eb1b0_0 nbconvert 6.0.7 py38_0 nbformat 5.1.3 pyhd3eb1b0_0 ncurses 6.2 he6710b0_1 nest-asyncio 1.5.1 pyhd3eb1b0_0 netcdf4 1.5.7 pypi_0 pypi networkx 2.5 py_0 nltk 3.6.1 pyhd3eb1b0_0 nose 1.3.7 pyhd3eb1b0_1006 notebook 6.3.0 py38h06a4308_0 numba 0.53.1 py38ha9443f7_0 numexpr 2.7.3 py38h22e1b3c_1 numpy 1.20.1 py38h93e21f0_0 numpy-base 1.20.1 py38h7d8b39e_0 numpydoc 1.1.0 pyhd3eb1b0_1 olefile 0.46 py_0 openpyxl 3.0.7 pyhd3eb1b0_0 openssl 1.1.1k h27cfd23_0 packaging 20.9 pyhd3eb1b0_0 pandas 1.2.4 py38h2531618_0 pandoc 2.12 h06a4308_0 pandocfilters 1.4.3 py38h06a4308_1 pango 1.45.3 hd140c19_0 parso 0.7.0 py_0 partd 1.2.0 pyhd3eb1b0_0 patchelf 0.12 h2531618_1 path 15.1.2 py38h06a4308_0 path.py 12.5.0 0 pathlib2 2.3.5 py38h06a4308_2 pathspec 0.7.0 py_0 patsy 0.5.1 py38_0 pcre 8.44 he6710b0_0 pep8 1.7.1 py38_0 pexpect 4.8.0 pyhd3eb1b0_3 pickleshare 0.7.5 pyhd3eb1b0_1003 pillow 8.2.0 py38he98fc37_0 pip 21.2.4 pypi_0 pypi pixman 0.40.0 h7b6447c_0 pkginfo 1.7.0 py38h06a4308_0 pluggy 0.13.1 py38h06a4308_0 ply 3.11 py38_0 proj4 5.2.0 he6710b0_1 prometheus_client 0.10.1 pyhd3eb1b0_0 prompt-toolkit 3.0.17 pyh06a4308_0 prompt_toolkit 3.0.17 hd3eb1b0_0 psutil 5.8.0 py38h27cfd23_1 ptyprocess 0.7.0 pyhd3eb1b0_2 py 1.10.0 pyhd3eb1b0_0 py-lief 0.10.1 py38h403a769_0 pycodestyle 2.6.0 pyhd3eb1b0_0 pycosat 0.6.3 py38h7b6447c_1 pycparser 2.20 py_2 pycurl 7.43.0.6 py38h1ba5d50_0 pydocstyle 6.0.0 pyhd3eb1b0_0 pyerfa 1.7.3 py38h27cfd23_0 pyflakes 2.2.0 pyhd3eb1b0_0 pygments 2.8.1 pyhd3eb1b0_0 pylint 2.7.4 py38h06a4308_1 pyls-black 0.4.6 hd3eb1b0_0 pyls-spyder 0.3.2 pyhd3eb1b0_0 pyodbc 4.0.30 py38he6710b0_0 pyopenssl 20.0.1 pyhd3eb1b0_1 pyparsing 2.4.7 pyhd3eb1b0_0 pyproj 1.9.6 py38h14380d9_0 pyqt 5.9.2 py38h05f1152_4 pyrsistent 0.17.3 py38h7b6447c_0 pyshp 2.1.3 pyhd3eb1b0_0 pysocks 1.7.1 py38h06a4308_0 pytables 3.6.1 py38h9fd0a39_0 pytest 6.2.3 py38h06a4308_2 python 3.8.8 hdb3f193_5 python-dateutil 2.8.1 pyhd3eb1b0_0 python-jsonrpc-server 0.4.0 py_0 python-language-server 0.36.2 pyhd3eb1b0_0 python-libarchive-c 2.9 pyhd3eb1b0_1 pytz 2021.1 pyhd3eb1b0_0 pywavelets 1.1.1 py38h7b6447c_2 pyxdg 0.27 pyhd3eb1b0_0 pyyaml 5.4.1 py38h27cfd23_1 pyzmq 20.0.0 py38h2531618_1 qdarkstyle 2.8.1 py_0 qt 5.9.7 h5867ecd_1 qtawesome 1.0.2 pyhd3eb1b0_0 qtconsole 5.0.3 pyhd3eb1b0_0 qtpy 1.9.0 py_0 readline 8.1 h27cfd23_0 regex 2021.4.4 py38h27cfd23_0 requests 2.25.1 pyhd3eb1b0_0 ripgrep 12.1.1 0 rope 0.18.0 py_0 rtree 0.9.7 py38h06a4308_1 ruamel-yaml 0.17.10 pypi_0 pypi ruamel-yaml-clib 0.2.6 pypi_0 pypi ruamel_yaml 0.15.100 py38h27cfd23_0 scikit-image 0.18.1 py38ha9443f7_0 scikit-learn 0.24.1 py38ha9443f7_0 scipy 1.6.2 py38had2a1c9_1 seaborn 0.11.1 pyhd3eb1b0_0 secretstorage 3.3.1 py38h06a4308_0 send2trash 1.5.0 pyhd3eb1b0_1 setuptools 57.4.0 pypi_0 pypi simplegeneric 0.8.1 py38_2 singledispatch 3.6.1 pyhd3eb1b0_1001 sip 4.19.13 py38he6710b0_0 six 1.15.0 py38h06a4308_0 sniffio 1.2.0 py38h06a4308_1 snowballstemmer 2.1.0 pyhd3eb1b0_0 sortedcollections 2.1.0 pyhd3eb1b0_0 sortedcontainers 2.3.0 pyhd3eb1b0_0 soupsieve 2.2.1 pyhd3eb1b0_0 sphinx 4.0.1 pyhd3eb1b0_0 sphinxcontrib 1.0 py38_1 sphinxcontrib-applehelp 1.0.2 pyhd3eb1b0_0 sphinxcontrib-devhelp 1.0.2 pyhd3eb1b0_0 sphinxcontrib-htmlhelp 1.0.3 pyhd3eb1b0_0 sphinxcontrib-jsmath 1.0.1 pyhd3eb1b0_0 sphinxcontrib-qthelp 1.0.3 pyhd3eb1b0_0 sphinxcontrib-serializinghtml 1.1.4 pyhd3eb1b0_0 sphinxcontrib-websupport 1.2.4 py_0 spyder 4.2.5 py38h06a4308_0 spyder-kernels 1.10.2 py38h06a4308_0 sqlalchemy 1.4.15 py38h27cfd23_0 sqlite 3.35.4 hdfb4753_0 statsmodels 0.12.2 py38h27cfd23_0 sympy 1.8 py38h06a4308_0 tbb 2020.3 hfd86e86_0 tblib 1.7.0 py_0 terminado 0.9.4 py38h06a4308_0 testpath 0.4.4 pyhd3eb1b0_0 textdistance 4.2.1 pyhd3eb1b0_0 threadpoolctl 2.1.0 pyh5ca1d4c_0 three-merge 0.1.1 pyhd3eb1b0_0 tifffile 2020.10.1 py38hdd07704_2 tk 8.6.10 hbc83047_0 toml 0.10.2 pyhd3eb1b0_0 toolz 0.11.1 pyhd3eb1b0_0 tornado 6.1 py38h27cfd23_0 tqdm 4.59.0 pyhd3eb1b0_1 traitlets 5.0.5 pyhd3eb1b0_0 typed-ast 1.4.2 py38h27cfd23_1 typing_extensions 3.7.4.3 pyha847dfd_0 ujson 4.0.2 py38h2531618_0 unicodecsv 0.14.1 py38_0 unixodbc 2.3.9 h7b6447c_0 urllib3 1.26.4 pyhd3eb1b0_0 watchdog 1.0.2 py38h06a4308_1 wcwidth 0.2.5 py_0 webencodings 0.5.1 py38_1 werkzeug 1.0.1 pyhd3eb1b0_0 wheel 0.37.0 pypi_0 pypi widgetsnbextension 3.5.1 py38_0 wrapt 1.12.1 py38h7b6447c_1 wurlitzer 2.1.0 py38h06a4308_0 xlrd 2.0.1 pyhd3eb1b0_0 xlsxwriter 1.3.8 pyhd3eb1b0_0 xlwt 1.3.0 py38_0 xmltodict 0.12.0 py_0 xz 5.2.5 h7b6447c_0 yaml 0.2.5 h7b6447c_0 yapf 0.31.0 pyhd3eb1b0_0 zeromq 4.3.4 h2531618_0 zict 2.0.0 pyhd3eb1b0_0 zipp 3.4.1 pyhd3eb1b0_0 zlib 1.2.11 h7b6447c_3 zope 1.0 py38_1 zope.event 4.5.0 py38_0 zope.interface 5.3.0 py38h27cfd23_0 zstd 1.4.5 h9ceee32_0 </details>
closed
2021-08-18T22:54:55Z
2021-09-28T15:49:43Z
https://github.com/SciTools/cartopy/issues/1828
[]
rkong66
8
flairNLP/flair
nlp
3,199
[Bug]: ModuleNotFoundError: 'flair.trainers.plugins.functional' on git-installed master
### Describe the bug When installing the flair master branch via pypi & git, we get an ModuleNotFound error. ### To Reproduce ```python exec("pip install git+https://github.com/flairNLP/flair.git") from flair.models import TARSClassifier ``` ### Expected behavior I can import any module and use flair normally. ### Logs and Stack traces ```stacktrace Traceback (most recent call last): File "<stdin>", line 1, in <module> File "C:\Users\bened\anaconda3\envs\steepmc_clf\lib\site-packages\flair\__init__.py", line 28, in <module> from . import ( # noqa: E402 import after setting device File "C:\Users\bened\anaconda3\envs\steepmc_clf\lib\site-packages\flair\trainers\__init__.py", line 2, in <module> from .trainer import ModelTrainer File "C:\Users\bened\anaconda3\envs\steepmc_clf\lib\site-packages\flair\trainers\trainer.py", line 19, in <module> from flair.trainers.plugins import ( File "C:\Users\bened\anaconda3\envs\steepmc_clf\lib\site-packages\flair\trainers\plugins\__init__.py", line 2, in <module> from .functional.amp import AmpPlugin ModuleNotFoundError: No module named 'flair.trainers.plugins.functional' ``` ### Screenshots _No response_ ### Additional Context I suppose this happens due to missing `__init__.py` files in https://github.com/flairNLP/flair/tree/master/flair/trainers/plugins/functional and https://github.com/flairNLP/flair/tree/master/flair/trainers/plugins/loggers leading to those folders not being recognized as modules and therefore won't be found/installed as code. ### Environment #### Versions: ##### Pytorch 2.0.0+cu117 ##### flair `ModuleNotFoundError` ##### Transformers 4.28.1 #### GPU True
closed
2023-04-18T15:28:44Z
2023-04-19T20:12:44Z
https://github.com/flairNLP/flair/issues/3199
[ "bug" ]
helpmefindaname
1
pytorch/pytorch
numpy
149,324
Unguarded Usage of Facebook Internal Code?
### 🐛 Describe the bug There is a [reference](https://github.com/pytorch/pytorch/blob/c7c3e7732443d7994303499bcb01781c9d59ab58/torch/_inductor/fx_passes/group_batch_fusion.py#L25) to `import deeplearning.fbgemm.fbgemm_gpu.fb.inductor_lowerings`, which we believe to be Facebook internal Python module based on description of this [commit](https://github.com/pytorch/benchmark/commit/e26cd75d042e880676a5f21873f2aaa72e178be1). It looks like if the module isn't found, `torch` disables some `fbgemm` inductor lowerings. Is this expected for this code snippet, or should this rely on publicly available `fbgemm`? ### Versions Looks like this module is used as described above since torch's transition to open-source (at least). cc @chauhang @penguinwu
open
2025-03-17T15:54:24Z
2025-03-17T20:29:04Z
https://github.com/pytorch/pytorch/issues/149324
[ "triaged", "module: third_party", "oncall: pt2" ]
BwL1289
1
KaiyangZhou/deep-person-reid
computer-vision
204
OSNet training error
I got the below error message when trying to train osnet. Not sure what caused it. ```shell => Start training * Only train ['classifier'] (epoch: 1/10) Traceback (most recent call last): File "main.py", line 168, in <module> main() File "main.py", line 164, in main engine.run(**engine_run_kwargs(args)) File "/home/guest/mvb/deep-person-reid/torchreid/engine/engine.py", line 119, in run self.train(epoch, max_epoch, trainloader, fixbase_epoch, open_layers, print_freq) File "/home/guest/mvb/deep-person-reid/torchreid/engine/image/softmax.py", line 89, in train for batch_idx, data in enumerate(trainloader): File "/home/guest/.local/lib/python3.7/site-packages/torch/utils/data/dataloader.py", line 582, in __next__ return self._process_next_batch(batch) File "/home/guest/.local/lib/python3.7/site-packages/torch/utils/data/dataloader.py", line 608, in _process_next_batch raise batch.exc_type(batch.exc_msg) RuntimeError: Traceback (most recent call last): File "/home/guest/.local/lib/python3.7/site-packages/torch/utils/data/_utils/worker.py", line 99, in _worker_loop samples = collate_fn([dataset[i] for i in batch_indices]) File "/home/guest/.local/lib/python3.7/site-packages/torch/utils/data/_utils/collate.py", line 68, in default_collate return [default_collate(samples) for samples in transposed] File "/home/guest/.local/lib/python3.7/site-packages/torch/utils/data/_utils/collate.py", line 68, in <listcomp> return [default_collate(samples) for samples in transposed] File "/home/guest/.local/lib/python3.7/site-packages/torch/utils/data/_utils/collate.py", line 43, in default_collate return torch.stack(batch, 0, out=out) RuntimeError: invalid argument 0: Sizes of tensors must match except in dimension 0. Got 808 and 552 in dimension 2 at /pytorch/aten/src/TH/generic/THTensor.cpp:711 ```
closed
2019-07-05T05:40:27Z
2019-07-05T08:12:13Z
https://github.com/KaiyangZhou/deep-person-reid/issues/204
[]
johnzhang1999
2
ultralytics/yolov5
pytorch
13,427
如何在yolov5中添加FPS和mAPs评价指标?
### Search before asking - [X] I have searched the YOLOv5 [issues](https://github.com/ultralytics/yolov5/issues) and [discussions](https://github.com/ultralytics/yolov5/discussions) and found no similar questions. ### Question 如何在yolov5中添加FPS和mAPs评价指标? ### Additional _No response_
open
2024-11-22T03:00:31Z
2024-11-24T10:09:08Z
https://github.com/ultralytics/yolov5/issues/13427
[ "question" ]
lqh964165950
2
voxel51/fiftyone
data-science
4,761
[DOCS]when use fob.compute_visualization for Object similarity, it compute the embedding for each object instance?
### Instructions Thank you for submitting an issue. Please refer to our [issue policy](https://www.github.com/voxel51/fiftyone/blob/develop/ISSUE_POLICY.md) for information on what types of issues we address. 1. Please fill in this template to ensure a timely and thorough response 2. Place an "x" between the brackets next to an option if it applies. For example: - [x] Selected option 3. **Please delete everything above this line before submitting the issue** ### URL(s) with the issue Please provide a link to the documentation entry in question. ### Description of proposal (what needs changing) Provide a clear description. Why is the proposed documentation better? ### Willingness to contribute The FiftyOne Community encourages documentation contributions. Would you or another member of your organization be willing to contribute a fix for this documentation issue to the FiftyOne codebase? - [ ] Yes. I can contribute a documentation fix independently - [ ] Yes. I would be willing to contribute a documentation fix with guidance from the FiftyOne community - [ ] No. I cannot contribute a documentation fix at this time
closed
2024-08-31T16:34:50Z
2024-08-31T16:36:19Z
https://github.com/voxel51/fiftyone/issues/4761
[ "documentation" ]
lyf6
0
amisadmin/fastapi-amis-admin
fastapi
163
S3 support
what is the best way to transparent store files/images to S3? Maybe anybody can share a simple demo, please?
closed
2024-03-15T14:48:48Z
2024-03-20T13:46:54Z
https://github.com/amisadmin/fastapi-amis-admin/issues/163
[]
mmmcorpsvit
0
deeppavlov/DeepPavlov
nlp
1,189
ImportError: cannot import name 'build_model'
Hi team, I have installed DeepPavlov version 0.1.0 but unable to import build_model. PFA screenshot for details. Configuration: Windows 10 ![image](https://user-images.githubusercontent.com/16195067/80368774-e2da5a00-88aa-11ea-9626-fd8703297131.png)
closed
2020-04-27T11:47:49Z
2020-05-13T09:22:36Z
https://github.com/deeppavlov/DeepPavlov/issues/1189
[]
SahithiParsi
4
ContextLab/hypertools
data-visualization
208
ImportError: numpy.core.multiarray failed to import
I got an ImportError when I import hypertools, and my numpy is 1.12.1 in windows(or 1.14 in mac). How can I run it? But when import hypertools second time, the error will disapper.
open
2018-05-04T04:41:36Z
2018-05-18T06:53:03Z
https://github.com/ContextLab/hypertools/issues/208
[]
zhouyanasd
4
huggingface/datasets
nlp
6,834
largelisttype not supported (.from_polars())
### Describe the bug The following code fails because LargeListType is not supported. This is especially a problem for .from_polars since polars uses LargeListType. ### Steps to reproduce the bug ```python import datasets import polars as pl df = pl.DataFrame({"list": [[]]}) datasets.Dataset.from_polars(df) ``` ### Expected behavior Convert LargeListType to list. ### Environment info - `datasets` version: 2.19.1.dev0 - Platform: Linux-6.8.7-200.fc39.x86_64-x86_64-with-glibc2.38 - Python version: 3.12.2 - `huggingface_hub` version: 0.22.2 - PyArrow version: 16.0.0 - Pandas version: 2.1.4 - `fsspec` version: 2024.3.1
closed
2024-04-24T11:33:43Z
2024-08-12T14:43:46Z
https://github.com/huggingface/datasets/issues/6834
[]
Modexus
0
xlwings/xlwings
automation
1,928
Conda enviroments at customized locations
When the VBA code tries to load the XLWings dll and there is a Conda Env informed, it tries to load the DLL from: ``` {Conda Path}\envs\{Conda Env}\xlwings...dll ``` In Windows, `Conda Path` usually is something like `C:\ProgramData\Miniconda3` and the default path for the conda environments is `C:\ProgramData\Miniconda3\envs\`, and so everything works. But when we customize the path where the conda enviroments are created (with `conda config -add envs_dirs <path>`), it breaks, because now the DLL is at `<path>\{Conda Env}\xlwings...dll`.
open
2022-06-02T16:47:55Z
2022-06-03T06:31:26Z
https://github.com/xlwings/xlwings/issues/1928
[]
jalexandretoledo
2
miguelgrinberg/flasky
flask
241
post view has a little bug
Hi Miguel, I am studying flask using your tutorials. Thanks for your helpful book and codes. There I find a little bug in the `post` view in the views.py file in the main blueprint. That is this view doesn't check whether the current user has `Permission.COMMENT`. I noticed that you removed the comment form in the template when the current user has no comment permissions. However I think that the `post` view should have its own validation logic. If an anonymous user send a post request to this view, an error will be raised. `AttributeError: 'AnonymousUser' object has no attribute '_sa_instance_state'` Thanks.
closed
2017-02-16T07:36:38Z
2017-12-10T20:06:27Z
https://github.com/miguelgrinberg/flasky/issues/241
[ "enhancement" ]
luog1992
2
Avaiga/taipy
automation
2,308
Integrate VTK Visualization into Taipy as an Extension
### Description: VTK (Visualization Toolkit) provides robust 3D visualization capabilities widely used in domains like medical imaging, computational fluid dynamics, and scientific data visualization. Integrating similar functionality directly into Taipy as an optional extension would greatly expand Taipy’s visualization repertoire, enabling users to build rich 3D interactive graphics within the Taipy environment. ### Proposed Solution: - Create a Taipy extension or component wrapper that can be embeded directly within Taipy pages. - Provide a straightforward API for developers to: - Load 3D datasets. - Interactively manipulate views (e.g., rotate, zoom). - Apply filters, color maps, and advanced rendering options. - Support bidirectional communication between the visualization component and Taipy states/variables, similar to how Taipy integrates with other components. Example Use Case: A medical researcher might want to visualize MRI scans in 3D, slice through volumetric data, or apply custom segmentations. An engineer might want to display complex CFD simulations, adjusting parameters on the fly and seeing updated 3D renderings without leaving the Taipy interface. ### Acceptance Criteria - [ ] If applicable, a new demo code is provided to show the new feature in action. - [ ] Integration tests exhibiting how the functionality works are added. - [ ] Any new code is covered by a unit tested. - [ ] Check code coverage is at least 90%. - [ ] Related issue(s) in taipy-doc are created for documentation and Release Notes are updated. ### Code of Conduct - [X] I have checked the [existing issues](https://github.com/Avaiga/taipy/issues?q=is%3Aissue+). - [ ] I am willing to work on this issue (optional)
open
2024-12-06T15:06:45Z
2024-12-06T15:09:12Z
https://github.com/Avaiga/taipy/issues/2308
[ "🖰 GUI", "🟩 Priority: Low", "✨New feature" ]
FlorianJacta
0
paulpierre/RasaGPT
fastapi
8
An error is reported during installation, indicating that Organization already exists
Traceback (most recent call last): File "/app/api/seed.py", line 128, in <module> org_obj = create_org_by_org_or_uuid( File "/app/api/helpers.py", line 95, in create_org_by_org_or_uuid raise HTTPException(status_code=404, detail="Organization already exists") fastapi.exceptions.HTTPException
closed
2023-05-10T09:24:40Z
2023-05-10T13:23:33Z
https://github.com/paulpierre/RasaGPT/issues/8
[]
Hkaisense
1
gradio-app/gradio
python
10,869
Model3D Improvements Tracking Issue
- [x] I have searched to see if a similar issue already exists. https://github.com/gradio-app/gradio/pull/10847#issuecomment-2745928539 **Is your feature request related to a problem? Please describe.** A clear and concise description of what the problem is. Ex. I'm always frustrated when [...] **Describe the solution you'd like** A clear and concise description of what you want to happen. **Additional context** Add any other context or screenshots about the feature request here.
open
2025-03-24T18:11:21Z
2025-03-24T18:11:21Z
https://github.com/gradio-app/gradio/issues/10869
[]
dawoodkhan82
0
deeppavlov/DeepPavlov
tensorflow
1,483
`parse_config` doesn't allow to add extra variables
Want to contribute to DeepPavlov? Please read the [contributing guideline](http://docs.deeppavlov.ai/en/master/devguides/contribution_guide.html) first. **What problem are we trying to solve?**: ``` 1. `parse_config` function from `deeppavlov.core.commands.utils` doesn't allow me to add extra vars or override existing. The only way to override vars is to add environment variable. It is very unhandy. I can rewrite this function so it would allow to add extra vars. 2. Variables in config-files are substituted by hand. Why don't you use industry standard template engines like J2? ``` **How can we solve it?**: ``` 1. Via adding new parameter to function. 2. Via using jinja ``` **Are there other issues that block this solution?**: ``` As far as I can see - none. ``` If you are ok with it - I will code it myself and do PR.
open
2021-09-05T17:23:12Z
2021-10-24T16:33:24Z
https://github.com/deeppavlov/DeepPavlov/issues/1483
[ "enhancement" ]
QtRoS
1
modin-project/modin
data-science
6,879
The query_compiler.merge reconstructs the Right dataframe for every partition of Left Dataframe
The query_compiler.merge reconstructs the Right dataframe from its partitions for every partition of Left Dataframe, The concat operation results in higher memory consumption when the size of right dataframe is large. A possible option is to combine the right Dataframe partitions to a single partition dataframe by calling a remote function. This single partiotion dataframe is then passed to each partition of left dataframe thus avoiding the reconstruction in every worker while doing merge.
closed
2024-01-25T11:39:01Z
2024-02-13T12:09:24Z
https://github.com/modin-project/modin/issues/6879
[ "Internals" ]
arunjose696
0
dynaconf/dynaconf
flask
556
[bug] - Dynaconf stop list variables and does not recognize develop variables in my env
Dynaconf dont list variables and thrown a error validation. * I change my config from mac +zsh to manjaro + fish * I run my venv * I run dynaconf -i config.settings list 1. Having the following folder structure > tree 09:10:07 . ├── alembic │   ├── env.py │   ├── __pycache__ │   │   └── env.cpython-39.pyc │   ├── README │   ├── script.py.mako │   └── versions ├── alembic.ini ├── api │   ├── api_v1 │   │   └── __init__.py │   ├── deps.py │   ├── __init__.py │   └── tests │   ├── __init__.py │   ├── test_celery.py │   ├── test_items.py │   ├── test_login.py │   └── test_users.py ├── backend_pre_start.py ├── celeryworker_pre_start.py ├── config.py ├── config.py.old ├── conftest.py ├── connections │   ├── fetcher.py │   └── __init__.py ├── constants │   ├── core.py │   ├── __init__.py │   └── shopping_cart_checkout.py ├── crud │   ├── base.py │   └── tests │   ├── __init__.py │   ├── test_item.py │   └── test_user.py ├── db │   ├── base_class.py │   ├── base.py │   ├── __init__.py │   └── __pycache__ │   ├── base_class.cpython-39.pyc │   ├── base.cpython-39.pyc │   └── __init__.cpython-39.pyc ├── ext │   ├── celery_app.py │   ├── config.py │   ├── database.py │   ├── __init__.py │   └── security.py ├── init_db.py ├── initial_data.py ├── __init__.py ├── main.py ├── models ├── __pycache__ │   └── config.cpython-39.pyc ├── schemas ├── settings.toml ├── test.py ├── tests │   ├── __init__.py │   └── utils │   ├── __init__.py │   ├── item.py │   ├── user.py │   └── utils.py ├── tests_pre_start.py ├── utils.py └── worker.py 2. Having the following config files: The dynaconf run in app folder and settings.toml and .secrets.toml staying in app folder **/app/.secrets.toml** ```toml [development] # Postgres POSTGRES_SERVER=172.15.0.2 POSTGRES_USER=user POSTGRES_PASSWORD=pass POSTGRES_DB=mydb ``` and **/app/settings.toml** ```toml [default] STACK_NAME="paymentgateway-com-br" BACKEND_CORS_ORIGINS=["http://dev.domain.com"] PROJECT_NAME="Microservice Gateway" SECRET_KEY="dc24d995bf6c" FIRST_SUPERUSER="email@email.com.br" FIRST_SUPERUSER_PASSWORD="123" SMTP_TLS=true SMTP_PORT=587 SMTP_HOST="" SMTP_USER="" SMTP_PASSWORD="" EMAILS_FROM_EMAIL="email@email.com" USERS_OPEN_REGISTRATION=false SENTRY_DSN="" API_V1_STR="/payment-api/v1" # 60 minutes * 24 hours * 8 days = 8 days ACCESS_TOKEN_EXPIRE_MINUTES=11520 [development] DOMAIN="localhost" TRAEFIK_PUBLIC_NETWORK="traefik-public" TRAEFIK_TAG="paymentgateway.app.com.br" TRAEFIK_PUBLIC_TAG="traefik-public" DOCKER_IMAGE_BACKEND="docker" BACKEND_CORS_ORIGINS=["http://localhost", "https://localhost"] # Postgres SQLALCHEMY_DATABASE_URI="..." ``` 3. Having the following app code: ```python from typing import Any from sqlalchemy import create_engine from sqlalchemy.orm import sessionmaker from dynaconf import settings from loguru import logger def get_engine(): SQLALCHEMY_DATABASE_URL = settings.SQLALCHEMY_DATABASE_URI engine = create_engine( SQLALCHEMY_DATABASE_URL, ) return engine def get_session(): _engine = get_engine() SessionLocal = sessionmaker(autocommit=False, autoflush=False, bind=_engine) return SessionLocal ``` **/app/main.py** ```python from fastapi import FastAPI from starlette.middleware.cors import CORSMiddleware from api.api_v1.api import api_router from dynaconf import settings import logging import sys from loguru import logger app = FastAPI( title=settings.PROJECT_NAME, openapi_url=f"{settings.API_V1_STR}/openapi.json", docs_url="/payment-api", redoc_url=None ) if settings.BACKEND_CORS_ORIGINS: app.add_middleware( CORSMiddleware, allow_origins=[str(origin) for origin in settings.BACKEND_CORS_ORIGINS], allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) app.include_router(api_router, prefix=settings.API_V1_STR) ``` 4. Executing under the following environment <development> ```fish $ cd app $ dynaconf -i config.settings list ``` </details> **Expected behavior** List all variables settings **Environment (please complete the following information):** - OS: Manjaro BSPWN 20.0.1 - Dynaconf Version 3.1.2 and 3.1.4 - Frameworks in use (FastAPI - 0.61.2) **Additional context** Error: ``` > dynaconf -i config.settings list 09:06:22 Traceback (most recent call last): File "/home/jonatas/workspace/microservice-payment-gateway/.venv/app-payment-gateway-yLI0xW6Q-py3.9/lib/python3.9/site-packages/dynaconf/vendor/toml/decoder.py", line 253, in loads try:n=K.load_line(C,G,T,P) File "/home/jonatas/workspace/microservice-payment-gateway/.venv/app-payment-gateway-yLI0xW6Q-py3.9/lib/python3.9/site-packages/dynaconf/vendor/toml/decoder.py", line 355, in load_line if P==A[-1]:raise ValueError('Invalid date or number') ValueError: Invalid date or number During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/home/jonatas/workspace/microservice-payment-gateway/.venv/app-payment-gateway-yLI0xW6Q-py3.9/bin/dynaconf", line 8, in <module> sys.exit(main()) File "/home/jonatas/workspace/microservice-payment-gateway/.venv/app-payment-gateway-yLI0xW6Q-py3.9/lib/python3.9/site-packages/dynaconf/vendor/click/core.py", line 221, in __call__ def __call__(A,*B,**C):return A.main(*B,**C) File "/home/jonatas/workspace/microservice-payment-gateway/.venv/app-payment-gateway-yLI0xW6Q-py3.9/lib/python3.9/site-packages/dynaconf/vendor/click/core.py", line 205, in main H=E.invoke(F) File "/home/jonatas/workspace/microservice-payment-gateway/.venv/app-payment-gateway-yLI0xW6Q-py3.9/lib/python3.9/site-packages/dynaconf/vendor/click/core.py", line 345, in invoke with C:return F(C.command.invoke(C)) File "/home/jonatas/workspace/microservice-payment-gateway/.venv/app-payment-gateway-yLI0xW6Q-py3.9/lib/python3.9/site-packages/dynaconf/vendor/click/core.py", line 288, in invoke if A.callback is not _A:return ctx.invoke(A.callback,**ctx.params) File "/home/jonatas/workspace/microservice-payment-gateway/.venv/app-payment-gateway-yLI0xW6Q-py3.9/lib/python3.9/site-packages/dynaconf/vendor/click/core.py", line 170, in invoke with G:return A(*B,**E) File "/home/jonatas/workspace/microservice-payment-gateway/.venv/app-payment-gateway-yLI0xW6Q-py3.9/lib/python3.9/site-packages/dynaconf/cli.py", line 442, in _list cur_env = settings.current_env.lower() File "/home/jonatas/workspace/microservice-payment-gateway/.venv/app-payment-gateway-yLI0xW6Q-py3.9/lib/python3.9/site-packages/dynaconf/base.py", line 145, in __getattr__ self._setup() File "/home/jonatas/workspace/microservice-payment-gateway/.venv/app-payment-gateway-yLI0xW6Q-py3.9/lib/python3.9/site-packages/dynaconf/base.py", line 195, in _setup self._wrapped = Settings( File "/home/jonatas/workspace/microservice-payment-gateway/.venv/app-payment-gateway-yLI0xW6Q-py3.9/lib/python3.9/site-packages/dynaconf/base.py", line 259, in __init__ self.execute_loaders() File "/home/jonatas/workspace/microservice-payment-gateway/.venv/app-payment-gateway-yLI0xW6Q-py3.9/lib/python3.9/site-packages/dynaconf/base.py", line 990, in execute_loaders settings_loader( File "/home/jonatas/workspace/microservice-payment-gateway/.venv/app-payment-gateway-yLI0xW6Q-py3.9/lib/python3.9/site-packages/dynaconf/loaders/__init__.py", line 126, in settings_loader loader["loader"].load( File "/home/jonatas/workspace/microservice-payment-gateway/.venv/app-payment-gateway-yLI0xW6Q-py3.9/lib/python3.9/site-packages/dynaconf/loaders/toml_loader.py", line 31, in load loader.load(filename=filename, key=key, silent=silent) File "/home/jonatas/workspace/microservice-payment-gateway/.venv/app-payment-gateway-yLI0xW6Q-py3.9/lib/python3.9/site-packages/dynaconf/loaders/base.py", line 62, in load source_data = self.get_source_data(files) File "/home/jonatas/workspace/microservice-payment-gateway/.ve nv/app-payment-gateway-yLI0xW6Q-py3.9/lib/python3.9/site-packages/dynaconf/loaders/base.py", line 83, in get_source_data content = self.file_reader(open_file) File "/home/jonatas/workspace/microservice-payment-gateway/.venv/app-payment-gateway-yLI0xW6Q-py3.9/lib/python3.9/site-packages/dynaconf/vendor/toml/decoder.py", line 83, in load try:return loads(f.read(),B,A) File "/home/jonatas/workspace/microservice-payment-gateway/.venv/app-payment-gateway-yLI0xW6Q-py3.9/lib/python3.9/site-packages/dynaconf/vendor/toml/decoder.py", line 254, in loads except ValueError as Y:raise TomlDecodeError(str(Y),I,N) dynaconf.vendor.toml.decoder.TomlDecodeError: Invalid date or number (line 3 column 1 char 25) ```
closed
2021-03-18T12:30:42Z
2021-03-18T19:53:42Z
https://github.com/dynaconf/dynaconf/issues/556
[ "bug" ]
jonatasoli
4
nvbn/thefuck
python
1,300
[Feature request] Recognise and offer fixes for missing `git clone` when given a url or SSH ending in .git
It would be neat if a fix was required when I pasted a `git` URL intending to clone it, but forgot to add the `git clone` to the start. There's a fix for when `git clone` is present twice, so I think it's reasonable to have one for when it's never present. If someone can point me to a getting started page so I can find my way around the project and learn the basics, I'm happy to create an implementation and PR for this myself.
closed
2022-05-23T13:12:26Z
2022-07-04T15:18:10Z
https://github.com/nvbn/thefuck/issues/1300
[]
MaddyGuthridge
3
lepture/authlib
flask
130
Requesting empty scope removes scope from response
When this [request is made](https://httpie.org/doc#forms): http -a client:secret -f :/auth/token grant_type=client_credentials scope= I get response, without `scope` even if it was given in request. Code responsible for this is here: https://github.com/lepture/authlib/blob/master/authlib/oauth2/rfc6750/wrappers.py#L98-L99 Is this a bug? I would expect `scope` present in response since it was given in request, even if given scope was empty string.
closed
2019-05-13T06:29:32Z
2019-05-14T05:27:16Z
https://github.com/lepture/authlib/issues/130
[]
sirex
2
idealo/imagededup
computer-vision
1
Get indexation setup complete for benchmarking workflow
- [x] Explore BKTree implementation - [x] Explore `shelve` implementation > `shelve` seems to have problems scaling to larger memory collections > > If problems persist, we will move to exploring some fast, local database solution - [x] Explore Fallbacks/Brute Force/(other unoptimized search forms in worst case)
closed
2019-05-07T09:17:36Z
2019-07-02T15:42:49Z
https://github.com/idealo/imagededup/issues/1
[ "enhancement" ]
valiantone
3
globaleaks/globaleaks-whistleblowing-software
sqlalchemy
3,116
Make it possible to require whistleblowers to upload files before proceeding with the completion of the submission
**Describe the bug** In questionnaires if an attachment field is set as required, alarm is not given and report can be sent without the attachment. **To Reproduce** Steps to reproduce the behavior: 1. On a questionnaire set an attachment field as required. 2. When you try to file a report the upsaid required field is ignored, and if there are other errors, It's ignored in the error list also. 3. Same if there are multiple files **Expected behavior** An alarm of missed attachment should be expected **Desktop (please complete the following information):** - OS: w10 - Browser: firefox 94
closed
2021-11-22T12:27:05Z
2021-11-26T12:45:10Z
https://github.com/globaleaks/globaleaks-whistleblowing-software/issues/3116
[ "T: Enhancement", "C: Client" ]
larrykind
4
saulpw/visidata
pandas
2,492
Add friendly view of PyTables structured HDF5 files
pandas uses PyTables for HDF5 outputs. This creates a lot of extra structure (which I don't totally understand) that makes it hard to view idomatically in visidata. "Unpacking" the PyTables schema would make this tool incredibly useful for peeking at HDF5 files created by pandas.
closed
2024-08-07T14:54:23Z
2024-09-22T02:26:40Z
https://github.com/saulpw/visidata/issues/2492
[ "wishlist" ]
jeffmelville
1
chaoss/augur
data-visualization
2,916
Convert api and cli over to using user groups instead of repo groups
open
2024-10-01T23:07:39Z
2024-10-01T23:07:39Z
https://github.com/chaoss/augur/issues/2916
[]
sgoggins
0
aimhubio/aim
tensorflow
2,972
Support local path when migrating from wandb to aim
## 🚀 Feature <!-- A clear and concise description of the feature proposal --> User can specify the local wandb directory path when migrating from wandb to aim. ### Motivation <!-- Please outline the motivation for the proposal. Is your feature request related to a problem? e.g., I'm always frustrated when [...]. If this is related to another GitHub issue, please link here too --> When using the command `aim convert wandb --entity 'my_team' --project 'test_project'` to migrate, the server needs to be able to access the network. However, since some private servers cannot be connected to the Internet, it cannot be executed at this time. In this case, it would be more flexible to be able to migrate without accessing the network but given a local path. ### Pitch <!-- A clear and concise description of what you want to happen. --> `aim convert wandb --run $LOCAL_PATH_TO_WANDB_RUN` ### Alternatives <!-- A clear and concise description of any alternative solutions or features you've considered, if any. --> ### Additional context <!-- Add any other context or screenshots about the feature request here. -->
open
2023-09-01T10:21:43Z
2023-09-01T10:21:43Z
https://github.com/aimhubio/aim/issues/2972
[ "type / enhancement" ]
chenshen03
0
Gozargah/Marzban
api
918
نسخه dev سوالات
سلام ببخشید الان تعداد یوزر های من بالاست تنها مشکلی که دارم روی فعال کردن فرگمنت که وقتی لینک بروز رسانی میکنن یا از نرم افزار ها خارج میشن فرکمنت غیر فعال میشه و مجدد باید دستی ثبت بکنن الان دیدم نسخه هست به نام dev اگر بخوام به این نسخه برم ممکنه الان باگی داشته باشه ؟؟ ۱۲ تا سرور به صورت نود انجام دادم نیازی نیست تو اون سرور ها کاری انجام بدم ؟؟ معمولا چه کارهایی باید انجام بشه تا یوزرهام به مشکل نخوره ؟؟
closed
2024-04-04T06:56:15Z
2024-04-28T20:16:58Z
https://github.com/Gozargah/Marzban/issues/918
[]
hossein2
3
recommenders-team/recommenders
data-science
1,366
[ASK] New Python recommender systems library - LibRecommender
Hi! just FYI, a new Python library that includes some interesting reco algorithms was recently added to Github: https://github.com/massquantity/LibRecommender Maybe it would be interesting to include some usecases for some of the included algos that are not covered yet by this repo. thank you!
closed
2021-04-03T07:40:10Z
2021-12-17T10:24:23Z
https://github.com/recommenders-team/recommenders/issues/1366
[ "help wanted" ]
julioasotodv
1
mitmproxy/mitmproxy
python
7,092
DNS Resolver: Add `getaddrinfo` fallback
#### Problem Description Based on https://github.com/mitmproxy/mitmproxy/issues/7064, hickory's functionality to determine the OS name servers seems to have issues on both Linux and Windows. As much as I prefer hickory, we should have a fallback that uses `getaddrinfo`. This restores at least some basic functionality. Implementation-wise, this likely means we should change `DnsResolver.name_servers` to return an empty list if it's unable to determine servers. This way it's cached (whereas an exception is not). #### Steps to reproduce the behavior: 1. Run mitmproxy in WireGuard mode on a setup where hickory is unable to determine nameservers.
closed
2024-08-09T12:41:27Z
2024-08-28T18:37:00Z
https://github.com/mitmproxy/mitmproxy/issues/7092
[ "kind/bug", "help wanted", "area/protocols" ]
mhils
0
LibreTranslate/LibreTranslate
api
75
[request] ARM64 image
I'd like to give this ago on my Pi4. Is there / will there be /could there be a version which runs on ARM64?
closed
2021-04-09T11:23:10Z
2022-12-11T07:31:00Z
https://github.com/LibreTranslate/LibreTranslate/issues/75
[ "enhancement" ]
davidrutland
2
ivy-llc/ivy
tensorflow
27,972
Fix Ivy Failing Test: numpy - statistical.sum
closed
2024-01-20T16:49:46Z
2024-01-22T12:21:11Z
https://github.com/ivy-llc/ivy/issues/27972
[ "Sub Task" ]
samthakur587
0
recommenders-team/recommenders
deep-learning
1,240
[FEATURE] Mix MIND utils
### Description <!--- Describe your expected feature in detail --> DRY in Mind: - https://github.com/microsoft/recommenders/blob/master/reco_utils/dataset/mind.py - https://github.com/microsoft/recommenders/blob/staging/reco_utils/recommender/newsrec/newsrec_utils.py ### Expected behavior with the suggested feature <!--- For example: --> <!--- *Adding algorithm xxx will help people understand more about xxx use case scenarios. --> ### Other Comments
open
2020-11-11T07:38:54Z
2020-11-11T07:39:07Z
https://github.com/recommenders-team/recommenders/issues/1240
[ "enhancement" ]
miguelgfierro
0
ufoym/deepo
tensorflow
50
OpenCV function not implemented
I got unspecified error when trying to run opencv following this basic OpenCV [getting started](https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_gui/py_image_display/py_image_display.html#display-image). The error is: ``` OpenCV(3.4.1) Error: Unspecified error (The function is not implemented. Rebuild the library with Windows, GTK+ 2.x or Carbon support. If you are on Ubuntu or Debian, install libgtk2.0-dev and pkg-config, then re-run cmake or configure script) in cvShowImage, file /root/opencv/modules/highgui/src/window.cpp, line 636 Traceback (most recent call last): File "image_get_started.py", line 8, in <module> cv2.imshow("image", img) cv2.error: OpenCV(3.4.1) /root/opencv/modules/highgui/src/window.cpp:636: error: (-2) The function is not implemented. Rebuild the library with Windows, GTK+ 2.x or Carbon support. If you are on Ubuntu or Debian, install libgtk2.0-dev and pkg-config, then re-run cmake or configure script in function cvShowImage ``` I was using the `keras-cpu-py36` while adding OpenCV in its Dockerfile. Looking back to OpenCV and the `libgtk2.0-dev` and `pkg-config` wasn't yet included.
closed
2018-08-25T07:39:27Z
2018-08-25T16:47:34Z
https://github.com/ufoym/deepo/issues/50
[]
syahrulhamdani
1
Gozargah/Marzban
api
1,250
باگ پروتکل httpguard
سلام وقتی با اینباند جنریتور کاستوم کانفیگ میزنم و به مرزبان اضافه میکنم موقع ساخت یوزر لینک ساب کانفیگو کامل نمیارهکلا ناقص کانفیگو بالا میاره مثه اینکه با پروتکل httpguard مشکل داره ![photo_2024-08-18_16-48-25](https://github.com/user-attachments/assets/72793743-20b7-44f9-b4a4-69e46eb9946e)
closed
2024-08-18T12:22:01Z
2024-08-18T13:18:10Z
https://github.com/Gozargah/Marzban/issues/1250
[ "Duplicate", "Invalid" ]
afraz5
1
apachecn/ailearning
nlp
540
MachineLearning(机器学习) 学习路线图链接失效
MachineLearning(机器学习) 学习路线图链接失效: http://www.apachecn.org/map/145.html
closed
2019-08-05T05:50:26Z
2019-10-28T03:17:39Z
https://github.com/apachecn/ailearning/issues/540
[]
gocpplua
1
ipython/ipython
jupyter
14,590
replace in confpy source_suffix = {'.rst': 'restructuredtext'}
open
2024-11-29T10:50:12Z
2024-11-29T10:50:12Z
https://github.com/ipython/ipython/issues/14590
[]
Carreau
0
koxudaxi/datamodel-code-generator
fastapi
1,837
static code to generated models
Hey there, for the maintainers, thanks for that great library. I would appreciate a heads-up on something I'm trying to do, which is basically adding some static code to a generate model. I'm not sure Jinja would be suitable for that, since it's just a templating. Can someone give me a direction on the best approach for that? For example, for an Enum class: ```python class Foo(str, Enum): foo = 'foo' bar = 'bar' ``` I would like the generated model to override a special method: ```python class Foo(str, Enum): foo = 'foo' bar = 'bar' @classmethod def _missing_(cls, value): pass ``` I'm generating my models from an `openapi.yml` spec. Appreciate any thoughts or help!
open
2024-02-05T12:54:57Z
2024-03-16T16:57:34Z
https://github.com/koxudaxi/datamodel-code-generator/issues/1837
[ "answered" ]
aoliveiraenc
1
aws/aws-sdk-pandas
pandas
2,276
quicksight.create_athena_dataset/datasource: allow user groups to be passed in allowed_to_use and allowed_to_manage
**Is your idea related to a problem? Please describe.** Right now, the parameters `allowed_to_use` and `allowed_to_manage` inside the method `quicksight.create_athena_dataset` allow only users to be passed but not user groups. If I want to give those permissions to user groups then I have to do a separate call using boto and run `update_data_set_permissions `. Same goes for data sources. **Describe the solution you'd like** It would be nice if `allowed_to_use` and `allowed_to_manage` also accepted user groups to avoid the workaround with boto.
closed
2023-05-15T13:52:21Z
2023-05-16T22:46:08Z
https://github.com/aws/aws-sdk-pandas/issues/2276
[ "enhancement" ]
koberghe
0
babysor/MockingBird
pytorch
980
预处理数据集出现如下错误
做预处理数据集时出现如下错误: E:\Miniconda3\envs\mockingbird\MockingBird-main>python pre.py E:\Miniconda3\envs\mockingbird\MockingBird-main -d aidatatang_200zh -n 1 Ignored unknown kwarg option normalize Ignored unknown kwarg option normalize Ignored unknown kwarg option normalize Ignored unknown kwarg option normalize Using data from: E:\Miniconda3\envs\mockingbird\MockingBird-main\aidatatang_200zh\corpus\train aidatatang_200zh: 0%| | 0/547 [00:00<?, ?speakers/s]Ignored unknown kwarg option normalize Ignored unknown kwarg option normalize Ignored unknown kwarg option normalize Ignored unknown kwarg option normalize aidatatang_200zh: 100%|████████████████████████████████████████████████████████| 547/547 [01:17<00:00, 7.03speakers/s] The dataset consists of 0 utterances, 0 mel frames, 0 audio timesteps (0.00 hours). Traceback (most recent call last): File "E:\Miniconda3\envs\mockingbird\MockingBird-main\pre.py", line 72, in <module> preprocess_dataset(**vars(args)) File "E:\Miniconda3\envs\mockingbird\MockingBird-main\models\synthesizer\preprocess.py", line 101, in preprocess_dataset print("Max input length (text chars): %d" % max(len(m[5]) for m in metadata)) ValueError: max() arg is an empty sequence ![3c415e817f0c9484ccbebf3bbfce394](https://github.com/babysor/MockingBird/assets/157026872/31f96d33-151a-4919-8f7c-62d4e3d4a037) 请大神们给予帮助!!!
open
2024-01-18T13:16:50Z
2024-01-18T13:16:50Z
https://github.com/babysor/MockingBird/issues/980
[]
Sunsoar01
0
frappe/frappe
rest-api
31,327
Phonenumber library does not recognize +592 7 Guyanese phone numbers as valid
## Description of the issue The phonenumber library currently does not recognize new Guyanese (GY) phone numbers starting with `+592 7` as valid. Only numbers starting with `+592 6` are being correctly validated. This causes issues when users attempt to submit forms using phone numbers with the updated format. ## Context information (for bug reports) **Output of `bench version`**: 15.56.0 ## Steps to reproduce the issue 1. Attempt to input a phone number starting with `+592 7` in any form field using the phone fieldtype by selecting `guyana` then enter a number `7004812` (which is a valid GY number). 2. Submit the form. 3. Observe validation error. ### Observed result Phone numbers starting with `+592 7` are incorrectly marked as invalid. ### Expected result Phone numbers starting with `+592 7` should be recognized as valid. ### Stacktrace / full error message ```bash 15:23:36 web.1 | Traceback (most recent call last): 15:23:36 web.1 | File "apps/frappe/frappe/app.py", line 114, in application 15:23:36 web.1 | response = frappe.api.handle(request) 15:23:36 web.1 | ^^^^^^^^^^^^^^^^^^^^^^^^^^ 15:23:36 web.1 | File "apps/frappe/frappe/api/_init_.py", line 49, in handle 15:23:36 web.1 | data = endpoint(**arguments) 15:23:36 web.1 | ^^^^^^^^^^^^^^^^^^^^^ 15:23:36 web.1 | File "apps/frappe/frappe/api/v1.py", line 36, in handle_rpc_call 15:23:36 web.1 | return frappe.handler.handle() 15:23:36 web.1 | ^^^^^^^^^^^^^^^^^^^^^^^ 15:23:36 web.1 | File "apps/frappe/frappe/handler.py", line 50, in handle 15:23:36 web.1 | data = execute_cmd(cmd) 15:23:36 web.1 | ^^^^^^^^^^^^^^^^ 15:23:36 web.1 | File "apps/frappe/frappe/handler.py", line 86, in execute_cmd 15:23:36 web.1 | return frappe.call(method, **frappe.form_dict) 15:23:36 web.1 | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 15:23:36 web.1 | File "apps/frappe/frappe/_init_.py", line 1726, in call 15:23:36 web.1 | return fn(*args, **newargs) 15:23:36 web.1 | ^^^^^^^^^^^^^^^^^^^^ 15:23:36 web.1 | File "apps/frappe/frappe/utils/typing_validations.py", line 31, in wrapper 15:23:36 web.1 | return func(*args, **kwargs) 15:23:36 web.1 | ^^^^^^^^^^^^^^^^^^^^^ 15:23:36 web.1 | File "apps/frappe/frappe/desk/form/save.py", line 37, in savedocs 15:23:36 web.1 | doc.submit() 15:23:36 web.1 | File "apps/frappe/frappe/utils/typing_validations.py", line 31, in wrapper 15:23:36 web.1 | return func(*args, **kwargs) 15:23:36 web.1 | ^^^^^^^^^^^^^^^^^^^^^ 15:23:36 web.1 | File "apps/frappe/frappe/model/document.py", line 1060, in submit 15:23:36 web.1 | return self._submit() 15:23:36 web.1 | ^^^^^^^^^^^^^^ 15:23:36 web.1 | File "apps/frappe/frappe/model/document.py", line 1043, in _submit 15:23:36 web.1 | return self.save() 15:23:36 web.1 | ^^^^^^^^^^^ 15:23:36 web.1 | File "apps/frappe/frappe/model/document.py", line 342, in save 15:23:36 web.1 | return self._save(*args, **kwargs) 15:23:36 web.1 | ^^^^^^^^^^^^^^^^^^^^^^^^^^^ 15:23:36 web.1 | File "apps/frappe/frappe/model/document.py", line 381, in _save 15:23:36 web.1 | self._validate() 15:23:36 web.1 | File "apps/frappe/frappe/model/document.py", line 587, in _validate 15:23:36 web.1 | self._validate_data_fields() 15:23:36 web.1 | File "apps/frappe/frappe/model/base_document.py", line 914, in _validate_data_fields 15:23:36 web.1 | frappe.utils.validate_phone_number_with_country_code(phone, phone_field.fieldname) 15:23:36 web.1 | File "apps/frappe/frappe/utils/_init_.py", line 119, in validate_phone_number_with_country_code 15:23:36 web.1 | frappe.throw( 15:23:36 web.1 | File "apps/frappe/frappe/_init_.py", line 603, in throw 15:23:36 web.1 | msgprint( 15:23:36 web.1 | File "apps/frappe/frappe/_init_.py", line 568, in msgprint 15:23:36 web.1 | _raise_exception() 15:23:36 web.1 | File "apps/frappe/frappe/_init_.py", line 519, in _raise_exception 15:23:36 web.1 | raise exc 15:23:36 web.1 | frappe.exceptions.InvalidPhoneNumberError: Phone Number +592-7123345 set in field phone_number is not valid. 15:23:36 web.1 | 15:23:36 web.1 | 172.18.0.1 - - [19/Feb/2025 15:23:36] "POST /api/method/frappe.desk.form.save.savedocs HTTP/1.1" 417 - ``` ## Additional information - **Frappe install method**: Docker
closed
2025-02-19T15:32:32Z
2025-03-06T00:15:35Z
https://github.com/frappe/frappe/issues/31327
[ "bug" ]
karotkriss
0
streamlit/streamlit
deep-learning
10,739
Support a collapsed page navigation menu that only shows the page icons
### Checklist - [x] I have searched the [existing issues](https://github.com/streamlit/streamlit/issues) for similar feature requests. - [x] I added a descriptive title and summary to this issue. ### Summary Support a collapsed page navigation menu that only shows the page icons similar to the VS Code activity bar: ![Image](https://github.com/user-attachments/assets/67ee04f3-2c02-4727-a36a-6d6caa587031) ### Why? _No response_ ### How? _No response_ ### Additional Context _No response_
open
2025-03-12T14:27:13Z
2025-03-12T14:27:38Z
https://github.com/streamlit/streamlit/issues/10739
[ "type:enhancement", "feature:multipage-apps", "feature:st.navigation" ]
lukasmasuch
1
tortoise/tortoise-orm
asyncio
1,905
Explicit Routers
**Is your feature request related to a problem? Please describe.** The [documentation](https://tortoise.github.io/router.html?h=router#model-signals) and the implementation for the Router don't seem to match. The documentation suggests that the methods for the router class are explicit while the code suggest that these methods are optional. The current code appears to follow django's methodology of allowing multiple routers to be registered and then processed in order of significance. **Describe the solution you'd like** Routers to be implemented according to the documentation. This would also allow for more accurate static type checking through Protocols. An example for the change can found [here](https://github.com/tortoise/tortoise-orm/compare/develop...i-am-grub:tortoise-orm:explicit-router) **Describe alternatives you've considered** Updating the documentation to clarify the intent of the router implementation.
closed
2025-02-28T09:16:02Z
2025-03-18T14:31:35Z
https://github.com/tortoise/tortoise-orm/issues/1905
[]
i-am-grub
4
marshmallow-code/flask-marshmallow
sqlalchemy
98
Update to marshmallow 3
Hi, everyone. I want some information about update to marshmallow 3. Where I can look it?
closed
2018-11-01T14:05:30Z
2018-11-02T15:26:26Z
https://github.com/marshmallow-code/flask-marshmallow/issues/98
[]
Bernardoow
1
plotly/dash-oil-and-gas-demo
plotly
16
frontend for reporting OOM errors from the backend, and informing the users to contact admins.
closed
2023-02-02T18:24:32Z
2023-02-02T18:24:37Z
https://github.com/plotly/dash-oil-and-gas-demo/issues/16
[]
eff-kay
0
axnsan12/drf-yasg
django
251
Parameters to provide a `validate` method
Hi there! I'm thinking of adding a 'validate' method to the Parameter class in the OpenAPI module. This would check the given value (e.g. in a query) actually matched the type (and format, if set) of the parameter. A further possibility would be to provide a `from_request` method which searched for the value in the request structure according to where it would be found (header, query, path, etc), and returned the value - or the parameter's default if the parameter was not found in the request. What do you think? Do you want me to write that? Have fun, Paul
closed
2018-11-12T23:01:21Z
2018-11-28T21:51:54Z
https://github.com/axnsan12/drf-yasg/issues/251
[]
PaulWay
1
OpenGeoscience/geonotebook
jupyter
166
Cannot add VRT raster layer
I am trying to add a layer using a RasterData object initialized with a VRT image. ``` vrt = RasterData("test.vrt") M.add_layer(vrt) ``` The layer does not appear on the map and the Jupyter server throws this error: ``` RuntimeError: `/test.vrt' does not exist in the file system, and is not recognised as a supported dataset name. ``` Am I correct in assuming that GeoNotebook supports raster layers from VRTs and if so, have I correctly gone about adding the layer?
closed
2018-08-06T19:29:36Z
2018-08-13T13:52:26Z
https://github.com/OpenGeoscience/geonotebook/issues/166
[]
naterubin
5
mljar/mljar-supervised
scikit-learn
403
supervised.exceptions ERROR No models produced
2021-05-24 18:04:12,100 supervised.exceptions ERROR No models produced. Please check your data or submit a Github issue at https://github.com/mljar/mljar-supervised/issues/new. 1_Optuna_LightGBM not trained. Stop training after the first fold. Time needed to train on the first fold 1.0 seconds. The time estimate for training on all folds is larger than total_time_limit. There was an error during 2_Optuna_Xgboost training. Please check AutoML_22\errors.md for details. There was an error during 3_Optuna_CatBoost training. Please check AutoML_22\errors.md for details. There was an error during 4_Optuna_NeuralNetwork training. Please check AutoML_22\errors.md for details. There was an error during 5_Optuna_RandomForest training. Please check AutoML_22\errors.md for details. There was an error during 6_Optuna_ExtraTrees training. Please check AutoML_22\errors.md for details. Traceback (most recent call last): File "<ipython-input-3-4182f0ec13ac>", line 1, in <module> automl.fit(X_train, y_train) File "C:\Users\bhava\Anaconda3\envs\py38\lib\site-packages\supervised\automl.py", line 337, in fit return self._fit(X, y, sample_weight, cv) File "C:\Users\bhava\Anaconda3\envs\py38\lib\site-packages\supervised\base_automl.py", line 1131, in _fit raise e File "C:\Users\bhava\Anaconda3\envs\py38\lib\site-packages\supervised\base_automl.py", line 1048, in _fit raise AutoMLException( AutoMLException: No models produced. Please check your data or submit a Github issue at https://github.com/mljar/mljar-supervised/issues/new.
closed
2021-05-24T12:47:23Z
2021-06-07T15:11:45Z
https://github.com/mljar/mljar-supervised/issues/403
[ "bug" ]
Bhavani-Shanker
9
unit8co/darts
data-science
1,853
Investigate DirRec for RegressionModels
See the discussion [here](https://github.com/unit8co/darts/issues/1852#issuecomment-1607100247), and a paper [here](https://www.researchgate.net/publication/221165768_Time_Series_Prediction_using_DirRec_Strategy)
open
2023-06-26T09:46:38Z
2023-07-21T02:58:28Z
https://github.com/unit8co/darts/issues/1853
[ "feature request" ]
dennisbader
1
yt-dlp/yt-dlp
python
12,221
Parsing YouTube videos with yt-dlp.exe on Windows with VPN
### DO NOT REMOVE OR SKIP THE ISSUE TEMPLATE - [x] I understand that I will be **blocked** if I *intentionally* remove or skip any mandatory\* field ### Checklist - [x] I'm asking a question and **not** reporting a bug or requesting a feature - [x] I've looked through the [README](https://github.com/yt-dlp/yt-dlp#readme) - [x] I've verified that I have **updated yt-dlp to nightly or master** ([update instructions](https://github.com/yt-dlp/yt-dlp#update-channels)) - [x] I've searched [known issues](https://github.com/yt-dlp/yt-dlp/issues/3766) and the [bugtracker](https://github.com/yt-dlp/yt-dlp/issues?q=) for similar questions **including closed ones**. DO NOT post duplicates - [x] I've read the [guidelines for opening an issue](https://github.com/yt-dlp/yt-dlp/blob/master/CONTRIBUTING.md#opening-an-issue) ### Please make sure the question is worded well enough to be understood I have a problem parsing YouTube videos with yt-dlp.exe on Windows, and I hope someone can help me. The operating environment is as follows: 64-bit Windows 10 1809 The latest version of yt-dlp.exe (2025.1.26) VPN: "SoftEther VPN Client Management Tool", do not specify a port. Solution attempt: yt-dlp.exe releases inbound and outbound rules Run yt-dlp.exe with administrator privileges Check VPN, the status is normal, and other software can connect to the Internet normally through VPN. yt-dlp.exe uses a proxy with a specified port to parse video information normally. Download the python module of yt-dlp, release the packaged software, and connect to the Internet normally with VPN Result: The problem still exists. How can yt-dlp.exe connect to the Internet normally on Windows through a VPN proxy without specifying a port and parse YouTube videos? I really hope someone can help me, thank you! In Windows, after allowing yt-dlp.exe to enter and exit the station, the error message of the operation is shown below. ### Provide verbose output that clearly demonstrates the problem - [x] Run **your** yt-dlp command with **-vU** flag added (`yt-dlp -vU <your command line>`) - [x] If using API, add `'verbose': True` to `YoutubeDL` params instead - [x] Copy the WHOLE output (starting with `[debug] Command-line config`) and insert it below ### Complete Verbose Output ```shell [debug] Command-line config: ['-vU', 'https://www.youtube.com/watch?v=uantfXeqTHg'] [debug] Encodings: locale cp936, fs utf-8, pref cp936, out utf-8, error utf-8, screen utf-8 [debug] yt-dlp version stable@2025.01.15 from yt-dlp/yt-dlp [c8541f8b1] (win_exe) [debug] Python 3.10.11 (CPython AMD64 64bit) - Windows-10-10.0.17763-SP0 (OpenSSL 1.1.1t 7 Feb 2023) [debug] exe versions: none [debug] Optional libraries: Cryptodome-3.21.0, brotli-1.1.0, certifi-2024.12.14, curl_cffi-0.5.10, mutagen-1.47.0, requests-2.32.3, sqlite3-3.40.1, urllib3-2.3.0, websockets-14.1 [debug] Proxy map: {'http': 'http://127.0.0.1:808', 'https': 'http://127.0.0.1:808', 'ftp': 'http://127.0.0.1:808'} [debug] Request Handlers: urllib, requests, websockets, curl_cffi [debug] Loaded 1837 extractors [debug] Fetching release info: https://api.github.com/repos/yt-dlp/yt-dlp/releases/latest ERROR: Unable to obtain version info (('Unable to connect to proxy', NewConnectionError('<urllib3.connection.HTTPSConnection object at 0x0000018562DFCF40>: Failed to establish a new connection: [WinError 10061] 由于目标计算机积极拒绝,无法 连接。'))); Please try again later or visit https://github.com/yt-dlp/yt-dlp/releases/latest [youtube] Extracting URL: https://www.youtube.com/watch?v=uantfXeqTHg [youtube] uantfXeqTHg: Downloading webpage WARNING: [youtube] Unable to download webpage: ('Unable to connect to proxy', NewConnectionError('<urllib3.connection.HTTPSConnection object at 0x0000018562E740A0>: Failed to establish a new connection: [WinError 10061] 由于目标计算机积极拒绝,无法连接。')) [youtube] uantfXeqTHg: Downloading iframe API JS WARNING: [youtube] Unable to download webpage: ('Unable to connect to proxy', NewConnectionError('<urllib3.connection.HTTPSConnection object at 0x0000018562E753F0>: Failed to establish a new connection: [WinError 10061] 由于目标计算机积极拒绝,无法连接。')) [youtube] uantfXeqTHg: Downloading tv player API JSON WARNING: [youtube] ('Unable to connect to proxy', NewConnectionError('<urllib3.connection.HTTPSConnection object at 0x0000018562E77A30>: Failed to establish a new connection: [WinError 10061] 由于目标计算机积极拒绝,无法连接。')). Retrying (1/3)... [youtube] uantfXeqTHg: Downloading tv player API JSON WARNING: [youtube] ('Unable to connect to proxy', NewConnectionError('<urllib3.connection.HTTPSConnection object at 0x0000018562E74EB0>: Failed to establish a new connection: [WinError 10061] 由于目标计算机积极拒绝,无法连接。')). Retrying (2/3)... [youtube] uantfXeqTHg: Downloading tv player API JSON WARNING: [youtube] ('Unable to connect to proxy', NewConnectionError('<urllib3.connection.HTTPSConnection object at 0x0000018562E77880>: Failed to establish a new connection: [WinError 10061] 由于目标计算机积极拒绝,无法连接。')). Retrying (3/3)... [youtube] uantfXeqTHg: Downloading tv player API JSON WARNING: [youtube] Unable to download API page: ('Unable to connect to proxy', NewConnectionError('<urllib3.connection.HTTPSConnection object at 0x0000018562E53AC0>: Failed to establish a new connection: [WinError 10061] 由于目标计算机积极 拒绝,无法连接。')) (caused by ProxyError("('Unable to connect to proxy', NewConnectionError('<urllib3.connection.HTTPSConnection object at 0x0000018562E53AC0>: Failed to establish a new connection: [WinError 10061] 由于目标计算机积极拒绝,无法连接。'))")); please report this issue on https://github.com/yt-dlp/yt-dlp/issues?q= , filling out the appropriate issue template. Confirm you are on the latest version using yt-dlp -U [youtube] uantfXeqTHg: Downloading ios player API JSON WARNING: [youtube] ('Unable to connect to proxy', NewConnectionError('<urllib3.connection.HTTPSConnection object at 0x0000018562E76800>: Failed to establish a new connection: [WinError 10061] 由于目标计算机积极拒绝,无法连接。')). Retrying (1/3)... [youtube] uantfXeqTHg: Downloading ios player API JSON WARNING: [youtube] ('Unable to connect to proxy', NewConnectionError('<urllib3.connection.HTTPSConnection object at 0x0000018562E538B0>: Failed to establish a new connection: [WinError 10061] 由于目标计算机积极拒绝,无法连接。')). Retrying (2/3)... [youtube] uantfXeqTHg: Downloading ios player API JSON WARNING: [youtube] ('Unable to connect to proxy', NewConnectionError('<urllib3.connection.HTTPSConnection object at 0x0000018562E75180>: Failed to establish a new connection: [WinError 10061] 由于目标计算机积极拒绝,无法连接。')). Retrying (3/3)... [youtube] uantfXeqTHg: Downloading ios player API JSON WARNING: [youtube] Unable to download API page: ('Unable to connect to proxy', NewConnectionError('<urllib3.connection.HTTPSConnection object at 0x0000018562E763B0>: Failed to establish a new connection: [WinError 10061] 由于目标计算机积极 拒绝,无法连接。')) (caused by ProxyError("('Unable to connect to proxy', NewConnectionError('<urllib3.connection.HTTPSConnection object at 0x0000018562E763B0>: Failed to establish a new connection: [WinError 10061] 由于目标计算机积极拒绝,无法连接。'))")); please report this issue on https://github.com/yt-dlp/yt-dlp/issues?q= , filling out the appropriate issue template. Confirm you are on the latest version using yt-dlp -U [youtube] uantfXeqTHg: Downloading web player API JSON WARNING: [youtube] ('Unable to connect to proxy', NewConnectionError('<urllib3.connection.HTTPSConnection object at 0x0000018562E755A0>: Failed to establish a new connection: [WinError 10061] 由于目标计算机积极拒绝,无法连接。')). Retrying (1/3)... [youtube] uantfXeqTHg: Downloading web player API JSON WARNING: [youtube] ('Unable to connect to proxy', NewConnectionError('<urllib3.connection.HTTPSConnection object at 0x0000018562E761A0>: Failed to establish a new connection: [WinError 10061] 由于目标计算机积极拒绝,无法连接。')). Retrying (2/3)... [youtube] uantfXeqTHg: Downloading web player API JSON WARNING: [youtube] ('Unable to connect to proxy', NewConnectionError('<urllib3.connection.HTTPSConnection object at 0x0000018562E98820>: Failed to establish a new connection: [WinError 10061] 由于目标计算机积极拒绝,无法连接。')). Retrying (3/3)... [youtube] uantfXeqTHg: Downloading web player API JSON WARNING: [youtube] Unable to download API page: ('Unable to connect to proxy', NewConnectionError('<urllib3.connection.HTTPSConnection object at 0x0000018562E74BB0>: Failed to establish a new connection: [WinError 10061] 由于目标计算机积极 拒绝,无法连接。')) (caused by ProxyError("('Unable to connect to proxy', NewConnectionError('<urllib3.connection.HTTPSConnection object at 0x0000018562E74BB0>: Failed to establish a new connection: [WinError 10061] 由于目标计算机积极拒绝,无法连接。'))")); please report this issue on https://github.com/yt-dlp/yt-dlp/issues?q= , filling out the appropriate issue template. Confirm you are on the latest version using yt-dlp -U ERROR: [youtube] uantfXeqTHg: Failed to extract any player response; please report this issue on https://github.com/yt-dlp/yt-dlp/issues?q= , filling out the appropriate issue template. Confirm you are on the latest version using yt-dlp -U File "yt_dlp\extractor\common.py", line 742, in extract File "yt_dlp\extractor\youtube.py", line 4481, in _real_extract File "yt_dlp\extractor\youtube.py", line 4445, in _download_player_responses File "yt_dlp\extractor\youtube.py", line 4087, in _extract_player_responses ```
closed
2025-01-28T08:29:00Z
2025-02-03T08:06:19Z
https://github.com/yt-dlp/yt-dlp/issues/12221
[ "question" ]
busynusleys
8
jpadilla/django-rest-framework-jwt
django
148
1.7 python manage.py cry
Hi, it's 4:45am here, good time for a lil pip update (and some tears) ! manage.py doesn't love me anymore ``` Traceback (most recent call last): File "manage.py", line 10, in <module> execute_from_command_line(sys.argv) File "/opt/virtualenvs/diagenv/lib/python2.7/site-packages/django/core/management/__init__.py", line 338, in execute_from_command_line utility.execute() File "/opt/virtualenvs/diagenv/lib/python2.7/site-packages/django/core/management/__init__.py", line 312, in execute django.setup() File "/opt/virtualenvs/diagenv/lib/python2.7/site-packages/django/__init__.py", line 18, in setup apps.populate(settings.INSTALLED_APPS) File "/opt/virtualenvs/diagenv/lib/python2.7/site-packages/django/apps/registry.py", line 108, in populate app_config.import_models(all_models) File "/opt/virtualenvs/diagenv/lib/python2.7/site-packages/django/apps/config.py", line 198, in import_models self.models_module = import_module(models_module_name) File "/usr/lib64/python2.7/importlib/__init__.py", line 37, in import_module __import__(name) File "/opt/projects/diagenv/diagproject/app/models.py", line 13, in <module> from app import helpers File "/opt/projects/diagenv/diagproject/app/helpers.py", line 6, in <module> from rest_framework_jwt import utils File "/opt/virtualenvs/diagenv/lib/python2.7/site-packages/rest_framework_jwt/utils.py", line 6, in <module> from rest_framework_jwt.compat import get_username, get_username_field File "/opt/virtualenvs/diagenv/lib/python2.7/site-packages/rest_framework_jwt/compat.py", line 12, in <module> class Serializer(rest_framework.serializers.Serializer): AttributeError: 'module' object has no attribute 'serializers' ``` Any idea ?
closed
2015-08-18T02:48:32Z
2015-09-11T01:16:02Z
https://github.com/jpadilla/django-rest-framework-jwt/issues/148
[ "bug" ]
madmoizo
1
gevent/gevent
asyncio
1,149
are the monkey.patch_* methods idempotent? i.e. what are the implications of calling monkey.patch_all() twice in the same program?
* gevent version: 1.0.2 * Python version: cpython 2.7.9 * Operating System: Please be as specific as possible: "amazon linux" for example, what is the behavior of monkey.get_original after calling patch_all twice?
closed
2018-03-22T19:00:56Z
2018-03-22T20:02:50Z
https://github.com/gevent/gevent/issues/1149
[ "Type: Question" ]
sulphide0
4
KevinMusgrave/pytorch-metric-learning
computer-vision
674
While updating conda(installing current version), I found some erros, how to solve it?
>> conda install conda=23.10.0 Result Collecting package metadata (current_repodata.json): done Solving environment: failed with initial frozen solve. Retrying with flexible solve. Solving environment: failed with repodata from current_repodata.json, will retry with next repodata source. Collecting package metadata (repodata.json): done Solving environment: failed with initial frozen solve. Retrying with flexible solve. Solving environment: \ Found conflicts! Looking for incompatible packages. This can take several minutes. Press CTRL-C to abort. failed UnsatisfiableError: The following specifications were found to be incompatible with each other: Output in format: Requested package -> Available versionsThe following specifications were found to be incompatible with your system: - feature:/linux-64::__glibc==2.31=0 - feature:|@/linux-64::__glibc==2.31=0 Your installed version is: 2.31 Note that strict channel priority may have removed packages required for satisfiability.
closed
2023-11-17T01:40:30Z
2023-12-11T07:44:47Z
https://github.com/KevinMusgrave/pytorch-metric-learning/issues/674
[ "pip/conda" ]
SC-PIONEER
2
art049/odmantic
pydantic
163
Missing a little f-strings interpolation
I think is missing an ```f``` at the beginning of the string in line 266 https://github.com/art049/odmantic/blob/f20f08f8ab1768534c1e743f7539bfe4f8c73bdd/odmantic/model.py#L265-L268
closed
2021-07-26T14:41:34Z
2022-06-01T19:51:30Z
https://github.com/art049/odmantic/issues/163
[]
supermodo
0
PokemonGoF/PokemonGo-Bot
automation
6,277
Is Bot working after Updates and talk.pogodev.org
Hi, wanted to ask if the bot is still working for the latest updates, since talk.pogodev.org is no longer available and so no installation is possible Best regards
open
2018-08-17T07:30:21Z
2018-08-17T07:30:21Z
https://github.com/PokemonGoF/PokemonGo-Bot/issues/6277
[]
ageof
0
rougier/scientific-visualization-book
numpy
59
Subplot margins (Chapter 1, Exercise 2)
Hi @rougier, There is a statement about additional figure margins for Exercise 2 solution: https://github.com/rougier/scientific-visualization-book/blob/a6e0607fa8dbcfa5e6251cd7b64b5a094ad4e0f9/code/anatomy/inch-cm.py#L13-L15 And there is a code that performs this adjustment: https://github.com/rougier/scientific-visualization-book/blob/a6e0607fa8dbcfa5e6251cd7b64b5a094ad4e0f9/code/anatomy/inch-cm.py#L27-L38 It seems that in this case we need to have 0.125 inches margin on each side (not 0.25 as in the description), and `margin=0.25` (not 0.125 as in the code) because we multiply this margin by 0.5 when we call `plt.subplots_adjust()`. Is it correct? Thank you.
closed
2022-07-10T13:19:11Z
2022-07-13T18:16:43Z
https://github.com/rougier/scientific-visualization-book/issues/59
[]
labdmitriy
1
widgetti/solara
jupyter
772
Accessing the localStorage of a browser
Does solara provide access to (read/write/modify) the browsers "localStorage" ? Thanks
open
2024-09-04T22:47:56Z
2024-11-06T02:29:09Z
https://github.com/widgetti/solara/issues/772
[]
JovanVeljanoski
2
serengil/deepface
machine-learning
624
Analyze API-endpoint failing with example request from Postman-collection
So, first of all, thanks for an amazing project! I'm running the API with Docker and when I test the selection of api-requests in the postman collection, Analyze is the only one not working. The posted image data is the default from the collection. Am I missing something here? ![image](https://user-images.githubusercontent.com/10612746/211223966-91ac37ff-cd7c-4db8-8fda-d1ede649304a.png)
closed
2023-01-08T23:22:30Z
2023-01-09T12:46:04Z
https://github.com/serengil/deepface/issues/624
[ "bug" ]
epiespen
1
horovod/horovod
tensorflow
3,804
CI: Builds fail with Numpy 1.24
Builds with Python versions newer than 3.7 fail because Numpy have changed their API in release 1.24 and some package requirements aren't restrictive enough. https://github.com/horovod/horovod/actions/runs/3837009090 ``` # ... 2023-01-03T19:09:52.2227909Z #29 28.83 File "/usr/local/lib/python3.8/dist-packages/pandas/_testing.py", line 24, in <module> 2023-01-03T19:09:52.2228233Z #29 28.83 import pandas._libs.testing as _testing 2023-01-03T19:09:52.2228836Z #29 28.83 File "pandas/_libs/testing.pyx", line 10, in init pandas._libs.testing 2023-01-03T19:09:52.2229288Z #29 28.83 File "/usr/local/lib/python3.8/dist-packages/numpy/__init__.py", line 284, in __getattr__ 2023-01-03T19:09:52.2229635Z #29 28.83 raise AttributeError("module {!r} has no attribute " 2023-01-03T19:09:52.2230033Z #29 28.83 AttributeError: module 'numpy' has no attribute 'bool' ```
closed
2023-01-04T19:39:33Z
2023-01-05T23:11:10Z
https://github.com/horovod/horovod/issues/3804
[ "bug" ]
maxhgerlach
1
autogluon/autogluon
scikit-learn
3,813
DDP issue
**Bug Report Checklist** import pyarrow.parquet as pq from autogluon.multimodal import MultiModalPredictor import os train_data = pq.read_table('features_with_label.parquet').to_pandas() metric = 'f1' time_limit = 180 predictor = MultiModalPredictor(label='label', eval_metric=metric) predictor.fit(train_data, time_limit=time_limit) **Describe the bug** I am trying to use MultiModalPredictor to perform classification on combination of text and tabular data. I am running my code on "ml.p3.8xlarge" instance with kernel "conda_pytorch_py310". I am getting below eror “Lightning can’t create new processes if CUDA is already initialized. Did you manually call `torch.cuda.*` functions, have moved the model to the device, or allocated memory on the GPU any other way? Please remove any such calls, or change the selected strategy. You will have to restart the Python kernel.” **Screenshots / Logs** [error_logs.txt](https://github.com/autogluon/autogluon/files/13666797/error_logs.txt) ```python python version = Python 3.10.13 Lightning version = '2.0.9.post0' autogluon = 2.21 ```
closed
2023-12-14T00:01:48Z
2024-06-27T10:36:23Z
https://github.com/autogluon/autogluon/issues/3813
[ "bug: unconfirmed", "Needs Triage", "module: multimodal" ]
vinayakkarande
3
xinntao/Real-ESRGAN
pytorch
651
The l_g_percep loss increased gradually, why
Your l_g_percep loss increased when traing?
open
2023-06-28T08:16:07Z
2023-06-28T08:16:07Z
https://github.com/xinntao/Real-ESRGAN/issues/651
[]
FengMu1995
0
ARM-DOE/pyart
data-visualization
1,157
DOC: Put together a blog post pairing SPC reports w/ NEXRAD data
Russ put together a great example of an animation of SPC reports and NEXRAD data - this would make a GREAT blog post [Link to thread on twitter](https://twitter.com/russ_schumacher/status/1522645682812690432) [Link to example notebook on Github](https://github.com/russ-schumacher/ats641_spring2022/blob/master/example_notebooks/pyart_nexrad_maps_reports.ipynb)
closed
2022-05-09T14:56:18Z
2022-11-23T19:25:46Z
https://github.com/ARM-DOE/pyart/issues/1157
[ "good first issue", "blog-post" ]
mgrover1
1
tensorpack/tensorpack
tensorflow
840
More pre-trained Faster RCNN Model?
Hi, according to this [page](http://models.tensorpack.com/FasterRCNN) | COCO-R101C4-MaskRCNN-Standard.npz | 196 MiB | (sha256) | | -- | -- | -- | | COCO-R50C4-MaskRCNN-Standard.npz | 128 MiB | (sha256)| | COCO-R50FPN-MaskRCNN-Standard.npz | 158 MiB | (sha256)| | ImageNet-R101-AlignPadding.npz | 158 MiB | (sha256)| | ImageNet-R50-AlignPadding.npz | 91 MiB | (sha256)| | ImageNet-R50-GroupNorm32-AlignPadding.npz | 88 MiB | (sha256)| Will you provide more pretrained model such as `COCO-R101FPN` or `COCO-R152FPN`? Thank you!
closed
2018-07-23T21:56:52Z
2018-07-27T06:24:52Z
https://github.com/tensorpack/tensorpack/issues/840
[ "examples" ]
PacteraOliver
5
getsentry/sentry
django
87,321
[RELEASES] Replace direct links to the release details page with links to open the release flyout
At the time of writing I don't have a complete list of places that link to release details. There is a Release Hovercard thing that should also exist at all the callsites. In the end we want all links in the app to: - have a release hovercard, i assume this is already the case - to open the new release flyout instead of linking directly to release details or the release list page To help ease the migration the release flyout _could_ have a link along the lines of "Click here to view the old Release Details page" so people can still get back to the old thing. This is probably a good idea, but TBD right now.
open
2025-03-18T19:55:37Z
2025-03-18T19:55:37Z
https://github.com/getsentry/sentry/issues/87321
[]
ryan953
0
RayVentura/ShortGPT
automation
78
🐛 [Bug]: Some images does not added to video
### What happened? I found images added to video are less than the searched result image list. ### What type of browser are you seeing the problem on? Microsoft Edge ### What type of Operating System are you seeing the problem on? Windows ### Python Version 3.10 ### Application Version stable branch ### Expected Behavior images should be added properly ### Error Message ```shell got the exception stacktrace `Traceback (most recent call last): File "D:\Codebase\ContentGen\shortGPT\editing_framework\core_editing_engine.py", line 59, in generate_video clip = self.process_image_asset(asset) File "D:\Codebase\ContentGen\shortGPT\editing_framework\core_editing_engine.py", line 212, in process_image_asset clip = ImageClip(asset['parameters']['url']) File "C:\Users\1\AppData\Local\Programs\Python\Python310\lib\site-packages\moviepy\video\VideoClip.py", line 889, in __init__ img = imread(img) File "C:\Users\1\AppData\Local\Programs\Python\Python310\lib\site-packages\imageio\__init__.py", line 97, in imread return imread_v2(uri, format=format, **kwargs) File "C:\Users\1\AppData\Local\Programs\Python\Python310\lib\site-packages\imageio\v2.py", line 359, in imread with imopen(uri, "ri", **imopen_args) as file: File "C:\Users\1\AppData\Local\Programs\Python\Python310\lib\site-packages\imageio\core\imopen.py", line 196, in imopen plugin_instance = candidate_plugin(request, **kwargs) File "C:\Users\1\AppData\Local\Programs\Python\Python310\lib\site-packages\imageio\plugins\pillow.py", line 83, in __init__ with Image.open(request.get_file()): File "C:\Users\1\AppData\Local\Programs\Python\Python310\lib\site-packages\PIL\Image.py", line 2994, in open im = _open_core(fp, filename, prefix, formats) File "C:\Users\1\AppData\Local\Programs\Python\Python310\lib\site-packages\PIL\Image.py", line 2980, in _open_core im = factory(fp, filename) File "C:\Users\1\AppData\Local\Programs\Python\Python310\lib\site-packages\PIL\ImageFile.py", line 112, in __init__ self._open() File "C:\Users\1\AppData\Local\Programs\Python\Python310\lib\site-packages\PIL\ImImagePlugin.py", line 153, in _open s = s + self.fp.readline() AttributeError: 'SeekableFileObject' object has no attribute 'readline'` ``` ### Code to produce this issue. ```shell I add stacktrace code to see what exception it throws shortGPT/editing_framework/core_editing_engine.py ` elif asset_type == 'image': try: print(asset['parameters']['url']) clip = self.process_image_asset(asset) print(clip) except Exception as e: traceback.print_exc() continue` ``` ### Screenshots/Assets/Relevant links [Related imageio issue](https://github.com/imageio/imageio/issues/1007)
open
2023-08-03T10:26:27Z
2023-08-04T07:21:50Z
https://github.com/RayVentura/ShortGPT/issues/78
[ "bug" ]
cnwillz
1