repo_name
stringlengths
9
75
topic
stringclasses
30 values
issue_number
int64
1
203k
title
stringlengths
1
976
body
stringlengths
0
254k
state
stringclasses
2 values
created_at
stringlengths
20
20
updated_at
stringlengths
20
20
url
stringlengths
38
105
labels
sequencelengths
0
9
user_login
stringlengths
1
39
comments_count
int64
0
452
napari/napari
numpy
7,129
Widgets with return type annotation `List[LayerDataTuple]` don't get their layers added to the `Viewer`
### 🐛 Bug Report In `0.5.0` we dropped support for python 3.8, which included some typing changes. Notably, the `list` type no longer needed importing `from typing import List`, but could be used directly. This led to a change in the types we register with `magicgui` - notably, we now use the builtin `list` type for `LayerDataTuple` [here](https://github.com/napari/napari/pull/6738/files#diff-0d09c2e8083dd5acfebfeffc8e34e4c44d781e246d736d6e7db79feae78194d6R160). Now, any magicgui widget that is return type annotated with the imported `List[LayerDataTuple]` no longer works i.e. the layers are not added to the viewer. ### 💡 Steps to Reproduce 1. Run the following script ```python import numpy as np import napari from magicgui import magic_factory from napari.types import LayerDataTuple from typing import List @magic_factory def layer_return( first_layer: 'napari.types.ImageData', # ) -> list[LayerDataTuple]: ) -> List[LayerDataTuple]: layer_tuple = (first_layer, {}, 'image') layer_tuple_list = [layer_tuple] return layer_tuple_list viewer = napari.Viewer() viewer.add_image(np.random.rand(20, 20)) viewer.window.add_dock_widget(layer_return()) napari.run() ``` 2. Click the `Run` button on the widget 3. Nothing happens. 4. Swap the uncommented return statement 5. Run the script 6. Click `Run` button on the widget 7. Layer gets added ### 💡 Expected Behavior I expected the layer to be added to the viewer regardless of whether the builtin `list` type is used or whether we import `from typing import List`. ### 🌎 Environment ``` napari: 0.5.0 Platform: macOS-10.16-x86_64-i386-64bit System: MacOS 14.5 Python: 3.10.14 (main, May 6 2024, 14:47:20) [Clang 14.0.6 ] Qt: 5.15.2 PyQt5: 5.15.10 NumPy: 1.26.4 SciPy: 1.14.0 Dask: 2024.7.1 VisPy: 0.14.3 magicgui: 0.8.3 superqt: 0.6.7 in-n-out: 0.2.1 app-model: 0.2.8 npe2: 0.7.6 OpenGL: - GL version: 2.1 INTEL-22.5.11 - MAX_TEXTURE_SIZE: 16384 - GL_MAX_3D_TEXTURE_SIZE: 2048 Screens: - screen 1: resolution 1440x900, scale 2.0 - screen 2: resolution 3840x2160, scale 1.0 Optional: - numba: 0.60.0 - triangle not installed Settings path: - /Users/ddoncilapop/Library/Application Support/napari/stardist_d7f2585946fc58f34534dbaf8ce99a60b9039489/settings.yaml Plugins: - napari: 0.5.0 (81 contributions) - napari-console: 0.0.9 (0 contributions) - napari-svg: 0.2.0 (2 contributions) - stardist-napari: 2022.12.6 (8 contributions) ``` ### 💡 Additional Context We can bandaid fix this by changing line #160 in [this file](https://github.com/napari/napari/blob/main/napari/types.py#L160) to ```python for type_ in (LayerDataTuple, list[LayerDataTuple], List[LayerDataTuple]): ``` But it's not clear that this should be the final solution - maybe we should be doing some disambiguating in magicgui? I also haven't checked whether other types are affected.
closed
2024-07-26T04:50:31Z
2024-11-25T20:50:59Z
https://github.com/napari/napari/issues/7129
[ "bug", "priority:high", "triage:probably solved" ]
DragaDoncila
11
pytorch/pytorch
machine-learning
149,774
bound_sympy() produces incorrect result for mod
### 🐛 Describe the bug `bound_sympy(s0 - (s0 % 8))` produces an incorrect range of [-5, inf], when the correct answer is [0, inf] (s0 has a bound of [2, inf]. My guess is this happens because each term is evaluated individually, with s0 resolving to [2, inf], and -(s0 % 8) resolving to [-7, 0], combining for a range of [-5, inf]. Not sure what the efficient fix is. xref: https://fb.workplace.com/groups/pytorch.edge2.team/posts/1163036018285582/?comment_id=1163038158285368&reply_comment_id=1164412728147911 ``` from torch.utils._sympy.value_ranges import bound_sympy class Foo(torch.nn.Module): def forward(self, x): expr = x.shape[0] - (x.shape[0] % 8) # s0 - (s0 % 8) return torch.empty(expr) ep = export( Foo(), (torch.randn(13),), dynamic_shapes={"x": (Dim("dim", min=2),)}, ) val = [node for node in ep.graph.nodes][-2].meta["val"] expr = val.shape[0].node.expr var_to_ranges = val.shape[0].node.shape_env.var_to_range print(bound_sympy(val.shape[0], var_to_ranges)) # [-5, inf], should be [0, inf] ``` ### Versions . cc @chauhang @penguinwu @ezyang @bobrenjc93 @avikchaudhuri @gmagogsfm @zhxchen17 @tugsbayasgalan @angelayi @suo @ydwu4
open
2025-03-21T23:07:36Z
2025-03-24T09:40:47Z
https://github.com/pytorch/pytorch/issues/149774
[ "triaged", "oncall: pt2", "module: dynamic shapes", "oncall: export" ]
pianpwk
2
mwaskom/seaborn
pandas
3,484
How to show all x-tick labels with seaborn.objects?
How do I make it so that it shows all x ticks from 0 to 9? ``` import pandas as pd import seaborn.objects as so diff_df = pd.DataFrame({'bin': [0,1,9,3,4,2,3,4,7,5,6,7,8,9], 'diff': [1,0,1,1,1,3,2,4,1,2,3,0,2,1]}) ( so.Plot(x='bin', y='diff', data=diff_df) .theme({**axes_style("whitegrid"), "grid.linestyle": ":"}) .add(so.Dots()) .add(so.Range(color='orange'), so.Est()) .add(so.Dot(color='orange'), so.Agg()) .add(so.Line(color='orange'), so.Agg()) .label( x="Image Similarity Bin", y="Difference", color=str.capitalize, ) ) ``` I tried to set xticks in .label, but it doesn't do anything. SO: https://stackoverflow.com/questions/77137092/how-to-show-all-x-tick-labels-with-seaborn-objects
closed
2023-09-19T19:10:04Z
2023-09-19T21:12:56Z
https://github.com/mwaskom/seaborn/issues/3484
[]
anya-ji
5
AUTOMATIC1111/stable-diffusion-webui
pytorch
15,818
[Bug]: Error when using --precision full
### Checklist - [X] The issue exists after disabling all extensions - [X] The issue exists on a clean installation of webui - [ ] The issue is caused by an extension, but I believe it is caused by a bug in the webui - [X] The issue exists in the current version of the webui - [X] The issue has not been reported before recently - [ ] The issue has been reported before but has not been fixed yet ### What happened? A1111 report error on generation. ### Steps to reproduce the problem - Add `--precision full` to command line arg - Load a half precision checkpoint - Click generate - Observe error message ### What should have happened? Generation without error. ### What browsers do you use to access the UI ? Google Chrome ### Sysinfo [sysinfo-2024-05-16-19-47.json](https://github.com/AUTOMATIC1111/stable-diffusion-webui/files/15340122/sysinfo-2024-05-16-19-47.json) ### Console logs ```Shell 0%| | 0/20 [00:00<?, ?it/s] *** Error completing request *** Arguments: ('task(1ztcgh7sjo0if7m)', <gradio.routes.Request object at 0x0000017608058AF0>, '', '', [], 1, 1, 7, 512, 512, False, 0.7, 2, 'Latent', 0, 0, 0, 'Use same checkpoint', 'Use same sampler', 'Use same scheduler', '', '', [], 0, 20, 'DPM++ 2M', 'Automatic', False, '', 0.8, -1, False, -1, 0, 0, 0, False, False, {'ad_model': 'face_yolov8n.pt', 'ad_model_classes': '', 'ad_prompt': '', 'ad_negative_prompt': '', 'ad_confidence': 0.3, 'ad_mask_k_largest': 0, 'ad_mask_min_ratio': 0, 'ad_mask_max_ratio': 1, 'ad_x_offset': 0, 'ad_y_offset': 0, 'ad_dilate_erode': 4, 'ad_mask_merge_invert': 'None', 'ad_mask_blur': 4, 'ad_denoising_strength': 0.4, 'ad_inpaint_only_masked': True, 'ad_inpaint_only_masked_padding': 32, 'ad_use_inpaint_width_height': False, 'ad_inpaint_width': 512, 'ad_inpaint_height': 512, 'ad_use_steps': False, 'ad_steps': 28, 'ad_use_cfg_scale': False, 'ad_cfg_scale': 7, 'ad_use_checkpoint': False, 'ad_checkpoint': 'Use same checkpoint', 'ad_use_vae': False, 'ad_vae': 'Use same VAE', 'ad_use_sampler': False, 'ad_sampler': 'DPM++ 2M', 'ad_scheduler': 'Use same scheduler', 'ad_use_noise_multiplier': False, 'ad_noise_multiplier': 1, 'ad_use_clip_skip': False, 'ad_clip_skip': 1, 'ad_restore_face': False, 'ad_controlnet_model': 'None', 'ad_controlnet_module': 'None', 'ad_controlnet_weight': 1, 'ad_controlnet_guidance_start': 0, 'ad_controlnet_guidance_end': 1, 'is_api': ()}, {'ad_model': 'None', 'ad_model_classes': '', 'ad_prompt': '', 'ad_negative_prompt': '', 'ad_confidence': 0.3, 'ad_mask_k_largest': 0, 'ad_mask_min_ratio': 0, 'ad_mask_max_ratio': 1, 'ad_x_offset': 0, 'ad_y_offset': 0, 'ad_dilate_erode': 4, 'ad_mask_merge_invert': 'None', 'ad_mask_blur': 4, 'ad_denoising_strength': 0.4, 'ad_inpaint_only_masked': True, 'ad_inpaint_only_masked_padding': 32, 'ad_use_inpaint_width_height': False, 'ad_inpaint_width': 512, 'ad_inpaint_height': 512, 'ad_use_steps': False, 'ad_steps': 28, 'ad_use_cfg_scale': False, 'ad_cfg_scale': 7, 'ad_use_checkpoint': False, 'ad_checkpoint': 'Use same checkpoint', 'ad_use_vae': False, 'ad_vae': 'Use same VAE', 'ad_use_sampler': False, 'ad_sampler': 'DPM++ 2M', 'ad_scheduler': 'Use same scheduler', 'ad_use_noise_multiplier': False, 'ad_noise_multiplier': 1, 'ad_use_clip_skip': False, 'ad_clip_skip': 1, 'ad_restore_face': False, 'ad_controlnet_model': 'None', 'ad_controlnet_module': 'None', 'ad_controlnet_weight': 1, 'ad_controlnet_guidance_start': 0, 'ad_controlnet_guidance_end': 1, 'is_api': ()}, False, 7, 100, 'Constant', 0, 'Constant', 0, 4, True, 'MEAN', 'AD', 1, ControlNetUnit(is_ui=True, input_mode=<InputMode.SIMPLE: 'simple'>, batch_images='', output_dir='', loopback=False, enabled=False, module='none', model='None', weight=1.0, image=None, resize_mode=<ResizeMode.INNER_FIT: 'Crop and Resize'>, low_vram=False, processor_res=64, threshold_a=64.0, threshold_b=64.0, guidance_start=0.0, guidance_end=1.0, pixel_perfect=False, control_mode=<ControlMode.BALANCED: 'Balanced'>, inpaint_crop_input_image=False, hr_option=<HiResFixOption.BOTH: 'Both'>, save_detected_map=True, advanced_weighting=None, effective_region_mask=None, pulid_mode=<PuLIDMode.FIDELITY: 'Fidelity'>, ipadapter_input=None, mask=None, batch_mask_dir=None, animatediff_batch=False, batch_modifiers=[], batch_image_files=[]), ControlNetUnit(is_ui=True, input_mode=<InputMode.SIMPLE: 'simple'>, batch_images='', output_dir='', loopback=False, enabled=False, module='none', model='None', weight=1.0, image=None, resize_mode=<ResizeMode.INNER_FIT: 'Crop and Resize'>, low_vram=False, processor_res=64, threshold_a=64.0, threshold_b=64.0, guidance_start=0.0, guidance_end=1.0, pixel_perfect=False, control_mode=<ControlMode.BALANCED: 'Balanced'>, inpaint_crop_input_image=False, hr_option=<HiResFixOption.BOTH: 'Both'>, save_detected_map=True, advanced_weighting=None, effective_region_mask=None, pulid_mode=<PuLIDMode.FIDELITY: 'Fidelity'>, ipadapter_input=None, mask=None, batch_mask_dir=None, animatediff_batch=False, batch_modifiers=[], batch_image_files=[]), ControlNetUnit(is_ui=True, input_mode=<InputMode.SIMPLE: 'simple'>, batch_images='', output_dir='', loopback=False, enabled=False, module='none', model='None', weight=1.0, image=None, resize_mode=<ResizeMode.INNER_FIT: 'Crop and Resize'>, low_vram=False, processor_res=64, threshold_a=64.0, threshold_b=64.0, guidance_start=0.0, guidance_end=1.0, pixel_perfect=False, control_mode=<ControlMode.BALANCED: 'Balanced'>, inpaint_crop_input_image=False, hr_option=<HiResFixOption.BOTH: 'Both'>, save_detected_map=True, advanced_weighting=None, effective_region_mask=None, pulid_mode=<PuLIDMode.FIDELITY: 'Fidelity'>, ipadapter_input=None, mask=None, batch_mask_dir=None, animatediff_batch=False, batch_modifiers=[], batch_image_files=[]), ControlNetUnit(is_ui=True, input_mode=<InputMode.SIMPLE: 'simple'>, batch_images='', output_dir='', loopback=False, enabled=False, module='none', model='None', weight=1.0, image=None, resize_mode=<ResizeMode.INNER_FIT: 'Crop and Resize'>, low_vram=False, processor_res=64, threshold_a=64.0, threshold_b=64.0, guidance_start=0.0, guidance_end=1.0, pixel_perfect=False, control_mode=<ControlMode.BALANCED: 'Balanced'>, inpaint_crop_input_image=False, hr_option=<HiResFixOption.BOTH: 'Both'>, save_detected_map=True, advanced_weighting=None, effective_region_mask=None, pulid_mode=<PuLIDMode.FIDELITY: 'Fidelity'>, ipadapter_input=None, mask=None, batch_mask_dir=None, animatediff_batch=False, batch_modifiers=[], batch_image_files=[]), ControlNetUnit(is_ui=True, input_mode=<InputMode.SIMPLE: 'simple'>, batch_images='', output_dir='', loopback=False, enabled=False, module='none', model='None', weight=1.0, image=None, resize_mode=<ResizeMode.INNER_FIT: 'Crop and Resize'>, low_vram=False, processor_res=64, threshold_a=64.0, threshold_b=64.0, guidance_start=0.0, guidance_end=1.0, pixel_perfect=False, control_mode=<ControlMode.BALANCED: 'Balanced'>, inpaint_crop_input_image=False, hr_option=<HiResFixOption.BOTH: 'Both'>, save_detected_map=True, advanced_weighting=None, effective_region_mask=None, pulid_mode=<PuLIDMode.FIDELITY: 'Fidelity'>, ipadapter_input=None, mask=None, batch_mask_dir=None, animatediff_batch=False, batch_modifiers=[], batch_image_files=[]), False, 1, False, False, 3, 0.1, 0, 0, '', 0, 25, False, False, False, 'BREAK', '-', 0.2, 10, False, False, 'Matrix', 'Columns', 'Mask', 'Prompt', '1,1', '0.2', False, False, False, 'Attention', [False], '0', '0', '0.4', None, '0', '0', False, False, False, 0, None, [], 0, False, [], [], False, 0, 1, False, False, 0, None, [], -2, False, [], False, 0, None, None, False, False, 'positive', 'comma', 0, False, False, 'start', '', 1, '', [], 0, '', [], 0, '', [], True, False, False, False, False, False, False, 0, False, None, None, False, None, None, False, None, None, False, None, None, False, None, None, False, 50, [], 30, '', 4, [], 1, '', '', '', '') {} Traceback (most recent call last): File "D:\stable-diffusion-webui\modules\call_queue.py", line 57, in f res = list(func(*args, **kwargs)) File "D:\stable-diffusion-webui\modules\call_queue.py", line 36, in f res = func(*args, **kwargs) File "D:\stable-diffusion-webui\modules\txt2img.py", line 109, in txt2img processed = processing.process_images(p) File "D:\stable-diffusion-webui\modules\processing.py", line 845, in process_images res = process_images_inner(p) File "D:\stable-diffusion-webui\extensions\sd-webui-controlnet\scripts\batch_hijack.py", line 59, in processing_process_images_hijack return getattr(processing, '__controlnet_original_process_images_inner')(p, *args, **kwargs) File "D:\stable-diffusion-webui\modules\processing.py", line 981, in process_images_inner samples_ddim = p.sample(conditioning=p.c, unconditional_conditioning=p.uc, seeds=p.seeds, subseeds=p.subseeds, subseed_strength=p.subseed_strength, prompts=p.prompts) File "D:\stable-diffusion-webui\modules\processing.py", line 1328, in sample samples = self.sampler.sample(self, x, conditioning, unconditional_conditioning, image_conditioning=self.txt2img_image_conditioning(x)) File "D:\stable-diffusion-webui\modules\sd_samplers_kdiffusion.py", line 218, in sample samples = self.launch_sampling(steps, lambda: self.func(self.model_wrap_cfg, x, extra_args=self.sampler_extra_args, disable=False, callback=self.callback_state, **extra_params_kwargs)) File "D:\stable-diffusion-webui\modules\sd_samplers_common.py", line 272, in launch_sampling return func() File "D:\stable-diffusion-webui\modules\sd_samplers_kdiffusion.py", line 218, in <lambda> samples = self.launch_sampling(steps, lambda: self.func(self.model_wrap_cfg, x, extra_args=self.sampler_extra_args, disable=False, callback=self.callback_state, **extra_params_kwargs)) File "D:\stable-diffusion-webui\venv\lib\site-packages\torch\utils\_contextlib.py", line 115, in decorate_context return func(*args, **kwargs) File "D:\stable-diffusion-webui\repositories\k-diffusion\k_diffusion\sampling.py", line 594, in sample_dpmpp_2m denoised = model(x, sigmas[i] * s_in, **extra_args) File "D:\stable-diffusion-webui\venv\lib\site-packages\torch\nn\modules\module.py", line 1518, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "D:\stable-diffusion-webui\venv\lib\site-packages\torch\nn\modules\module.py", line 1527, in _call_impl return forward_call(*args, **kwargs) File "D:\stable-diffusion-webui\modules\sd_samplers_cfg_denoiser.py", line 237, in forward x_out = self.inner_model(x_in, sigma_in, cond=make_condition_dict(cond_in, image_cond_in)) File "D:\stable-diffusion-webui\venv\lib\site-packages\torch\nn\modules\module.py", line 1518, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "D:\stable-diffusion-webui\venv\lib\site-packages\torch\nn\modules\module.py", line 1527, in _call_impl return forward_call(*args, **kwargs) File "D:\stable-diffusion-webui\repositories\k-diffusion\k_diffusion\external.py", line 112, in forward eps = self.get_eps(input * c_in, self.sigma_to_t(sigma), **kwargs) File "D:\stable-diffusion-webui\repositories\k-diffusion\k_diffusion\external.py", line 138, in get_eps return self.inner_model.apply_model(*args, **kwargs) File "D:\stable-diffusion-webui\modules\sd_models_xl.py", line 44, in apply_model return self.model(x, t, cond) File "D:\stable-diffusion-webui\venv\lib\site-packages\torch\nn\modules\module.py", line 1518, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "D:\stable-diffusion-webui\venv\lib\site-packages\torch\nn\modules\module.py", line 1527, in _call_impl return forward_call(*args, **kwargs) File "D:\stable-diffusion-webui\modules\sd_hijack_utils.py", line 18, in <lambda> setattr(resolved_obj, func_path[-1], lambda *args, **kwargs: self(*args, **kwargs)) File "D:\stable-diffusion-webui\modules\sd_hijack_utils.py", line 32, in __call__ return self.__orig_func(*args, **kwargs) File "D:\stable-diffusion-webui\repositories\generative-models\sgm\modules\diffusionmodules\wrappers.py", line 28, in forward return self.diffusion_model( File "D:\stable-diffusion-webui\venv\lib\site-packages\torch\nn\modules\module.py", line 1518, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "D:\stable-diffusion-webui\venv\lib\site-packages\torch\nn\modules\module.py", line 1527, in _call_impl return forward_call(*args, **kwargs) File "D:\stable-diffusion-webui\modules\sd_unet.py", line 91, in UNetModel_forward return original_forward(self, x, timesteps, context, *args, **kwargs) File "D:\stable-diffusion-webui\repositories\generative-models\sgm\modules\diffusionmodules\openaimodel.py", line 984, in forward emb = self.time_embed(t_emb) File "D:\stable-diffusion-webui\venv\lib\site-packages\torch\nn\modules\module.py", line 1518, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "D:\stable-diffusion-webui\venv\lib\site-packages\torch\nn\modules\module.py", line 1527, in _call_impl return forward_call(*args, **kwargs) File "D:\stable-diffusion-webui\venv\lib\site-packages\torch\nn\modules\container.py", line 215, in forward input = module(input) File "D:\stable-diffusion-webui\venv\lib\site-packages\torch\nn\modules\module.py", line 1518, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "D:\stable-diffusion-webui\venv\lib\site-packages\torch\nn\modules\module.py", line 1527, in _call_impl return forward_call(*args, **kwargs) File "D:\stable-diffusion-webui\extensions-builtin\Lora\networks.py", line 503, in network_Linear_forward return originals.Linear_forward(self, input) File "D:\stable-diffusion-webui\venv\lib\site-packages\torch\nn\modules\linear.py", line 114, in forward return F.linear(input, self.weight, self.bias) RuntimeError: mat1 and mat2 must have the same dtype, but got Float and Half ``` ``` ### Additional information _No response_
open
2024-05-16T19:48:40Z
2024-06-09T20:09:51Z
https://github.com/AUTOMATIC1111/stable-diffusion-webui/issues/15818
[ "bug-report" ]
huchenlei
2
blb-ventures/strawberry-django-plus
graphql
187
Permissions: applying IsAuthenticated directive to entire schema
Hi there, Instead of applying the `IsAuthenticated()` directive to individual fields, I'm looking to apply this to an entire schema. I'd wondered if this might work, but it doesn't: ```python authenticated_schema = gql.Schema( query=AuthenticatedQueries, mutation=AuthenticatedMutations, extensions=[SchemaDirectiveExtension], directives=[IsAuthenticated()] ) ``` I get a type error: `Expected type 'Iterable[StrawberryDirective]', got 'list[IsAuthenticated]' instead` And an actual error: `AttributeError: 'IsAuthenticated' object has no attribute 'arguments'`. Any thoughts?
open
2023-03-14T13:55:19Z
2023-03-22T18:35:18Z
https://github.com/blb-ventures/strawberry-django-plus/issues/187
[]
gghdev
3
matplotlib/matplotlib
data-visualization
29,487
[Bug]: LinearSegmentedColormap returns different results for int/float when used as a function
### Bug summary When invoking a `LinearSegmentedColormap`  object as a function, the output can differ based on whether you pass an integer or a float. For example, in the code snippet below, `cmap(1)` returns a completely different result than `cmap(1.0)`. While this behavior might be expected given how the colormap is implemented, it feels unintuitive. IMO the provided reprex demonstrates the issue clearly, but please let me know if more details are needed. ### Code for reproduction ```Python from matplotlib.colors import LinearSegmentedColormap cmap = LinearSegmentedColormap.from_list(name="reprex", colors=["red", "blue"]) print("cmap(0):", cmap(0)) print("cmap(1):", cmap(1)) print("cmap(1.0):", cmap(1.0)) ``` ### Actual outcome `cmap(0): (np.float64(1.0), np.float64(0.0), np.float64(0.0), np.float64(1.0))` (red) `cmap(1): (np.float64(0.996078431372549), np.float64(0.0), np.float64(0.00392156862745098), np.float64(1.0))` (red) `cmap(1.0): (np.float64(0.0), np.float64(0.0), np.float64(1.0), np.float64(1.0))` (blue) ### Expected outcome `cmap(0): (np.float64(1.0), np.float64(0.0), np.float64(0.0), np.float64(1.0))` (red) `cmap(1): (np.float64(0.0), np.float64(0.0), np.float64(1.0), np.float64(1.0))` (blue) `cmap(1.0): (np.float64(0.0), np.float64(0.0), np.float64(1.0), np.float64(1.0))` (blue) ### Additional information _No response_ ### Operating system MacOS Sonoma 14.6.1 ### Matplotlib Version 3.10.0 ### Matplotlib Backend module://positron_ipykernel.matplotlib_backend ### Python version Python 3.13.1 ### Jupyter version / ### Installation pip
closed
2025-01-20T10:45:34Z
2025-01-20T11:51:12Z
https://github.com/matplotlib/matplotlib/issues/29487
[ "status: duplicate" ]
JosephBARBIERDARNAL
1
modelscope/data-juicer
streamlit
138
[Bug]:我添加了个随机抽样的操作符,并且已经测试成功,但是在配置文件中使用的时候报错如下,是为什么呢?
### Before Reporting 报告之前 - [X] I have pulled the latest code of main branch to run again and the bug still existed. 我已经拉取了主分支上最新的代码,重新运行之后,问题仍不能解决。 - [X] I have read the [README](https://github.com/alibaba/data-juicer/blob/main/README.md) carefully and no error occurred during the installation process. (Otherwise, we recommend that you can ask a question using the Question template) 我已经仔细阅读了 [README](https://github.com/alibaba/data-juicer/blob/main/README_ZH.md) 上的操作指引,并且在安装过程中没有错误发生。(否则,我们建议您使用Question模板向我们进行提问) ### Search before reporting 先搜索,再报告 - [X] I have searched the Data-Juicer [issues](https://github.com/alibaba/data-juicer/issues) and found no similar bugs. 我已经在 [issue列表](https://github.com/alibaba/data-juicer/issues) 中搜索但是没有发现类似的bug报告。 ### OS 系统 ubuntu ### Installation Method 安装方式 source ### Data-Juicer Version Data-Juicer版本 _No response_ ### Python Version Python版本 3.9 ### Describe the bug 描述这个bug <img width="903" alt="截屏2023-12-14 下午6 45 04" src="https://github.com/alibaba/data-juicer/assets/116297296/9158252c-308e-432d-879d-cee63deded36"> 上述是测试结果输出。 然后在配置文件中如下: <img width="416" alt="截屏2023-12-14 下午6 45 57" src="https://github.com/alibaba/data-juicer/assets/116297296/649ec6d2-0cdb-446d-a8d6-0c715a86ee69"> 显示错误,输出结果为: <img width="1022" alt="截屏2023-12-14 下午6 46 25" src="https://github.com/alibaba/data-juicer/assets/116297296/e1657b5f-a7d2-49ec-af31-583c91a8337e"> ### To Reproduce 如何复现 import sys import random # 新添加的模块 from jsonargparse.typing import PositiveFloat # 修改导入 from data_juicer.utils.availability_utils import AvailabilityChecking from data_juicer.utils.constant import Fields, StatsKeys from data_juicer.utils.model_utils import get_model, prepare_model from ..base_op import OPERATORS, Filter from ..common import get_words_from_document @OPERATORS.register_module('random_sample_filter') class RandomSampleFilter(Filter): """Filter to randomly sample a percentage of samples.""" def __init__(self, tokenization: bool = False, sample_percentage: PositiveFloat = 0.1, # 修改参数 *args, **kwargs): """ Initialization method. :param hf_tokenizer: the tokenizer name of Hugging Face tokenizers. :param sample_percentage: The percentage of samples to keep. :param args: extra args :param kwargs: extra args """ super().__init__(*args, **kwargs) self.sample_percentage = sample_percentage self.model_key = None def compute_stats(self, sample): # 不再计算标记数 return sample def process(self, sample): # 根据随机概率决定是否保留样本 if random.uniform(0, 1) <= self.sample_percentage: return True else: return False 这是我的random_sample_filter.py文件。 ### Configs 配置信息 _No response_ ### Logs 报错日志 _No response_ ### Screenshots 截图 _No response_ ### Additional 额外信息 _No response_
closed
2023-12-14T10:47:11Z
2023-12-15T02:51:22Z
https://github.com/modelscope/data-juicer/issues/138
[ "bug" ]
hitszxs
5
lexiforest/curl_cffi
web-scraping
125
Only version 0.1.5 can be installed
python:3.6.8 os: Linux ecom-darwin-eip 5.4.119-1-tlinux4-0009-eks #1 SMP Sat Apr 15 20:30:49 CST 2023 x86_64 x86_64 x86_64 GNU/Linux By default, only this version can be installed. Installing a higher version is abnormal。 <img width="941" alt="image" src="https://github.com/yifeikong/curl_cffi/assets/29711470/37669a14-f121-44fb-be54-721af3936437">
closed
2023-09-19T05:10:23Z
2023-09-19T05:38:33Z
https://github.com/lexiforest/curl_cffi/issues/125
[]
crazyxw
1
ExpDev07/coronavirus-tracker-api
fastapi
165
US State Timelines
Not sure if it something wrong with what I am doing but I seem to have lost the ability to get US State based timelines from the API?
open
2020-03-24T15:13:34Z
2020-03-25T06:09:47Z
https://github.com/ExpDev07/coronavirus-tracker-api/issues/165
[ "question" ]
fsa317
7
microsoft/nni
tensorflow
5,561
issue list
### need reply issue ### @J-shang https://github.com/microsoft/nni/issues/5555 https://github.com/microsoft/nni/issues/5524 https://github.com/microsoft/nni/issues/5499 @ultmaster https://github.com/microsoft/nni/issues/5547 @super-dainiu https://github.com/microsoft/nni/issues/5536 @liuzhe-lz https://github.com/microsoft/nni/issues/3496 ```[tasklist] ### Tasks ```
closed
2023-05-15T02:26:29Z
2023-05-18T07:04:38Z
https://github.com/microsoft/nni/issues/5561
[]
Lijiaoa
1
apify/crawlee-python
web-scraping
968
JSONDecodeError: Expecting value: line 1 column 1 (char 0) while opening RequestQueue
### Issue description Hi crawlee team. Thank you for the great work. I encounter the following error while I try to run the crawler for the second time: ``` Traceback (most recent call last): File "/home/sadaf/store_crawler/stores_crawler/d/dookcollection.py", line 401, in <module> asyncio.run(main()) File "/usr/lib/python3.11/asyncio/runners.py", line 190, in run return runner.run(main) ^^^^^^^^^^^^^^^^ File "/usr/lib/python3.11/asyncio/runners.py", line 118, in run return self._loop.run_until_complete(task) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/lib/python3.11/asyncio/base_events.py", line 654, in run_until_complete return future.result() ^^^^^^^^^^^^^^^ File "/home/sadaf/store_crawler/stores_crawler/d/dookcollection.py", line 377, in main request_queue = await RequestQueue.open(name="dookcollection") ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/sadaf/store_crawler/store_crawler_venv/lib/python3.11/site-packages/crawlee/storages/_request_queue.py", line 165, in open return await open_storage( ^^^^^^^^^^^^^^^^^^^ File "/home/sadaf/store_crawler/store_crawler_venv/lib/python3.11/site-packages/crawlee/storages/_creation_management.py", line 170, in open_storage storage_info = await resource_collection_client.get_or_create(name=name) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/sadaf/store_crawler/store_crawler_venv/lib/python3.11/site-packages/crawlee/storage_clients/_memory/_request_queue_collection_client.py", line 35, in get_or_create resource_client = await get_or_create_inner( ^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/sadaf/store_crawler/store_crawler_venv/lib/python3.11/site-packages/crawlee/storage_clients/_memory/_creation_management.py", line 143, in get_or_create_inner found = find_or_create_client_by_id_or_name_inner( ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/sadaf/store_crawler/store_crawler_venv/lib/python3.11/site-packages/crawlee/storage_clients/_memory/_creation_management.py", line 102, in find_or_create_client_by_id_or_name_inner storage_path = _determine_storage_path(resource_client_class, memory_storage_client, id, name) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/sadaf/store_crawler/store_crawler_venv/lib/python3.11/site-packages/crawlee/storage_clients/_memory/_creation_management.py", line 412, in _determine_storage_path metadata = json.load(metadata_file) ^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/lib/python3.11/json/__init__.py", line 293, in load return loads(fp.read(), ^^^^^^^^^^^^^^^^ File "/usr/lib/python3.11/json/__init__.py", line 346, in loads return _default_decoder.decode(s) ^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/lib/python3.11/json/decoder.py", line 337, in decode obj, end = self.raw_decode(s, idx=_w(s, 0).end()) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/lib/python3.11/json/decoder.py", line 355, in raw_decode raise JSONDecodeError("Expecting value", s, err.value) from None json.decoder.JSONDecodeError: Expecting value: line 1 column 1 (char 0) ``` I removed the related directory in the storage/request_queues and re-ran it but I still have the same problem. I appreciate if you guys can help! Thanks! ### Package version crawlee==0.5.0
closed
2025-02-09T12:45:43Z
2025-02-25T09:54:33Z
https://github.com/apify/crawlee-python/issues/968
[ "bug", "t-tooling" ]
sadaffatollahy
4
junyanz/pytorch-CycleGAN-and-pix2pix
pytorch
1,607
Is there a sample I can use to paint an image without cutting it?
I more or less understood the test, but is there any way to paint images (I trained a small model with references on how to do it) without having to lower the quality so much? if the image is 256 you can hardly see anything even if you raise the quality.
open
2023-10-29T23:20:33Z
2023-10-29T23:20:33Z
https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/issues/1607
[]
Keiser04
0
Yorko/mlcourse.ai
data-science
720
Data for assignment 4
Thanks for the course. I've been working my way through it via cloning the repo off of Github. I can't seem to find the data set for assignment 4 on sarcasm detection. If it is indeed included, apologies; if not, how would you suggest to get it? Via Kaggle or some other means? Thanks again.
closed
2022-09-12T19:22:28Z
2022-09-13T23:01:54Z
https://github.com/Yorko/mlcourse.ai/issues/720
[]
jonkracht
1
SciTools/cartopy
matplotlib
2,304
Add type hints for mypy
### Description I would like to propose adding type hints to cartopy so that mypy can be used with the project. #### Code to reproduce Using the following code (adapted from the [global map](https://scitools.org.uk/cartopy/docs/latest/gallery/lines_and_polygons/global_map.html) tutorial): ```python import matplotlib.pyplot as plt import cartopy.crs as ccrs fig = plt.figure(figsize=(10, 5)) ax = fig.add_subplot(1, 1, 1, projection=ccrs.Robinson()) ax.set_global() ax.stock_img() ax.coastlines() ax.plot(-0.08, 51.53, 'o', transform=ccrs.PlateCarree()) ax.plot([-0.08, 132], [51.53, 43.17], transform=ccrs.PlateCarree()) ax.plot([-0.08, 132], [51.53, 43.17], transform=ccrs.Geodetic()) plt.show() ``` If you run: ```console > mypy --strict plot.py ``` you'll see several errors. #### Traceback ``` test.py:2: error: Skipping analyzing "cartopy.crs": module is installed, but missing library stubs or py.typed marker [import-untyped] test.py:2: note: See https://mypy.readthedocs.io/en/stable/running_mypy.html#missing-imports test.py:2: error: Skipping analyzing "cartopy": module is installed, but missing library stubs or py.typed marker [import-untyped] test.py:8: error: "Axes" has no attribute "set_global" [attr-defined] test.py:9: error: "Axes" has no attribute "stock_img" [attr-defined] test.py:10: error: "Axes" has no attribute "coastlines" [attr-defined] Found 5 errors in 1 file (checked 1 source file) ``` <details> <summary>Full environment definition</summary> <!-- fill in the following information as appropriate --> ### Operating system macOS and Linux ### Cartopy version 0.22.0 ### conda list N/A ### pip list ``` Package Version ----------------------------- ----------- absl-py 1.4.0 aenum 3.1.12 affine 2.1.0 aiohttp 3.8.4 aiosignal 1.2.0 alabaster 0.7.13 altgraph 0.17.2 antlr4-python3-runtime 4.9.3 anyio 4.0.0 appdirs 1.4.4 appnope 0.1.3 argon2-cffi 21.3.0 argon2-cffi-bindings 21.2.0 arrow 1.2.3 asttokens 2.4.0 astunparse 1.6.3 async-lru 1.0.3 async-timeout 4.0.2 attrs 23.1.0 Babel 2.12.1 backcall 0.2.0 beautifulsoup4 4.12.2 black 23.11.0 bleach 6.0.0 Bottleneck 1.3.7 build 1.0.3 cachetools 5.2.0 Cartopy 0.22.0 certifi 2023.5.7 cffi 1.15.1 cftime 1.0.3.4 charset-normalizer 3.1.0 click 8.1.3 click-plugins 1.1.1 cligj 0.7.2 cmocean 3.0.3 colorama 0.4.6 comm 0.1.3 contourpy 1.0.7 coverage 7.2.6 cycler 0.11.0 debugpy 1.6.7 decorator 5.1.1 defusedxml 0.7.1 docstring-parser 0.15 docutils 0.18.1 editables 0.3 efficientnet-pytorch 0.7.1 einops 0.7.0 et-xmlfile 1.0.1 executing 1.2.0 fastjsonschema 2.16.3 filelock 3.12.4 Fiona 1.9.4 flake8 6.1.0 fonttools 4.39.4 fqdn 1.5.1 frozenlist 1.3.1 fsspec 2023.1.0 future 0.18.2 GDAL 3.8.0 geocube 0.3.2 geopandas 0.11.1 gevent 23.7.0 google-auth 2.20.0 google-auth-oauthlib 0.5.2 greenlet 2.0.2 grpcio 1.52.0 h5py 3.8.0 hatch-jupyter-builder 0.8.3 hatchling 1.18.0 huggingface-hub 0.14.1 hydra-core 1.3.1 idna 3.4 imageio 2.30.0 imagesize 1.4.1 importlib-metadata 6.6.0 importlib-resources 5.12.0 iniconfig 2.0.0 ipykernel 6.23.1 ipython 8.14.0 ipywidgets 8.0.2 isoduration 20.11.0 isort 5.12.0 jaraco.classes 3.2.3 jedi 0.18.2 Jinja2 3.0.3 joblib 1.2.0 json5 0.9.14 jsonargparse 4.25.0 jsonpointer 2.0 jsonschema 4.17.3 jupyter_client 8.2.0 jupyter_core 5.3.0 jupyter-events 0.6.3 jupyter-lsp 2.2.0 jupyter_server 2.6.0 jupyter_server_terminals 0.4.4 jupyterlab 4.0.1 jupyterlab-pygments 0.2.2 jupyterlab_server 2.22.1 jupyterlab-widgets 3.0.3 keyring 23.13.1 kiwisolver 1.4.4 kornia 0.7.0 laspy 2.2.0 lazy_loader 0.1 lightly 1.4.18 lightly-utils 0.0.2 lightning 2.1.2 lightning-utilities 0.8.0 macholib 1.15.2 Markdown 3.4.1 markdown-it-py 3.0.0 MarkupSafe 2.1.3 matplotlib 3.8.2 matplotlib-inline 0.1.6 mccabe 0.7.0 mdurl 0.1.2 mistune 2.0.5 more-itertools 9.1.0 mpmath 1.2.1 multidict 6.0.4 munch 2.5.0 mypy 1.7.0 mypy-extensions 1.0.0 nbclient 0.6.7 nbconvert 7.4.0 nbformat 5.8.0 nbmake 1.4.3 nbsphinx 0.8.8 nest-asyncio 1.5.6 netCDF4 1.6.2 networkx 3.1 notebook_shim 0.2.3 numexpr 2.8.4 numpy 1.26.2 oauthlib 3.2.1 odc-geo 0.1.2 omegaconf 2.3.0 openpyxl 3.1.2 overrides 7.3.1 packaging 23.1 pandas 2.1.3 pandocfilters 1.5.0 parso 0.8.3 pathspec 0.11.1 pexpect 4.8.0 pickleshare 0.7.5 Pillow 10.0.0 pip 21.2.4 pkginfo 1.9.6 planetary-computer 0.4.9 platformdirs 3.10.0 pluggy 1.0.0 pooch 1.7.0 pretrainedmodels 0.7.4 prometheus-client 0.17.0 prompt-toolkit 3.0.38 protobuf 3.20.3 psutil 5.9.5 ptyprocess 0.7.0 pure-eval 0.2.2 pyasn1 0.4.8 pyasn1-modules 0.2.8 pybind11 2.11.0 pycocotools 2.0.6 pycodestyle 2.11.0 pycparser 2.21 pydantic 1.10.9 pydocstyle 6.2.1 pyflakes 3.1.0 pygeos 0.14 Pygments 2.16.1 pyparsing 3.0.9 pyproj 3.2.1 pyproject_hooks 1.0.0 pyrsistent 0.19.3 pyshp 2.1.0 pystac 1.4.0 pystac-client 0.5.1 pytest 7.3.2 pytest-cov 4.0.0 python-dateutil 2.8.2 python-dotenv 0.19.2 python-json-logger 2.0.7 pytorch-lightning 2.0.0 pytorch-sphinx-theme 0.0.24 pytz 2023.3 pyupgrade 3.3.1 pyvista 0.42.3 PyWavelets 1.4.1 PyYAML 6.0 pyzmq 25.0.2 radiant-mlhub 0.3.1 rarfile 4.1 rasterio 1.3.8 readme-renderer 37.3 requests 2.31.0 requests-oauthlib 1.3.1 requests-toolbelt 1.0.0 rfc3339-validator 0.1.4 rfc3986 2.0.0 rfc3986-validator 0.1.1 rich 13.4.2 rioxarray 0.4.1.post0 rsa 4.9 Rtree 1.1.0 safetensors 0.3.1 scikit-image 0.20.0 scikit-learn 1.3.2 scipy 1.11.4 scooby 0.5.7 segmentation-models-pytorch 0.3.3 Send2Trash 1.8.0 setuptools 63.4.3 Shapely 1.8.1 six 1.16.0 sniffio 1.3.0 snowballstemmer 2.2.0 snuggs 1.4.1 soupsieve 2.4.1 Sphinx 5.3.0 sphinx-copybutton 0.2.12 sphinx_design 0.4.1 sphinx-rtd-theme 1.2.2 sphinxcontrib-applehelp 1.0.4 sphinxcontrib-devhelp 1.0.2 sphinxcontrib-htmlhelp 2.0.1 sphinxcontrib-jquery 4.1 sphinxcontrib-jsmath 1.0.1 sphinxcontrib-programoutput 0.15 sphinxcontrib-qthelp 1.0.3 sphinxcontrib-serializinghtml 1.1.9 stack-data 0.6.2 sympy 1.11.1 tensorboard 2.14.1 tensorboard-data-server 0.7.0 terminado 0.17.1 threadpoolctl 3.1.0 tifffile 2023.8.30 timm 0.9.2 tinycss2 1.2.1 tokenize-rt 4.2.1 torch 2.1.1 torchmetrics 1.2.0 torchvision 0.16.1 tornado 6.3.3 tqdm 4.66.1 traitlets 5.9.0 trove-classifiers 2023.8.7 twine 4.0.2 typeshed-client 2.1.0 typing_extensions 4.8.0 tzdata 2023.3 uri-template 1.2.0 urllib3 1.26.12 vermin 1.5.2 wcwidth 0.2.7 webcolors 1.11.1 webencodings 0.5.1 websocket-client 1.6.3 Werkzeug 3.0.0 wheel 0.41.2 widgetsnbextension 4.0.3 xarray 2023.7.0 yarl 1.9.2 zipfile-deflate64 0.2.0 zipp 3.17.0 zope.event 4.6 zope.interface 5.4.0 ``` </details>
open
2023-12-21T15:25:29Z
2023-12-21T20:11:09Z
https://github.com/SciTools/cartopy/issues/2304
[]
adamjstewart
3
graphql-python/graphene-django
django
909
iterable gets refiltered by resolve_queryset but iterable might be promise
I'm trying to use DataLoader but I got a problem in DjangoConnectionField. According to the comment, does that means I can't DataLoader here? My iterable here is Promise. https://github.com/graphql-python/graphene-django/blob/0da06d4d54d3e73d43d88534259f55733ab7609b/graphene_django/fields.py#L176
closed
2020-03-19T13:23:17Z
2022-04-22T10:16:54Z
https://github.com/graphql-python/graphene-django/issues/909
[ "wontfix" ]
frankchen211
2
JoeanAmier/TikTokDownloader
api
399
封面图重复下载
当开启 "original_cover": true, 已经下载过的视频的封面图会无限次数的被重复下载, 删除封面图文件后,再下次在611q模式下运行main.py,程序依然会每次都重复下载以前所有视频的封面图 请问大家遇到过这个情况吗, 怎么解决的? 感谢指点
open
2025-01-31T11:26:48Z
2025-01-31T11:28:00Z
https://github.com/JoeanAmier/TikTokDownloader/issues/399
[]
9ihbd2DZSMjtsf7vecXjz
1
SALib/SALib
numpy
372
SyntaxWarning with python 3.8
Hello, a SyntaxWarning occurs when using SAlib with python 3.8 ``` \lib\site-packages\SALib\util\_ _init__.py:222: SyntaxWarning: "is" with a literal. Did you mean "=="? elif row['group'] is 'NA': \lib\site-packages\SALib\util\r esults.py:15: SyntaxWarning: "is not" with a literal. Did you mean "!="? return pd.DataFrame({k: v for k, v in self.items() if k is not 'names'}, ```
closed
2020-10-12T16:32:46Z
2020-10-12T23:52:56Z
https://github.com/SALib/SALib/issues/372
[]
xavArtley
2
horovod/horovod
pytorch
3,850
Docker build horovod-nvtabular fails
`pip` installing `cudf-cu11` results in an error: ``` #12 [ 7/37] RUN pip install --no-cache-dir cudf-cu11 dask-cudf-cu11 --extra-index-url=https://pypi.ngc.nvidia.com/ #12 1.247 Looking in indexes: https://pypi.org/simple, https://pypi.ngc.nvidia.com/ #12 2.285 Collecting cudf-cu11 #12 2.391 Downloading cudf_cu11-23.2.0.tar.gz (6.5 kB) #12 2.525 ERROR: Command errored out with exit status 1: #12 2.525 command: /usr/bin/python3 -c 'import sys, setuptools, tokenize; sys.argv[0] = '"'"'/tmp/pip-install-lwkt7jbg/cudf-cu11/setup.py'"'"'; __file__='"'"'/tmp/pip-install-lwkt7jbg/cudf-cu11/setup.py'"'"';f=getattr(tokenize, '"'"'open'"'"', open)(__file__);code=f.read().replace('"'"'\r\n'"'"', '"'"'\n'"'"');f.close();exec(compile(code, __file__, '"'"'exec'"'"'))' egg_info --egg-base /tmp/pip-install-lwkt7jbg/cudf-cu11/pip-egg-info #12 2.525 cwd: /tmp/pip-install-lwkt7jbg/cudf-cu11/ #12 2.525 Complete output (5 lines): #12 2.525 Traceback (most recent call last): #12 2.525 File "<string>", line 1, in <module> #12 2.525 File "/tmp/pip-install-lwkt7jbg/cudf-cu11/setup.py", line 137, in <module> #12 2.525 raise RuntimeError(open("ERROR.txt", "r").read()) #12 2.525 FileNotFoundError: [Errno 2] No such file or directory: 'ERROR.txt' #12 2.525 ---------------------------------------- ``` https://github.com/horovod/horovod/actions/runs/4192929617/jobs/7277248027
closed
2023-02-16T18:34:51Z
2023-02-17T09:35:01Z
https://github.com/horovod/horovod/issues/3850
[ "bug" ]
maxhgerlach
1
joerick/pyinstrument
django
119
timeline in interactive html view
Hi! I love the timeline feature, it really helps me understand the order of operation and get my mind wrapped around execution flow. I get an error when using the `timeline=True` from inside any of the output / open functions except for text output. I guess if this is the place to put a feature request then this is it. I would be happy to submit a PR if it doesn't exist, but I'd want to know what level of effort you would you estimate for this.
closed
2021-02-10T22:57:22Z
2021-02-19T09:29:14Z
https://github.com/joerick/pyinstrument/issues/119
[]
startakovsky
1
iperov/DeepFaceLab
deep-learning
771
Deepface
closed
2020-06-05T07:41:45Z
2020-06-05T07:42:07Z
https://github.com/iperov/DeepFaceLab/issues/771
[]
kiim-wong
0
mage-ai/mage-ai
data-science
5,589
[BUG] Passing empty dataframe from Data Transformer to Data Exporter clears/removes the columns (headers)
### Mage version v0.9.74 ### Describe the bug We have a use case where in the Data Transformer, it maps an incoming list to a pandas dataframe. In some cases, the incoming list is empty resulting in an empty dataframe to be output, but we still want the `columns` part of the "dataframe object" to be part of the output. The resulting dataframe object is then passed to a Data Exporter, where we export the dataframe as a csv to S3. The issue is that sometimes, we have an empty pandas dataframe object being passed from the Transformer to the Exporter. When in the Exporter, dataframe part of the "pandas dataframe object" is empty (which is correct), but the `columns` part gets removed/cleared or replaced with an empty list (which is likely incorrect). We need the columns (headers) in the Exporter so that it can export the dataframe to a csv with just the headers (empty file with headers only). ### To reproduce 1. In a Data transformer, create an empty dataframe with columns: ``` @transformer def transform(data, *args, **kwargs): df = pd.DataFrame(columns=['A','B','C','D','E','F','G']) print(df) return df ``` Print result: ``` Empty DataFrame Columns: [A, B, C, D, E, F, G] Index: [] ``` 2. Output that dataframe from the Transformer and input that data into a Data Exporter: ``` @data_exporter def export_data_to_s3(data, **kwargs) -> None: print(data) ``` Print result: ``` Empty DataFrame Columns: [] Index: [] ``` ### Expected behavior Even if the dataframe is empty, the columns part of the dataframe object should still be passed on. In Data Exporter, when I print the incoming df, it should show this: ``` Empty DataFrame Columns: [A, B, C, D, E, F, G] Index: [] ``` ### Screenshots _No response_ ### Operating system v0.9.74 python 3.12.3 ### Additional context _No response_
open
2024-11-22T13:21:11Z
2024-11-22T13:21:11Z
https://github.com/mage-ai/mage-ai/issues/5589
[ "bug" ]
fltfx
0
graphql-python/graphene-sqlalchemy
graphql
319
How to tweak query structure from relationships
I'm working on a simple CRUD REST API to learn GraphQL & SqlAlchemy. I have a Movie table ``` class Movie(Base, Serializer): __tablename__ = 'movie' id = Column(Integer, primary_key=True, index=True) movie = Column(String(50), nullable=False, unique=True) budget = Column(Float, nullable=False) genre_id = Column(Integer, ForeignKey('genre.id'), nullable=False) rating = Column(Float, nullable=False) studio_id = Column(Integer, ForeignKey('studio.id'), nullable=False) director_id = Column(Integer, ForeignKey('director.id'), nullable=False) director = relationship( Director, backref=backref('movies', uselist=True, cascade='delete,all') ) genre = relationship( Genre, backref=backref('movies', uselist=True, cascade='delete,all') ) studio = relationship( Studio, backref=backref('movies', uselist=True, cascade='delete,all') ) actors = relationship( Actor, secondary=movie_actor_association_table, backref='movies', uselist=True ) ``` that has its own properties (movie, budget, rating) but also 4 foreign keys (genre, studio, director, actors). my GraphQL types are simple ``` class Movie(SQLAlchemyObjectType): class Meta: model = MovieModel interfaces = (relay.Node,) class Director(SQLAlchemyObjectType): class Meta: model = DirectorModel interfaces = (relay.Node,) class Genre(SQLAlchemyObjectType): class Meta: model = GenreModel interfaces = (relay.Node,) class Studio(SQLAlchemyObjectType): class Meta: model = StudioModel interfaces = (relay.Node,) class Actor(SQLAlchemyObjectType): class Meta: model = ActorModel interfaces = (relay.Node,) ``` however, now when I query data, for the relationship tables, I have to replicate key, value pairs to get simple data ``` movies { edges { node { id movie budget genre { genre } rating studio { studio } director { director } actors { edges { node{ actor } } } } } } ``` i.e. can I avoid using genre {genre}, studio {studio}, etc. and just retrieve genre directly inside the movie? **bonus question**: adding filters to these relationships doesn't work I have a movie filter ``` class MovieFilter(FilterSet): class Meta: model = MovieModel fields = { 'id': ['eq'], 'movie': ['eq', 'ilike'], 'rating': ['eq', 'gt', 'gte'] } ``` that I can use like so ``` class Query(graphene.ObjectType): node = relay.Node.Field() movies = FilterableConnectionField(Movie.connection, filters=MovieFilter()) ``` to have filtering available for my `movie` table. However, the filters only work for the fields defined in the `movie` table itself, i.e. `movie name`, `rating`, `budget`. Does anyone know how I can use `graphene-sqlalchemy-filter` to filter for all fields (director/actor/genre/studio)? It seems to me that GraphQL doesn't handle relationships all that well.
closed
2021-10-01T01:13:06Z
2023-02-25T00:48:46Z
https://github.com/graphql-python/graphene-sqlalchemy/issues/319
[ "question" ]
shlomi84
2
Yorko/mlcourse.ai
scikit-learn
703
patreon payment
Hi, I paid the $17 for the bonus assignment, but I have no way to access it. Please help.
closed
2022-03-16T08:40:31Z
2022-03-16T19:07:14Z
https://github.com/Yorko/mlcourse.ai/issues/703
[]
vahuja4
1
zappa/Zappa
flask
855
[Migrated] How to update app without downtime?
Originally from: https://github.com/Miserlou/Zappa/issues/2103 by [xncbf](https://github.com/xncbf) In the case of AWS Beanstalk, can be deployment without downtime through environment replication and url swap. Is it possible to perform a similar practice on Zappa?
closed
2021-02-20T12:52:32Z
2024-04-13T19:10:31Z
https://github.com/zappa/Zappa/issues/855
[ "no-activity", "auto-closed" ]
jneves
3
miguelgrinberg/Flask-Migrate
flask
234
Migrate to multiple databases simultaneously
Greetings. I am doing a project and I need to migrate to several databases simultaneously. For example, I have bind 2 databases in SQLALCHEMY_BINDS like that : **app.config['SQLALCHEMY_BINDS'] = { 'bobkov1': 'postgresql://postgres:zabil2012@localhost:5431/bobkov1', 'bobkov' : 'postgresql://postgres:zabil2012@localhost:5431/bobkov' }** And now i want to migrate models to both of this databases. I'm tried to do it like that: **class User(BaseModel, db.Model): __tablename__ = 'user' __bind_key__ = {'bobkov','bobkov1'} id = db.Column(db.Integer, primary_key=True) username = db.Column(db.String(64), index=True, unique=True) email = db.Column(db.String(120), index=True, unique=True) password_hash = db.Column(db.String(128)) posts = db.relationship('Post', backref='author', lazy='dynamic') class Post(db.Model): __tablename__ = 'post' __bind_key__ = {'bobkov','bobkov1'} id = db.Column(db.Integer, primary_key=True) body = db.Column(db.String(140)) user_id = db.Column(db.Integer, db.ForeignKey('user.id'))** When trying to run this code, the model migrates only to the main database, which is defined in SQLALCHEMY_DATABASE_URI. Help me please, how to configure that?
closed
2018-10-30T12:45:57Z
2020-10-08T13:58:22Z
https://github.com/miguelgrinberg/Flask-Migrate/issues/234
[ "question" ]
BobkovS
22
geex-arts/django-jet
django
216
Image uploading and updating is not working with django-filer
I have integrated django-jet for all it's beautiful design and customized functionalities. I'm also using django-filer for file and image uploading. But I'm facing this issue when using djang-filer with django-jet. - > I'm unable to change image after uploading it for the first time. Image upload popup is also not opening. Simply, I can select the image for upload for the first time but after that I can not update that image. Please check below screenshot. ![screenshot](https://cloud.githubusercontent.com/assets/6413205/26345692/4e4abc7a-3fc1-11e7-9c83-d4a9f660cbb9.png) Has anybody encountered same problem? Help me.
open
2017-05-23T12:04:37Z
2017-10-10T15:43:55Z
https://github.com/geex-arts/django-jet/issues/216
[]
mjrulesamrat
6
deeppavlov/DeepPavlov
nlp
1,329
pymorphy2 0.9.1 is released
Want to contribute to DeepPavlov? Please read the [contributing guideline](http://docs.deeppavlov.ai/en/master/devguides/contribution_guide.html) first. **What problem are we trying to solve?**: Current `pymorphy2` requirement [is obsolete](https://github.com/deepmipt/DeepPavlov/blob/0.12.1/requirements.txt#L11) in DeepPavlov. `pymorphy2 0.9.1` [was released](https://github.com/kmike/pymorphy2/releases/tag/0.9.1). See also: https://github.com/kmike/pymorphy2/issues/125, https://github.com/kmike/pymorphy2/issues/133. **How can we solve it?**: ``` pymorphy2==0.9.1 ````
closed
2020-10-10T13:58:17Z
2022-04-01T13:02:20Z
https://github.com/deeppavlov/DeepPavlov/issues/1329
[ "enhancement" ]
kuraga
1
alirezamika/autoscraper
web-scraping
1
Progression of errors while installing
### 1 santiago@santiago-Aspire-A515-51:~$ pip install git+https://github.com/alirezamika/autoscraper.git Defaulting to user installation because normal site-packages is not writeable Collecting git+https://github.com/alirezamika/autoscraper.git Cloning https://github.com/alirezamika/autoscraper.git to /tmp/pip-req-build-zjd5pn9g ERROR: Command errored out with exit status 1: command: /usr/bin/python3 -c 'import sys, setuptools, tokenize; sys.argv[0] = '"'"'/tmp/pip-req-build-zjd5pn9g/setup.py'"'"'; __file__='"'"'/tmp/pip-req-build-zjd5pn9g/setup.py'"'"';f=getattr(tokenize, '"'"'open'"'"', open)(__file__);code=f.read().replace('"'"'\r\n'"'"', '"'"'\n'"'"');f.close();exec(compile(code, __file__, '"'"'exec'"'"'))' egg_info --egg-base /tmp/pip-pip-egg-info-du5i409j cwd: /tmp/pip-req-build-zjd5pn9g/ Complete output (7 lines): Traceback (most recent call last): File "<string>", line 1, in <module> File "/tmp/pip-req-build-zjd5pn9g/setup.py", line 7, in <module> with open(path.join(here, 'README.rst'), encoding='utf-8') as f: File "/usr/lib/python3.6/codecs.py", line 897, in open file = builtins.open(filename, mode, buffering) FileNotFoundError: [Errno 2] No such file or directory: '/tmp/pip-req-build-zjd5pn9g/README.rst' ---------------------------------------- ERROR: Command errored out with exit status 1: python setup.py egg_info Check the logs for full command output. ### 2 - Git clone manually, installed setuptools manually, then Readme.rst not found santiago@santiago-Aspire-A515-51:~/Devel/autoscraper$ python3.8 -m pip install setuptools Collecting setuptools Cache entry deserialization failed, entry ignored Downloading https://files.pythonhosted.org/packages/b0/8b/379494d7dbd3854aa7b85b216cb0af54edcb7fce7d086ba3e35522a713cf/setuptools-50.0.0-py3-none-any.whl (783kB) 100% |████████████████████████████████| 788kB 615kB/s Installing collected packages: setuptools Successfully installed setuptools-50.0.0 santiago@santiago-Aspire-A515-51:~/Devel/autoscraper$ python setup.py install Traceback (most recent call last): File "setup.py", line 7, in <module> with open(path.join(here, 'README.rst'), encoding='utf-8') as f: File "/usr/lib/python3.8/codecs.py", line 905, in open file = builtins.open(filename, mode, buffering) FileNotFoundError: [Errno 2] No such file or directory: '/home/santiago/Devel/autoscraper/README.rst' ### 3 - Renamed Readme.md to README.rst santiago@santiago-Aspire-A515-51:~/Devel/autoscraper$ python setup.py install running install error: can't create or remove files in install directory The following error occurred while trying to add or remove files in the installation directory: [Errno 13] Permission denied: '/usr/lib/python3.8/site-packages' The installation directory you specified (via --install-dir, --prefix, or the distutils default setting) was: /usr/lib/python3.8/site-packages/ This directory does not currently exist. Please create it and try again, or choose a different installation directory (using the -d or --install-dir option).
closed
2020-08-31T17:33:31Z
2020-08-31T20:08:38Z
https://github.com/alirezamika/autoscraper/issues/1
[]
santiagodemierre
3
matplotlib/mplfinance
matplotlib
150
Version 0.12.5
Hi, I noticed there are comments regarding Version 0.12.5. When will this version be released ?
closed
2020-06-05T06:15:12Z
2020-06-05T10:29:59Z
https://github.com/matplotlib/mplfinance/issues/150
[ "question" ]
Shuffydog
3
kizniche/Mycodo
automation
571
setup>functions>conditional measurement stops working all the time
## Mycodo Issue Report: - Specific Mycodo Version: 6.4.5 #### Problem Description Setup conditional measurement control to turn on a relay. Conditional control stops working after some time. Works for hours sometimes. Only way to fix is change some parameters in the conditional measurement control and save the changes. - what were you trying to do using analog sensors to turn a relay on and off depending on the voltage from the sensors.
closed
2018-11-25T09:48:30Z
2018-12-22T17:51:24Z
https://github.com/kizniche/Mycodo/issues/571
[]
SAM26K
89
NullArray/AutoSploit
automation
445
Unhandled Exception (495ff691e)
Autosploit version: `3.0` OS information: `Linux-4.15.0-45-generic-x86_64-with-Ubuntu-18.04-bionic` Running context: `autosploit.py` Error meesage: `global name 'Except' is not defined` Error traceback: ``` Traceback (most recent call): File "/home/peerles/源代码/Autosploit/autosploit/main.py", line 113, in main loaded_exploits = load_exploits(EXPLOIT_FILES_PATH) File "/home/peerles/源代码/Autosploit/lib/jsonize.py", line 61, in load_exploits except Except: NameError: global name 'Except' is not defined ``` Metasploit launched: `False`
closed
2019-02-08T14:07:27Z
2019-02-19T04:22:45Z
https://github.com/NullArray/AutoSploit/issues/445
[]
AutosploitReporter
0
mwaskom/seaborn
data-visualization
2,992
PolyFit is not robust to missing data
```python so.Plot([1, 2, 3, None, 4], [1, 2, 3, 4, 5]).add(so.Line(), so.PolyFit()) ``` <details><summary>Traceback</summary> ```python-traceback --------------------------------------------------------------------------- LinAlgError Traceback (most recent call last) File ~/miniconda3/envs/seaborn-py39-latest/lib/python3.9/site-packages/IPython/core/formatters.py:343, in BaseFormatter.__call__(self, obj) 341 method = get_real_method(obj, self.print_method) 342 if method is not None: --> 343 return method() 344 return None 345 else: File ~/code/seaborn/seaborn/_core/plot.py:265, in Plot._repr_png_(self) 263 def _repr_png_(self) -> tuple[bytes, dict[str, float]]: --> 265 return self.plot()._repr_png_() File ~/code/seaborn/seaborn/_core/plot.py:804, in Plot.plot(self, pyplot) 800 """ 801 Compile the plot spec and return the Plotter object. 802 """ 803 with theme_context(self._theme_with_defaults()): --> 804 return self._plot(pyplot) File ~/code/seaborn/seaborn/_core/plot.py:822, in Plot._plot(self, pyplot) 819 plotter._setup_scales(self, common, layers, coord_vars) 821 # Apply statistical transform(s) --> 822 plotter._compute_stats(self, layers) 824 # Process scale spec for semantic variables and coordinates computed by stat 825 plotter._setup_scales(self, common, layers) File ~/code/seaborn/seaborn/_core/plot.py:1110, in Plotter._compute_stats(self, spec, layers) 1108 grouper = grouping_vars 1109 groupby = GroupBy(grouper) -> 1110 res = stat(df, groupby, orient, scales) 1112 if pair_vars: 1113 data.frames[coord_vars] = res File ~/code/seaborn/seaborn/_stats/regression.py:41, in PolyFit.__call__(self, data, groupby, orient, scales) 39 def __call__(self, data, groupby, orient, scales): ---> 41 return groupby.apply(data, self._fit_predict) File ~/code/seaborn/seaborn/_core/groupby.py:109, in GroupBy.apply(self, data, func, *args, **kwargs) 106 grouper, groups = self._get_groups(data) 108 if not grouper: --> 109 return self._reorder_columns(func(data, *args, **kwargs), data) 111 parts = {} 112 for key, part_df in data.groupby(grouper, sort=False): File ~/code/seaborn/seaborn/_stats/regression.py:30, in PolyFit._fit_predict(self, data) 28 xx = yy = [] 29 else: ---> 30 p = np.polyfit(x, y, self.order) 31 xx = np.linspace(x.min(), x.max(), self.gridsize) 32 yy = np.polyval(p, xx) File <__array_function__ internals>:180, in polyfit(*args, **kwargs) File ~/miniconda3/envs/seaborn-py39-latest/lib/python3.9/site-packages/numpy/lib/polynomial.py:668, in polyfit(x, y, deg, rcond, full, w, cov) 666 scale = NX.sqrt((lhs*lhs).sum(axis=0)) 667 lhs /= scale --> 668 c, resids, rank, s = lstsq(lhs, rhs, rcond) 669 c = (c.T/scale).T # broadcast scale coefficients 671 # warn on rank reduction, which indicates an ill conditioned matrix File <__array_function__ internals>:180, in lstsq(*args, **kwargs) File ~/miniconda3/envs/seaborn-py39-latest/lib/python3.9/site-packages/numpy/linalg/linalg.py:2300, in lstsq(a, b, rcond) 2297 if n_rhs == 0: 2298 # lapack can't handle n_rhs = 0 - so allocate the array one larger in that axis 2299 b = zeros(b.shape[:-2] + (m, n_rhs + 1), dtype=b.dtype) -> 2300 x, resids, rank, s = gufunc(a, b, rcond, signature=signature, extobj=extobj) 2301 if m == 0: 2302 x[...] = 0 File ~/miniconda3/envs/seaborn-py39-latest/lib/python3.9/site-packages/numpy/linalg/linalg.py:101, in _raise_linalgerror_lstsq(err, flag) 100 def _raise_linalgerror_lstsq(err, flag): --> 101 raise LinAlgError("SVD did not converge in Linear Least Squares") LinAlgError: SVD did not converge in Linear Least Squares ``` </details>
closed
2022-09-03T17:35:22Z
2022-09-12T00:24:04Z
https://github.com/mwaskom/seaborn/issues/2992
[ "bug", "objects-stat" ]
mwaskom
0
zappa/Zappa
flask
561
[Migrated] Release plan for Zappa
Originally from: https://github.com/Miserlou/Zappa/issues/1480 by [efimerdlerkravitz](https://github.com/efimerdlerkravitz) This is not an actual bug, unfortunately I don't know exactly where to ask it. Any release plan for Zappa ? When is the next version suppose to be released ?
closed
2021-02-20T12:22:47Z
2022-07-16T07:06:10Z
https://github.com/zappa/Zappa/issues/561
[]
jneves
1
gunthercox/ChatterBot
machine-learning
2,211
is it possible to train chatterbot on memes?
I couldnt find anything on my light google search so I thought id ask. I was wondering if i can train chatterbot on a csv with a meme in the message and response field. Im new to this whole machine learning thing so sorry if its a dumb question Thank you!
closed
2021-10-27T23:59:50Z
2025-02-26T11:46:41Z
https://github.com/gunthercox/ChatterBot/issues/2211
[]
jhmauritz
2
yzhao062/pyod
data-science
36
LOCI fails on MacOS with Python 2.7 (caused by np.count_nonzero)
It is noted running **LOCI** model on **MacOS** with **Python 2.7** may fail. One potential cause is the following code, as np.count_nonzero returns **int** instead of **array**. I am currently investigating how to fix it. Please stay tuned. ``` def _get_alpha_n(self, dist_matrix, indices, r): """Computes the alpha neighbourhood points. Parameters ---------- dist_matrix : array-like, shape (n_samples, n_features) The distance matrix w.r.t. to the training samples. indices : int Subsetting index r : int Neighbourhood radius Returns ------- alpha_n : array, shape (n_alpha, ) Returns the alpha neighbourhood points. """ if type(indices) is int: alpha_n = np.count_nonzero( dist_matrix[indices, :] < (r * self._alpha)) return alpha_n else: alpha_n = np.count_nonzero( dist_matrix[indices, :] < (r * self._alpha), axis=1) return alpha_n ``` The error message looks like below: > (test27) bash-3.2$ python loci_example.py > /anaconda2/envs/test27/lib/python2.7/site-packages/pyod/models/loci.py:199: RuntimeWarning: divide by zero encountered in double_scalars > outlier_scores[p_ix] = mdef/sigma_mdef > /Users/zhaoy9/.local/lib/python2.7/site-packages/numpy/core/_methods.py:101: RuntimeWarning: invalid value encountered in subtract > x = asanyarray(arr - arrmean) > On Training Data: > Traceback (most recent call last): > File "loci_example.py", line 133, in <module> > evaluate_print(clf_name, y_train, y_train_scores) > File "/anaconda2/envs/test27/lib/python2.7/site-packages/pyod/utils/data.py", line 159, in evaluate_print > roc=np.round(roc_auc_score(y, y_pred), decimals=4), > File "/anaconda2/envs/test27/lib/python2.7/site-packages/sklearn/metrics/ranking.py", line 356, in roc_auc_score > sample_weight=sample_weight) > File "/anaconda2/envs/test27/lib/python2.7/site-packages/sklearn/metrics/base.py", line 77, in _average_binary_score > return binary_metric(y_true, y_score, sample_weight=sample_weight) > File "/anaconda2/envs/test27/lib/python2.7/site-packages/sklearn/metrics/ranking.py", line 328, in _binary_roc_auc_score > sample_weight=sample_weight) > File "/anaconda2/envs/test27/lib/python2.7/site-packages/sklearn/metrics/ranking.py", line 618, in roc_curve > y_true, y_score, pos_label=pos_label, sample_weight=sample_weight) > File "/anaconda2/envs/test27/lib/python2.7/site-packages/sklearn/metrics/ranking.py", line 403, in _binary_clf_curve > assert_all_finite(y_score) > File "/anaconda2/envs/test27/lib/python2.7/site-packages/sklearn/utils/validation.py", line 68, in assert_all_finite > _assert_all_finite(X.data if sp.issparse(X) else X, allow_nan) > File "/anaconda2/envs/test27/lib/python2.7/site-packages/sklearn/utils/validation.py", line 56, in _assert_all_finite > raise ValueError(msg_err.format(type_err, X.dtype)) > ValueError: Input contains NaN, infinity or a value too large for dtype('float64').
closed
2018-12-04T04:17:45Z
2018-12-13T01:37:00Z
https://github.com/yzhao062/pyod/issues/36
[ "bug" ]
yzhao062
1
dask/dask
pandas
11,389
mode on `axis=1`
The `mode` method in a `dask` `DataFrame` does not allow for the argument `axis=1`. It would be great to have since it seems that in `pandas`, that operation is very slow and seems straightforward to parallelize. I would like to be able to do this in dask. ``` import pandas as pd import numpy as np import dask.dataframe as dd np.random.seed(0) N_ROWS = 1_000 df = pd.DataFrame({'a':np.random.randint(0, 100, N_ROWS), 'b':np.random.randint(0, 100, N_ROWS), 'c':np.random.randint(0, 100, N_ROWS)}) df['d'] = df['a'] #ensure mode is column 'a', unless b=c, then there are two modes df.mode(axis=1) ``` For reference, in pandas with `N_ROWS = 100_000`, the mode operation takes 20 seconds, and the time seems to grow linearly with number of observations.
open
2024-09-16T14:55:33Z
2025-03-10T01:51:04Z
https://github.com/dask/dask/issues/11389
[ "dataframe", "needs attention", "enhancement" ]
marcdelabarrera
4
lanpa/tensorboardX
numpy
97
About RNN
I wrote a RNN program that i did't use nn.model so that I could see the structure. But I find some problem. Code and the datasets are as follow https://github.com/VeritasXu/RNN Can you run and see the structure? I think my program is correct, but the input type of add_graph function results in the strange structure. Could you help me ?
closed
2018-03-09T15:04:40Z
2018-03-12T04:45:00Z
https://github.com/lanpa/tensorboardX/issues/97
[]
VeritasXu
2
davidteather/TikTok-Api
api
560
It does not support mobile links [BUG] - Your Error Here
# Read Below!!! If this doesn't fix your issue delete these two lines **You may need to install chromedriver for your machine globally. Download it [here](https://sites.google.com/a/chromium.org/chromedriver/) and add it to your path.** **Describe the bug** A clear and concise description of what the bug is. **The buggy code** Please insert the code that is throwing errors or is giving you weird unexpected results. ``` # Code Goes Here ``` **Expected behavior** A clear and concise description of what you expected to happen. **Error Trace (if any)** Put the error trace below if there's any error thrown. ``` # Error Trace Here ``` **Desktop (please complete the following information):** - OS: [e.g. Windows 10] - TikTokApi Version [e.g. 3.3.1] - if out of date upgrade before posting an issue **Additional context** Add any other context about the problem here.
closed
2021-04-13T15:20:30Z
2021-04-13T15:27:34Z
https://github.com/davidteather/TikTok-Api/issues/560
[ "bug" ]
ghost
0
piccolo-orm/piccolo
fastapi
1,099
Objects accept node parameter for choosing extra node
Objects accept node parameter for choosing extra node
closed
2024-10-14T15:23:34Z
2024-10-16T08:05:00Z
https://github.com/piccolo-orm/piccolo/issues/1099
[]
erhuabushuo
2
TencentARC/GFPGAN
deep-learning
530
Gfpgan Not working on colab
![Uploading Screenshot_20240321_084829.jpg…]() I'm regularly using gfpgan on colab to upscale my AI generated images but last two weeks im facing an problem.the image is not upscale please check and correct that please.i tried many times to solve that but I couldn't.please help
closed
2024-03-21T02:58:40Z
2024-03-21T03:20:16Z
https://github.com/TencentARC/GFPGAN/issues/530
[]
christopherdisho
0
lucidrains/vit-pytorch
computer-vision
141
Should init scale matrix as diagonal form?
Hi, Phil: I noticed the LayerScale part in the `CaiT`, in the original paper the scale matrix is a diagonal form `(b,d,d)`, but in this implement, it just initialized in a form of vector(maybe can broadcast afterwards, but would it be better just initialize as a diagonal form?) https://github.com/lucidrains/vit-pytorch/blob/3f754956fbfb1f97ae4f1e244a7ecb16eab79296/vit_pytorch/cait.py#L41 Best,
closed
2021-08-17T03:56:24Z
2021-08-20T02:22:09Z
https://github.com/lucidrains/vit-pytorch/issues/141
[]
CiaoHe
3
apache/airflow
python
48,076
Add support for active session timeout in Airflow Web UI
### Description Currently, Airflow only support inactive session timeout via the `session_lifetime_minutes` config option. This handles session expiration after a period of inactivity, which is great - but it doesn't cover cases where a session should expire regardless of activity (i.e, an active session timeout). This is a common requirement in environments with stricter security/compliance policies (e.g, session must expire after x hours, even if user is active) ### Use case/motivation Introduce a new configuration option (e.g, `session_max_lifetime_minutes`) that defines the maximum duration a session can remain valid from the time of login, regardless of user activity. This feature will help admins better enforce time-based access control. ### Related issues _No response_ ### Are you willing to submit a PR? - [ ] Yes I am willing to submit a PR! ### Code of Conduct - [x] I agree to follow this project's [Code of Conduct](https://github.com/apache/airflow/blob/main/CODE_OF_CONDUCT.md)
closed
2025-03-21T18:49:07Z
2025-03-22T21:09:21Z
https://github.com/apache/airflow/issues/48076
[ "kind:feature", "area:UI", "needs-triage" ]
bmoon4
2
PokeAPI/pokeapi
api
743
Error with trying to get the evolution chain
So Im trying to get the evolution chain for pokemon using this link: https://pokeapi.co/api/v2/pokemon-species/2 But it keeps telling me KeyError Im using discord.py to make this into a command btw
closed
2022-08-07T00:34:21Z
2022-08-07T04:03:22Z
https://github.com/PokeAPI/pokeapi/issues/743
[]
Necrosis000
3
onnx/onnx
tensorflow
6,772
Introduction of https://www.conventionalcommits.org/ for PullRequest Titles?
I would consider it useful to introduce https://www.conventionalcommits.org/ at least at PullRequest title level. We could only recommend it, or check it directly with e.g. the following Github Action Use. https://github.com/marketplace/actions/conventional-commit-in-pull-requests I think the advantages are obvious, a better commit history in the main would make it easier for us in terms of release notes etc. A next step would probably be: * Define “Commit Types”, or do we need other than predefined? * Scopes” do we need any? or what could they be? What do you think about this?
open
2025-03-08T05:12:22Z
2025-03-08T15:56:17Z
https://github.com/onnx/onnx/issues/6772
[]
andife
1
encode/uvicorn
asyncio
1,297
Feature request: Ability to import uvicorn in django to enable websocket support
### Checklist - [X] There are no similar issues or pull requests for this yet. - [ ] I discussed this idea on the [community chat](https://gitter.im/encode/community) and feedback is positive. ### Is your feature related to a problem? Please describe. When we do `python manage.py runserver` we have a line in our manage.py file `import daphne.server` which enables websocket support with runserver. If we could do the same thing with uvicorn that would let us get rid of daphne entirely. ### Describe the solution you would like. websocket support for django runserver ### Describe alternatives you considered * continue using daphne for runserver (downside: extra dependency) * use uvicorn with autoreload feature. (downside: devs prefer using runserver) ### Additional context _No response_
closed
2021-12-22T01:59:52Z
2023-02-03T08:14:27Z
https://github.com/encode/uvicorn/issues/1297
[]
caleb15
6
mlfoundations/open_clip
computer-vision
17
Loss is constant
I'm using CLIP to train on my custom dataset with the following params: Dataset size : 50k image-text pairs Batch size : 128 Image Size : 224 Gpus : 1 Epochs : 500 It's been running for a while now, I'm on my 15th epoch, and the loss hasn't changed at all. It isn't a constant number, but its constantly at 4.8xxx. Should I be concerned? I'm not sure why this is happening. ![image](https://user-images.githubusercontent.com/28048963/133154185-01bdd63f-b3bc-460b-a583-21f5f9616a02.png)
closed
2021-09-13T20:47:23Z
2022-04-06T00:11:30Z
https://github.com/mlfoundations/open_clip/issues/17
[]
tarunn2799
14
WZMIAOMIAO/deep-learning-for-image-processing
pytorch
737
MAP和AP50
如果我的数据集只有一个类别,这时候输出的指标里MAP和AP50应该差不多吧?为什么MAP才0.3,AP50倒是有0.7。怎么修改相应指标呢,如果我想输出其他的指标,例如准确率,召回率或者自定义的一些指标
open
2023-05-20T06:12:37Z
2023-05-20T06:12:37Z
https://github.com/WZMIAOMIAO/deep-learning-for-image-processing/issues/737
[]
thestars-maker
0
iMerica/dj-rest-auth
rest-api
466
You're accessing the development server over HTTPS, but it only supports HTTP.
You're accessing the development server over HTTPS, but it only supports HTTP. This error always shows up while assessing a dj-rest-auth view
open
2023-01-06T08:00:50Z
2023-01-17T12:34:06Z
https://github.com/iMerica/dj-rest-auth/issues/466
[]
Danimoz
1
asacristani/fastapi-rocket-boilerplate
pydantic
22
Testing: add mypy and pylint to the pre-commit
A lot of lines to fix.
closed
2023-10-11T10:59:46Z
2024-04-04T22:00:48Z
https://github.com/asacristani/fastapi-rocket-boilerplate/issues/22
[ "enhancement", "improvement" ]
asacristani
0
pydata/pandas-datareader
pandas
63
Yahoo Finance Options tests raises ValueError: time data 'August 28, 2015' does not match format '%B %d, %Y'
Hello, some Yahoo Finance Options tests raises ``` ValueError: time data 'August 28, 2015' does not match format '%B %d, %Y' ``` I can see this exception using ``` $ nosetests -s -v ====================================================================== ERROR: test_get_all_data (test_data.TestYahooOptions) ---------------------------------------------------------------------- Traceback (most recent call last): File "/Users/femto/github/others/pandas-datareader/pandas_datareader/data.py", line 1226, in expiry_dates expiry_dates = self._expiry_dates AttributeError: 'Options' object has no attribute '_expiry_dates' During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/Users/femto/github/others/pandas-datareader/pandas_datareader/tests/test_data.py", line 358, in test_get_all_data data = self.aapl.get_all_data(put=True) File "/Users/femto/github/others/pandas-datareader/pandas_datareader/data.py", line 1197, in get_all_data expiry_dates = self.expiry_dates File "/Users/femto/github/others/pandas-datareader/pandas_datareader/data.py", line 1228, in expiry_dates expiry_dates, _ = self._get_expiry_dates_and_links() File "/Users/femto/github/others/pandas-datareader/pandas_datareader/data.py", line 1250, in _get_expiry_dates_and_links expiry_dates = [dt.datetime.strptime(element.text, "%B %d, %Y").date() for element in links] File "/Users/femto/github/others/pandas-datareader/pandas_datareader/data.py", line 1250, in <listcomp> expiry_dates = [dt.datetime.strptime(element.text, "%B %d, %Y").date() for element in links] File "//anaconda/lib/python3.4/_strptime.py", line 500, in _strptime_datetime tt, fraction = _strptime(data_string, format) File "//anaconda/lib/python3.4/_strptime.py", line 337, in _strptime (data_string, format)) ValueError: time data 'August 28, 2015' does not match format '%B %d, %Y' ====================================================================== ERROR: test_get_all_data_calls_only (test_data.TestYahooOptions) ---------------------------------------------------------------------- Traceback (most recent call last): File "/Users/femto/github/others/pandas-datareader/pandas_datareader/data.py", line 1226, in expiry_dates expiry_dates = self._expiry_dates AttributeError: 'Options' object has no attribute '_expiry_dates' During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/Users/femto/github/others/pandas-datareader/pandas_datareader/tests/test_data.py", line 372, in test_get_all_data_calls_only data = self.aapl.get_all_data(call=True, put=False) File "/Users/femto/github/others/pandas-datareader/pandas_datareader/data.py", line 1197, in get_all_data expiry_dates = self.expiry_dates File "/Users/femto/github/others/pandas-datareader/pandas_datareader/data.py", line 1228, in expiry_dates expiry_dates, _ = self._get_expiry_dates_and_links() File "/Users/femto/github/others/pandas-datareader/pandas_datareader/data.py", line 1250, in _get_expiry_dates_and_links expiry_dates = [dt.datetime.strptime(element.text, "%B %d, %Y").date() for element in links] File "/Users/femto/github/others/pandas-datareader/pandas_datareader/data.py", line 1250, in <listcomp> expiry_dates = [dt.datetime.strptime(element.text, "%B %d, %Y").date() for element in links] File "//anaconda/lib/python3.4/_strptime.py", line 500, in _strptime_datetime tt, fraction = _strptime(data_string, format) File "//anaconda/lib/python3.4/_strptime.py", line 337, in _strptime (data_string, format)) ValueError: time data 'August 28, 2015' does not match format '%B %d, %Y' ====================================================================== ERROR: test_get_call_data (test_data.TestYahooOptions) ---------------------------------------------------------------------- Traceback (most recent call last): File "/Users/femto/github/others/pandas-datareader/pandas_datareader/data.py", line 1226, in expiry_dates expiry_dates = self._expiry_dates AttributeError: 'Options' object has no attribute '_expiry_dates' During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/Users/femto/github/others/pandas-datareader/pandas_datareader/tests/test_data.py", line 337, in test_get_call_data calls = self.aapl.get_call_data(expiry=self.expiry) File "/Users/femto/github/others/pandas-datareader/pandas_datareader/data.py", line 901, in get_call_data expiry = self._try_parse_dates(year, month, expiry) File "/Users/femto/github/others/pandas-datareader/pandas_datareader/data.py", line 1061, in _try_parse_dates expiry = [self._validate_expiry(expiry)] File "/Users/femto/github/others/pandas-datareader/pandas_datareader/data.py", line 1085, in _validate_expiry expiry_dates = self.expiry_dates File "/Users/femto/github/others/pandas-datareader/pandas_datareader/data.py", line 1228, in expiry_dates expiry_dates, _ = self._get_expiry_dates_and_links() File "/Users/femto/github/others/pandas-datareader/pandas_datareader/data.py", line 1250, in _get_expiry_dates_and_links expiry_dates = [dt.datetime.strptime(element.text, "%B %d, %Y").date() for element in links] File "/Users/femto/github/others/pandas-datareader/pandas_datareader/data.py", line 1250, in <listcomp> expiry_dates = [dt.datetime.strptime(element.text, "%B %d, %Y").date() for element in links] File "//anaconda/lib/python3.4/_strptime.py", line 500, in _strptime_datetime tt, fraction = _strptime(data_string, format) File "//anaconda/lib/python3.4/_strptime.py", line 337, in _strptime (data_string, format)) ValueError: time data 'August 28, 2015' does not match format '%B %d, %Y' ====================================================================== ERROR: test_get_data_with_list (test_data.TestYahooOptions) ---------------------------------------------------------------------- Traceback (most recent call last): File "/Users/femto/github/others/pandas-datareader/pandas_datareader/data.py", line 1226, in expiry_dates expiry_dates = self._expiry_dates AttributeError: 'Options' object has no attribute '_expiry_dates' During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/Users/femto/github/others/pandas-datareader/pandas_datareader/tests/test_data.py", line 365, in test_get_data_with_list data = self.aapl.get_call_data(expiry=self.aapl.expiry_dates) File "/Users/femto/github/others/pandas-datareader/pandas_datareader/data.py", line 1228, in expiry_dates expiry_dates, _ = self._get_expiry_dates_and_links() File "/Users/femto/github/others/pandas-datareader/pandas_datareader/data.py", line 1250, in _get_expiry_dates_and_links expiry_dates = [dt.datetime.strptime(element.text, "%B %d, %Y").date() for element in links] File "/Users/femto/github/others/pandas-datareader/pandas_datareader/data.py", line 1250, in <listcomp> expiry_dates = [dt.datetime.strptime(element.text, "%B %d, %Y").date() for element in links] File "//anaconda/lib/python3.4/_strptime.py", line 500, in _strptime_datetime tt, fraction = _strptime(data_string, format) File "//anaconda/lib/python3.4/_strptime.py", line 337, in _strptime (data_string, format)) ValueError: time data 'August 28, 2015' does not match format '%B %d, %Y' ====================================================================== ERROR: test_get_expiry_dates (test_data.TestYahooOptions) ---------------------------------------------------------------------- Traceback (most recent call last): File "/Users/femto/github/others/pandas-datareader/pandas_datareader/tests/test_data.py", line 351, in test_get_expiry_dates dates, _ = self.aapl._get_expiry_dates_and_links() File "/Users/femto/github/others/pandas-datareader/pandas_datareader/data.py", line 1250, in _get_expiry_dates_and_links expiry_dates = [dt.datetime.strptime(element.text, "%B %d, %Y").date() for element in links] File "/Users/femto/github/others/pandas-datareader/pandas_datareader/data.py", line 1250, in <listcomp> expiry_dates = [dt.datetime.strptime(element.text, "%B %d, %Y").date() for element in links] File "//anaconda/lib/python3.4/_strptime.py", line 500, in _strptime_datetime tt, fraction = _strptime(data_string, format) File "//anaconda/lib/python3.4/_strptime.py", line 337, in _strptime (data_string, format)) ValueError: time data 'August 28, 2015' does not match format '%B %d, %Y' ====================================================================== ERROR: test_get_near_stock_price (test_data.TestYahooOptions) ---------------------------------------------------------------------- Traceback (most recent call last): File "/Users/femto/github/others/pandas-datareader/pandas_datareader/data.py", line 1226, in expiry_dates expiry_dates = self._expiry_dates AttributeError: 'Options' object has no attribute '_expiry_dates' During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/Users/femto/github/others/pandas-datareader/pandas_datareader/tests/test_data.py", line 330, in test_get_near_stock_price expiry=self.expiry) File "/Users/femto/github/others/pandas-datareader/pandas_datareader/data.py", line 1005, in get_near_stock_price expiry = self._try_parse_dates(year, month, expiry) File "/Users/femto/github/others/pandas-datareader/pandas_datareader/data.py", line 1061, in _try_parse_dates expiry = [self._validate_expiry(expiry)] File "/Users/femto/github/others/pandas-datareader/pandas_datareader/data.py", line 1085, in _validate_expiry expiry_dates = self.expiry_dates File "/Users/femto/github/others/pandas-datareader/pandas_datareader/data.py", line 1228, in expiry_dates expiry_dates, _ = self._get_expiry_dates_and_links() File "/Users/femto/github/others/pandas-datareader/pandas_datareader/data.py", line 1250, in _get_expiry_dates_and_links expiry_dates = [dt.datetime.strptime(element.text, "%B %d, %Y").date() for element in links] File "/Users/femto/github/others/pandas-datareader/pandas_datareader/data.py", line 1250, in <listcomp> expiry_dates = [dt.datetime.strptime(element.text, "%B %d, %Y").date() for element in links] File "//anaconda/lib/python3.4/_strptime.py", line 500, in _strptime_datetime tt, fraction = _strptime(data_string, format) File "//anaconda/lib/python3.4/_strptime.py", line 337, in _strptime (data_string, format)) ValueError: time data 'August 28, 2015' does not match format '%B %d, %Y' ====================================================================== ERROR: test_get_options_data (test_data.TestYahooOptions) ---------------------------------------------------------------------- Traceback (most recent call last): File "/Users/femto/github/others/pandas-datareader/pandas_datareader/data.py", line 1226, in expiry_dates expiry_dates = self._expiry_dates AttributeError: 'Options' object has no attribute '_expiry_dates' During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/Users/femto/github/others/pandas-datareader/pandas_datareader/tests/test_data.py", line 322, in test_get_options_data options = self.aapl.get_options_data(expiry=self.expiry) File "/Users/femto/github/others/pandas-datareader/pandas_datareader/data.py", line 750, in get_options_data self.get_call_data)]).sortlevel() File "/Users/femto/github/others/pandas-datareader/pandas_datareader/data.py", line 749, in <listcomp> for f in (self.get_put_data, File "/Users/femto/github/others/pandas-datareader/pandas_datareader/data.py", line 964, in get_put_data expiry = self._try_parse_dates(year, month, expiry) File "/Users/femto/github/others/pandas-datareader/pandas_datareader/data.py", line 1061, in _try_parse_dates expiry = [self._validate_expiry(expiry)] File "/Users/femto/github/others/pandas-datareader/pandas_datareader/data.py", line 1085, in _validate_expiry expiry_dates = self.expiry_dates File "/Users/femto/github/others/pandas-datareader/pandas_datareader/data.py", line 1228, in expiry_dates expiry_dates, _ = self._get_expiry_dates_and_links() File "/Users/femto/github/others/pandas-datareader/pandas_datareader/data.py", line 1250, in _get_expiry_dates_and_links expiry_dates = [dt.datetime.strptime(element.text, "%B %d, %Y").date() for element in links] File "/Users/femto/github/others/pandas-datareader/pandas_datareader/data.py", line 1250, in <listcomp> expiry_dates = [dt.datetime.strptime(element.text, "%B %d, %Y").date() for element in links] File "//anaconda/lib/python3.4/_strptime.py", line 500, in _strptime_datetime tt, fraction = _strptime(data_string, format) File "//anaconda/lib/python3.4/_strptime.py", line 337, in _strptime (data_string, format)) ValueError: time data 'August 28, 2015' does not match format '%B %d, %Y' ====================================================================== ERROR: test_get_put_data (test_data.TestYahooOptions) ---------------------------------------------------------------------- Traceback (most recent call last): File "/Users/femto/github/others/pandas-datareader/pandas_datareader/data.py", line 1226, in expiry_dates expiry_dates = self._expiry_dates AttributeError: 'Options' object has no attribute '_expiry_dates' During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/Users/femto/github/others/pandas-datareader/pandas_datareader/tests/test_data.py", line 344, in test_get_put_data puts = self.aapl.get_put_data(expiry=self.expiry) File "/Users/femto/github/others/pandas-datareader/pandas_datareader/data.py", line 964, in get_put_data expiry = self._try_parse_dates(year, month, expiry) File "/Users/femto/github/others/pandas-datareader/pandas_datareader/data.py", line 1061, in _try_parse_dates expiry = [self._validate_expiry(expiry)] File "/Users/femto/github/others/pandas-datareader/pandas_datareader/data.py", line 1085, in _validate_expiry expiry_dates = self.expiry_dates File "/Users/femto/github/others/pandas-datareader/pandas_datareader/data.py", line 1228, in expiry_dates expiry_dates, _ = self._get_expiry_dates_and_links() File "/Users/femto/github/others/pandas-datareader/pandas_datareader/data.py", line 1250, in _get_expiry_dates_and_links expiry_dates = [dt.datetime.strptime(element.text, "%B %d, %Y").date() for element in links] File "/Users/femto/github/others/pandas-datareader/pandas_datareader/data.py", line 1250, in <listcomp> expiry_dates = [dt.datetime.strptime(element.text, "%B %d, %Y").date() for element in links] File "//anaconda/lib/python3.4/_strptime.py", line 500, in _strptime_datetime tt, fraction = _strptime(data_string, format) File "//anaconda/lib/python3.4/_strptime.py", line 337, in _strptime (data_string, format)) ValueError: time data 'August 28, 2015' does not match format '%B %d, %Y' ====================================================================== ERROR: test_get_underlying_price (test_data.TestYahooOptions) ---------------------------------------------------------------------- Traceback (most recent call last): File "/Users/femto/github/others/pandas-datareader/pandas_datareader/data.py", line 1226, in expiry_dates expiry_dates = self._expiry_dates AttributeError: 'Options' object has no attribute '_expiry_dates' During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/Users/femto/github/others/pandas-datareader/pandas_datareader/tests/test_data.py", line 381, in test_get_underlying_price url = options_object._yahoo_url_from_expiry(options_object.expiry_dates[0]) File "/Users/femto/github/others/pandas-datareader/pandas_datareader/data.py", line 1228, in expiry_dates expiry_dates, _ = self._get_expiry_dates_and_links() File "/Users/femto/github/others/pandas-datareader/pandas_datareader/data.py", line 1250, in _get_expiry_dates_and_links expiry_dates = [dt.datetime.strptime(element.text, "%B %d, %Y").date() for element in links] File "/Users/femto/github/others/pandas-datareader/pandas_datareader/data.py", line 1250, in <listcomp> expiry_dates = [dt.datetime.strptime(element.text, "%B %d, %Y").date() for element in links] File "//anaconda/lib/python3.4/_strptime.py", line 500, in _strptime_datetime tt, fraction = _strptime(data_string, format) File "//anaconda/lib/python3.4/_strptime.py", line 337, in _strptime (data_string, format)) ValueError: time data 'September 18, 2015' does not match format '%B %d, %Y' ====================================================================== ERROR: test_month_year (test_data.TestYahooOptions) ---------------------------------------------------------------------- Traceback (most recent call last): File "/Users/femto/github/others/pandas-datareader/pandas_datareader/data.py", line 1226, in expiry_dates expiry_dates = self._expiry_dates AttributeError: 'Options' object has no attribute '_expiry_dates' During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/Users/femto/github/others/pandas-datareader/pandas_datareader/tests/test_data.py", line 421, in test_month_year data = self.aapl.get_call_data(month=self.month, year=self.year) File "/Users/femto/github/others/pandas-datareader/pandas_datareader/data.py", line 901, in get_call_data expiry = self._try_parse_dates(year, month, expiry) File "/Users/femto/github/others/pandas-datareader/pandas_datareader/data.py", line 1075, in _try_parse_dates expiry = [expiry for expiry in self.expiry_dates if expiry.year == year and expiry.month == month] File "/Users/femto/github/others/pandas-datareader/pandas_datareader/data.py", line 1228, in expiry_dates expiry_dates, _ = self._get_expiry_dates_and_links() File "/Users/femto/github/others/pandas-datareader/pandas_datareader/data.py", line 1250, in _get_expiry_dates_and_links expiry_dates = [dt.datetime.strptime(element.text, "%B %d, %Y").date() for element in links] File "/Users/femto/github/others/pandas-datareader/pandas_datareader/data.py", line 1250, in <listcomp> expiry_dates = [dt.datetime.strptime(element.text, "%B %d, %Y").date() for element in links] File "//anaconda/lib/python3.4/_strptime.py", line 500, in _strptime_datetime tt, fraction = _strptime(data_string, format) File "//anaconda/lib/python3.4/_strptime.py", line 337, in _strptime (data_string, format)) ValueError: time data 'August 28, 2015' does not match format '%B %d, %Y' ``` but ``` $ nosetests -s -v pandas_datareader/tests/test_data.py:TestYahooOptions.test_get_all_data ``` don't raises any error ! Any idea ?
closed
2015-08-22T06:57:39Z
2017-01-09T16:37:37Z
https://github.com/pydata/pandas-datareader/issues/63
[]
femtotrader
7
pallets-eco/flask-sqlalchemy
sqlalchemy
589
Provide a way to configure the SA engine
Hi all, Unless I'm mis-reading the code, there is no way to provide engine creation options. One of them that appears with SA 1.2 is [pool_pre_ping](http://docs.sqlalchemy.org/en/latest/core/pooling.html#pool-disconnects-pessimistic). I'm not sure I can provide extra parameters via flask-sqlalchemy parameters. Should I create the engine out of band? Thanks,
closed
2018-01-28T16:00:01Z
2021-04-03T16:28:27Z
https://github.com/pallets-eco/flask-sqlalchemy/issues/589
[]
Lawouach
6
deepinsight/insightface
pytorch
2,104
why 1machine (TITAN RTX ) +1 machine( RTX 3060) training time are slower any one machine
python -m torch.distributed.launch --nproc_per_node=1 --nnodes=2 --node_rank=0 --master_addr="192.168.8.131" --master_port=12581 train.py configs/ms1mv2_mbf python -m torch.distributed.launch --nproc_per_node=1 --nnodes=2 --node_rank=1 --master_addr="192.168.8.131" --master_port=12581 train.py configs/ms1mv2_mbf /home/pc/anaconda3/envs/face19/lib/python3.9/site-packages/torch/distributed/launch.py:163: DeprecationWarning: The 'warn' method is deprecated, use 'warning' instead logger.warn( The module torch.distributed.launch is deprecated and going to be removed in future.Migrate to torch.distributed.run WARNING:torch.distributed.run:--use_env is deprecated and will be removed in future releases. Please read local_rank from `os.environ('LOCAL_RANK')` instead. INFO:torch.distributed.launcher.api:Starting elastic_operator with launch configs: entrypoint : train.py min_nodes : 2 max_nodes : 2 nproc_per_node : 1 run_id : none rdzv_backend : static rdzv_endpoint : 192.168.8.131:12581 rdzv_configs : {'rank': 0, 'timeout': 900} max_restarts : 3 monitor_interval : 5 log_dir : None metrics_cfg : {} INFO:torch.distributed.elastic.agent.server.local_elastic_agent:log directory set to: /tmp/torchelastic_4a5rychg/none__fkba0g3 INFO:torch.distributed.elastic.agent.server.api:[default] starting workers for entrypoint: python INFO:torch.distributed.elastic.agent.server.api:[default] Rendezvous'ing worker group /home/pc/anaconda3/envs/face19/lib/python3.9/site-packages/torch/distributed/elastic/utils/store.py:52: FutureWarning: This is an experimental API and will be changed in future. warnings.warn( INFO:torch.distributed.elastic.agent.server.api:[default] Rendezvous complete for workers. Result: restart_count=0 master_addr=192.168.8.131 master_port=12581 group_rank=0 group_world_size=2 local_ranks=[0] role_ranks=[0] global_ranks=[0] role_world_sizes=[2] global_world_sizes=[2] INFO:torch.distributed.elastic.agent.server.api:[default] Starting worker group INFO:torch.distributed.elastic.multiprocessing:Setting worker0 reply file to: /tmp/torchelastic_4a5rychg/none__fkba0g3/attempt_0/0/error.json 0 0 Training: 2022-09-15 11:06:52,012-rank_id: 0 Training: 2022-09-15 11:06:55,830-: margin_list [1.0, 0.5, 0.0] Training: 2022-09-15 11:06:55,830-: network mbf Training: 2022-09-15 11:06:55,834-: resume False Training: 2022-09-15 11:06:55,834-: save_all_states False Training: 2022-09-15 11:06:55,834-: output work_dirs/ms1mv2_mbf Training: 2022-09-15 11:06:55,834-: embedding_size 512 Training: 2022-09-15 11:06:55,834-: sample_rate 1.0 Training: 2022-09-15 11:06:55,834-: interclass_filtering_threshold0 Training: 2022-09-15 11:06:55,834-: fp16 True Training: 2022-09-15 11:06:55,834-: batch_size 256 Training: 2022-09-15 11:06:55,834-: optimizer sgd Training: 2022-09-15 11:06:55,834-: lr 0.1 Training: 2022-09-15 11:06:55,834-: momentum 0.9 Training: 2022-09-15 11:06:55,834-: weight_decay 0.0001 Training: 2022-09-15 11:06:55,834-: verbose 2000 Training: 2022-09-15 11:06:55,834-: frequent 10 Training: 2022-09-15 11:06:55,834-: dali False Training: 2022-09-15 11:06:55,834-: gradient_acc 1 Training: 2022-09-15 11:06:55,834-: seed 2048 Training: 2022-09-15 11:06:55,834-: num_workers 4 Training: 2022-09-15 11:06:55,834-: rec /home/pc/faces_webface_112x112 Training: 2022-09-15 11:06:55,834-: num_classes 10572 Training: 2022-09-15 11:06:55,834-: num_image 494194 Training: 2022-09-15 11:06:55,834-: num_epoch 40 Training: 2022-09-15 11:06:55,835-: warmup_epoch 0 Training: 2022-09-15 11:06:55,835-: val_targets ['lfw', 'cfp_fp', 'agedb_30'] Training: 2022-09-15 11:06:55,835-: total_batch_size 512 Training: 2022-09-15 11:06:55,835-: warmup_step 0 Training: 2022-09-15 11:06:55,835-: total_step 38600 loading bin 0 loading bin 1000 loading bin 2000 loading bin 3000 loading bin 4000 loading bin 5000 loading bin 6000 loading bin 7000 loading bin 8000 loading bin 9000 loading bin 10000 loading bin 11000 torch.Size([12000, 3, 112, 112]) loading bin 0 loading bin 1000 loading bin 2000 loading bin 3000 loading bin 4000 loading bin 5000 loading bin 6000 loading bin 7000 loading bin 8000 loading bin 9000 loading bin 10000 loading bin 11000 loading bin 12000 loading bin 13000 torch.Size([14000, 3, 112, 112]) loading bin 0 loading bin 1000 loading bin 2000 loading bin 3000 loading bin 4000 loading bin 5000 loading bin 6000 loading bin 7000 loading bin 8000 loading bin 9000 loading bin 10000 loading bin 11000 torch.Size([12000, 3, 112, 112]) /home/pc/fc/face/insightface/recognition/arcface_torch/train.py:163: FutureWarning: Non-finite norm encountered in torch.nn.utils.clip_grad_norm_; continuing anyway. Note that the default behavior will change in a future release to error out if a non-finite total norm is encountered. At that point, setting error_if_nonfinite=false will be required to retain the old behavior. torch.nn.utils.clip_grad_norm_(backbone.parameters(), 5) /home/pc/anaconda3/envs/face19/lib/python3.9/site-packages/torch/optim/lr_scheduler.py:129: UserWarning: Detected call of `lr_scheduler.step()` before `optimizer.step()`. In PyTorch 1.1.0 and later, you should call them in the opposite order: `optimizer.step()` before `lr_scheduler.step()`. Failure to do this will result in PyTorch skipping the first value of the learning rate schedule. See more details at https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate warnings.warn("Detected call of `lr_scheduler.step()` before `optimizer.step()`. " Training: 2022-09-15 11:07:37,277-Reducer buckets have been rebuilt in this iteration. Training: 2022-09-15 11:07:55,067-Speed 518.42 samples/sec Loss 44.2595 LearningRate 0.099902 Epoch: 0 Global Step: 20 Fp16 Grad Scale: 8192 Required: 13 hours Training: 2022-09-15 11:08:04,952-Speed 517.94 samples/sec Loss 45.0456 LearningRate 0.099850 Epoch: 0 Global Step: 30 Fp16 Grad Scale: 8192 Required: 12 hours Training: 2022-09-15 11:08:14,893-Speed 515.12 samples/sec Loss 45.5388 LearningRate 0.099798 Epoch: 0 Global Step: 40 Fp16 Grad Scale: 8192 Required: 12 hours Training: 2022-09-15 11:08:24,767-Speed 518.53 samples/sec Loss 45.7875 LearningRate 0.099746 Epoch: 0 Global Step: 50 Fp16 Grad Scale: 8192 Required: 12 hours Training: 2022-09-15 11:08:34,667-Speed 517.22 samples/sec Loss 45.5845 LearningRate 0.099695 Epoch: 0 Global Step: 60 Fp16 Grad Scale: 8192 Required: 11 hours Training: 2022-09-15 11:08:44,533-Speed 518.98 samples/sec Loss 45.6968 LearningRate 0.099643 Epoch: 0 Global Step: 70 Fp16 Grad Scale: 8192 Required: 11 hours (face19) ubuntu@ubuntu-X10SRA:~/fc/face/insightface/recognition/arcface_torch$ python -m torch.distributed.launch --nproc_per_node=1 --nnodes=2 --node_rank=1 --master_addr="192.168.8.131" --master_port=12581 train.py configs/ms1mv2_mbf /home/ubuntu/anaconda3/envs/face19/lib/python3.9/site-packages/torch/distributed/launch.py:163: DeprecationWarning: The 'warn' method is deprecated, use 'warning' instead logger.warn( The module torch.distributed.launch is deprecated and going to be removed in future.Migrate to torch.distributed.run WARNING:torch.distributed.run:--use_env is deprecated and will be removed in future releases. Please read local_rank from `os.environ('LOCAL_RANK')` instead. INFO:torch.distributed.launcher.api:Starting elastic_operator with launch configs: entrypoint : train.py min_nodes : 2 max_nodes : 2 nproc_per_node : 1 run_id : none rdzv_backend : static rdzv_endpoint : 192.168.8.131:12581 rdzv_configs : {'rank': 1, 'timeout': 900} max_restarts : 3 monitor_interval : 5 log_dir : None metrics_cfg : {} INFO:torch.distributed.elastic.agent.server.local_elastic_agent:log directory set to: /tmp/torchelastic_bcc_b24k/none_nbf6ckxx INFO:torch.distributed.elastic.agent.server.api:[default] starting workers for entrypoint: python INFO:torch.distributed.elastic.agent.server.api:[default] Rendezvous'ing worker group /home/ubuntu/anaconda3/envs/face19/lib/python3.9/site-packages/torch/distributed/elastic/utils/store.py:52: FutureWarning: This is an experimental API and will be changed in future. warnings.warn( INFO:torch.distributed.elastic.agent.server.api:[default] Rendezvous complete for workers. Result: restart_count=0 master_addr=192.168.8.131 master_port=12581 group_rank=1 group_world_size=2 local_ranks=[0] role_ranks=[1] global_ranks=[1] role_world_sizes=[2] global_world_sizes=[2] INFO:torch.distributed.elastic.agent.server.api:[default] Starting worker group INFO:torch.distributed.elastic.multiprocessing:Setting worker0 reply file to: /tmp/torchelastic_bcc_b24k/none_nbf6ckxx/attempt_0/0/error.json sgd /home/ubuntu/fc/face/insightface/recognition/arcface_torch/train.py:166: FutureWarning: Non-finite norm encountered in torch.nn.utils.clip_grad_norm_; continuing anyway. Note that the default behavior will change in a future release to error out if a non-finite total norm is encountered. At that point, setting error_if_nonfinite=false will be required to retain the old behavior. torch.nn.utils.clip_grad_norm_(backbone.parameters(), 5) /home/ubuntu/anaconda3/envs/face19/lib/python3.9/site-packages/torch/optim/lr_scheduler.py:129: UserWarning: Detected call of `lr_scheduler.step()` before `optimizer.step()`. In PyTorch 1.1.0 and later, you should call them in the opposite order: `optimizer.step()` before `lr_scheduler.step()`. Failure to do this will result in PyTorch skipping the first value of the learning rate schedule. See more details at https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate warnings.warn("Detected call of `lr_scheduler.step()` before `optimizer.step()`. " [W pthreadpool-cpp.cc:90] Warning: Leaking Caffe2 thread-pool after fork. (function pthreadpool) [W pthreadpool-cpp.cc:90] Warning: Leaking Caffe2 thread-pool after fork. (function pthreadpool) [W pthreadpool-cpp.cc:90] Warning: Leaking Caffe2 thread-pool after fork. (function pthreadpool) [W pthreadpool-cpp.cc:90] Warning: Leaking Caffe2 thread-pool after fork. (function pthreadpool)
open
2022-09-15T03:30:26Z
2022-09-15T03:30:26Z
https://github.com/deepinsight/insightface/issues/2104
[]
wavelet2008
0
ScrapeGraphAI/Scrapegraph-ai
machine-learning
194
Without any api key
Can I use this library without keys? Because gpt has a free version, can I use the same?
closed
2024-05-09T15:47:54Z
2024-05-09T16:25:30Z
https://github.com/ScrapeGraphAI/Scrapegraph-ai/issues/194
[]
progeroffline
1
matplotlib/mplfinance
matplotlib
111
Change font size of title.
If the length of title is too big , cropping occurs instead of reducing the font size
closed
2020-04-29T08:04:02Z
2020-04-30T01:45:04Z
https://github.com/matplotlib/mplfinance/issues/111
[ "question" ]
abhisheksharma26jan
1
microsoft/unilm
nlp
924
[layoutlmv3]: Issue with label format? Inference yields boundary boxes that are too short.
Hi, I am working on object detection with layoutlmv3. I am using the publaynet fine tuned model and have a training set with about 600 documents. The issue that I am facing is that the predicted boundary boxes are only kind of correct. In most of the documents the predicted boundary are "too short". Meaning that the lower y coordinate is usually too small. As an example I have attached you an example from my evaluation dataset. It is the case in almost every single inference picture. Thus, I am trying to get some ideas to troubleshoot. I double checked that the drawn boundary boxes in the inference is correctly done. ![ak_state_of_alaska_2020_p144](https://user-images.githubusercontent.com/40527435/202876949-c6e41860-ee7d-4b2f-b34b-c2d7ef7cdd4a.jpeg) ![inference](https://user-images.githubusercontent.com/40527435/202876954-87cab2cc-5f26-4142-a661-d9e7abfb9931.jpeg) Any ideas would be greatly appreciated.
closed
2022-11-20T00:32:52Z
2023-06-06T12:40:43Z
https://github.com/microsoft/unilm/issues/924
[]
OGiesecke
2
Kav-K/GPTDiscord
asyncio
425
How to change model for indexing?
gpt3 sucks at math and code! I'm trying to use gpt4 for indexing but with no luck. It'd be great if there was a model parameter for indexing commands. currently, it only supports while querying which is not helpful if the context is written using gpt3. I also tried setting the settings parameter model to gpt-4 but it didn't seem to work.
open
2023-11-17T21:50:31Z
2023-11-17T22:27:49Z
https://github.com/Kav-K/GPTDiscord/issues/425
[ "enhancement", "help wanted", "high-prio" ]
ashra-main
14
tatsu-lab/stanford_alpaca
deep-learning
60
Plan to release the web demo code
Hi, thanks for sharing your work, this is amazing! Do you plan to release the web demo code ?
closed
2023-03-16T14:11:30Z
2023-03-16T16:18:34Z
https://github.com/tatsu-lab/stanford_alpaca/issues/60
[]
testplop
1
ultralytics/ultralytics
pytorch
19,826
How to Freeze Detection Head Layers in YOLOv8m-segment and Train Only Segmentation Head?
### Search before asking - [x] I have searched the Ultralytics YOLO [issues](https://github.com/ultralytics/ultralytics/issues) and [discussions](https://github.com/orgs/ultralytics/discussions) and found no similar questions. ### Question Hi all, I'm working with yolov8m-seg.pt and want to freeze the detection head layers (bounding box/class prediction) while training only the segmentation head (mask prediction). The goal is to fine-tune the segmentation capability without updating the detection part. Has anyone done this before? I’m thinking of freezing layers by setting requires_grad = False for detection-related params, but I’m unsure how to precisely identify them in the head (e.g., model.22). Here’s my tentative code—can someone confirm if this approach works or suggest a better way? ### Additional `from ultralytics import YOLO # Load model model = YOLO("yolov8m-seg.pt") # Freeze detection head layers (guessing these are related to 'detect') for name, param in model.model.named_parameters(): if "detect" in name.lower(): # Is this the right way to target detection head? param.requires_grad = False # Train only segmentation head model.train(data="path/to/data.yaml", epochs=50, imgsz=640)` Questions: Does detect correctly target the detection head, or should I use a different identifier (e.g., specific layer indices)? Will this setup ensure the segmentation head (e.g., mask coefficients/Proto) still trains properly? Any pitfalls to watch out for? Thanks for any insights!
open
2025-03-23T04:49:45Z
2025-03-24T16:47:11Z
https://github.com/ultralytics/ultralytics/issues/19826
[ "question", "segment" ]
Wang-taoshuo
3
rougier/numpy-100
numpy
22
17. add `print(np.nan in set([np.nan])) # True`
print(np.nan == np.nan) # False print(np.nan in set([np.nan])) # True
closed
2016-09-09T15:26:39Z
2020-03-13T13:39:41Z
https://github.com/rougier/numpy-100/issues/22
[]
qeatzy
2
marimo-team/marimo
data-science
4,069
Loading indicator needs to be shown for longer
I have a notebook that I've published via github pages. It's very nice, and marimo does a wonderful job. But a number of people who have visited have said that they thought it was broken because it initially showed a spinning circle saying "Initializing...", etc., but that circle disappeared, leaving just a white page. The problem is that there's a lag of up to 8 seconds between the spinning circle and the spinning hourglass (which is followed by actual content). And I guess that's just long enough for people to think the page must be broken. We all have pretty beefy machines with high-speed internet. If that spinning circle could just be kept on the screen until other elements start to load, I think it would be perfect. For reference, my published notebook is [here](https://moble.github.io/sxscatalog/), and the raw notebook itself is [here](https://github.com/moble/sxscatalog/blob/main/scripts/catalog_notebook.py). (And thanks again for the wonderful package. It's really amazing.)
closed
2025-03-12T18:46:00Z
2025-03-13T01:37:01Z
https://github.com/marimo-team/marimo/issues/4069
[]
moble
1
Lightning-AI/pytorch-lightning
machine-learning
20,598
ModelSummary does not account for every type of precision strings
### Bug description The `precision_to_bits` dictionary in https://github.com/Lightning-AI/pytorch-lightning/blob/master/src/lightning/pytorch/utilities/model_summary/model_summary.py#L219 does not account for every type of precision, e.g., `bf16-true`. This will fail in getting the proper key from the dictionary and will default to 32. ### What version are you seeing the problem on? v2.5, master ### How to reproduce the bug In `lightning/pytorch/utilities/model_summary/model_summary.py:L219`, just add the following when `self._model.trainer.precision="bf16-true"`: ```python ... precision_to_bits = {"64": 64, "32": 32, "16": 16, "bf16": 16} print(precision_to_bits.get(self._model.trainer.precision, 32)) raise ... ``` ### Error messages and logs ``` # Error messages and logs here please ``` ### Environment <details> <summary>Current environment</summary> ``` #- PyTorch Lightning Version (e.g., 2.5.0): master #- PyTorch Version (e.g., 2.5): 2.5.1 #- Python version (e.g., 3.12): 3.10 #- OS (e.g., Linux): Ubuntu 22.04 #- CUDA/cuDNN version: 12.4 #- GPU models and configuration: 4xNVIDIA H100 NVL #- How you installed Lightning(`conda`, `pip`, source): pip ``` </details> ### More info _No response_
open
2025-02-20T14:56:27Z
2025-02-20T14:58:14Z
https://github.com/Lightning-AI/pytorch-lightning/issues/20598
[ "bug", "needs triage", "ver: 2.5.x" ]
gugarosa
0
deepset-ai/haystack
pytorch
8,410
Create a version of DLAI lesson "Self-Reflecting Agents with Loops" (entity extraction) using ChatGenerator
We need to better understand how complex and difficult to understand Haystack example code would get if we used ChatGenerator instead of the regular Generators. For that purpose, let's create a version of https://learn.deeplearning.ai/courses/building-ai-applications-with-haystack/lesson/6/self-reflecting-agents-with-loops using ChatGenerator.
closed
2024-09-26T06:09:47Z
2024-10-11T06:52:47Z
https://github.com/deepset-ai/haystack/issues/8410
[ "P1" ]
julian-risch
2
pandas-dev/pandas
pandas
60,645
DOC: pandas.DataFrame.aggregate return value
### Pandas version checks - [X] I have checked that the issue still exists on the latest versions of the docs on `main` [here](https://pandas.pydata.org/docs/dev/) ### Location of the documentation https://pandas.pydata.org/docs/dev/reference/api/pandas.DataFrame.aggregate.html#pandas.DataFrame.aggregate ### Documentation problem The documentation of pandas.DataFrame.aggregate() method says: The return can be: * scalar : when Series.agg is called with single function * Series : when DataFrame.agg is called with a single function * DataFrame : when DataFrame.agg is called with several functions But df = pd.DataFrame([[1]]) ; type(df.agg(lambda x: 3*x)) returns pandas.core.frame.DataFrame even though .agg() was called with a single function ### Suggested fix for documentation I'd love to offer a fix, but the reason I was looking up the docs was that I'd like to know what .agg() does exactly...
closed
2025-01-02T12:12:12Z
2025-01-05T18:19:52Z
https://github.com/pandas-dev/pandas/issues/60645
[ "Docs", "Duplicate Report" ]
sa42bme
2
mljar/mercury
data-visualization
119
Enhancement: Add new apps via uploading jupyter notebooks via drag and drop in the browser
It would be nice, if users could create new apps via uploading their custom jupyter notebooks via drag and drop in the browser on the home screen of mercury. Due to security concerns, this feature should only be enabled in trustworthy environments, e.g. via explicitly submitting an additional command-line argument `mercury run --enable-app-upload`. I am curious about your thoughts.
closed
2022-07-01T11:46:12Z
2023-02-20T09:11:29Z
https://github.com/mljar/mercury/issues/119
[]
jonaslandsgesell
3
LibreTranslate/LibreTranslate
api
477
exclude db from .gitignore
Hello Please, exclude db from .gitignore because it doesnt work with ci. Image can't start ``` Traceback (most recent call last): File "/app/./venv/bin/libretranslate", line 8, in <module> Loaded support for 3 languages (4 models total)! sys.exit(main()) File "/app/venv/lib/python3.10/site-packages/libretranslate/main.py", line 189, in main app = create_app(args) File "/app/venv/lib/python3.10/site-packages/libretranslate/app.py", line 220, in create_app os.mkdir(default_mp_dir) FileNotFoundError: [Errno 2] No such file or directory: '/app/db/prometheus' ```
open
2023-08-04T12:43:11Z
2023-10-19T18:25:59Z
https://github.com/LibreTranslate/LibreTranslate/issues/477
[ "possible bug" ]
superset1
1
gradio-app/gradio
deep-learning
9,939
Dropdown and LinePlot buggy interaction
### Describe the bug Interactive dropdowns (```gr.Dropdown(options, interactive=True)```) do not work if a LinePlot (probably similar with ScatterPlot and others, but untested) is provided in the same block. This also happens if the plot is in other columns and rows. I did not check if it also happens with other components, but below you can find a very minimal reproducer, in which the dropdown is not interactible. If the plot is removed, the dropdown works (as shown in [this comment](https://github.com/gradio-app/gradio/issues/6103#issuecomment-1790205932) ### Have you searched existing issues? 🔎 - [X] I have searched and found no existing issues ### Reproduction ```python import gradio as gr my_list = ["World", "Gradio", "World2", "abc ", "You"] with gr.Blocks() as demo: drop1 = gr.Dropdown(choices=my_list, label="simple", value=my_list[0], interactive=True) plt = gr.LinePlot() # Comment this out and the dropdown can be interacted with demo.launch(share=True) ``` ### Screenshot _No response_ ### Logs _No response_ ### System Info ```shell I am using gradio 5.5.0, I'll paste the environment output: Gradio Environment Information: ------------------------------ Operating System: Linux gradio version: 5.5.0 gradio_client version: 1.4.2 ------------------------------------------------ gradio dependencies in your environment: aiofiles: 23.2.1 anyio: 4.6.2.post1 audioop-lts: 0.2.1 fastapi: 0.115.4 ffmpy: 0.4.0 gradio-client==1.4.2 is not installed. httpx: 0.27.2 huggingface-hub: 0.26.2 jinja2: 3.1.4 markupsafe: 2.1.5 numpy: 2.1.3 orjson: 3.10.11 packaging: 24.2 pandas: 2.2.3 pillow: 11.0.0 pydantic: 2.9.2 pydub: 0.25.1 python-multipart==0.0.12 is not installed. pyyaml: 6.0.2 ruff: 0.7.3 safehttpx: 0.1.1 semantic-version: 2.10.0 starlette: 0.41.2 tomlkit==0.12.0 is not installed. typer: 0.13.0 typing-extensions: 4.12.2 urllib3: 2.2.3 uvicorn: 0.32.0 authlib; extra == 'oauth' is not installed. itsdangerous; extra == 'oauth' is not installed. gradio_client dependencies in your environment: fsspec: 2024.10.0 httpx: 0.27.2 huggingface-hub: 0.26.2 packaging: 24.2 typing-extensions: 4.12.2 websockets: 12.0 ``` ### Severity Can work around using other components (but not with LinePlots)
closed
2024-11-11T14:51:32Z
2025-02-07T18:16:33Z
https://github.com/gradio-app/gradio/issues/9939
[ "bug" ]
nestor98
3
tableau/server-client-python
rest-api
693
server.jobs.get_by_id failing inconsistently with 401002: Unauthorized Access error
Hello, I am writing a python script to trigger and monitor extract refreshes for a given set of datasource IDs. First, I trigger the refresh using `server.datasources.refresh(datasource)` for all the given datasource IDs using multi threading. Then, I monitor the progress of these refreshes and print out a message accordingly. Do note that my Tableau server is configured to run only 2 extract refreshes at once, all others go into a pending state. But, what I'm seeing is that every once in a while, one of the threads will throw a 401002 error when checking the status of the refresh job. Here's my code snippet: ``` def monitor_refresh_progress(self, job_id, datasource): # Get initial job status value, will be -1 if in progress with self.server.auth.sign_in(self.tableau_auth): job_status = self.server.jobs.get_by_id(job_id) # Keep polling until success or failure, added random to avoid multiple simultaneous hits while int(job_status.finish_code) not in [0,1]: time.sleep(randint(110,130)) with self.server.auth.sign_in(self.tableau_auth): job_status = self.server.jobs.get_by_id(job_id) if int(job_status.finish_code) == 0: self.logger.info("Extract Refresh successfully completed for datasource: {}".format(datasource.name)) else: slack.post_message(text=":: ERROR :: Tableau Extract Refresh failed for datasource {}.".format(datasource.name)) self.logger.error("Extract Refresh failed for datasource: {}".format(datasource.name)) raise Exception("Extract Refresh failed for datasource: {}".format(datasource.name)) ``` Right now, I have added a retry decorator for this monitor_refersh_progress() method but I'm not too sure about the efficacy since I'm using multi threading. Am I doing something wrong? Any help would be appreciated. Thanks
closed
2020-09-16T12:34:24Z
2023-04-20T18:38:03Z
https://github.com/tableau/server-client-python/issues/693
[]
quenchua
5
roboflow/supervision
machine-learning
1,016
Regarding zone problem
### Search before asking - [X] I have searched the Supervision [issues](https://github.com/roboflow/supervision/issues) and found no similar feature requests. ### Question Currently, learning two yolov8 model, one for person detection other for object detection : Main problem is for automated selfcheckout based on zone logic : where we check weather person holding object crossing zone from left toward right or right towards left and then prepare recipt accordingly. Need guidance in logic : in this case, should I have to combine detection for person and object or should handle logic alternately ? Below Code : #Define empty lists to keep track of labels original_labels = [] final_labels = [] person_bbox = [] p_items = [] purchased_items = set(p_items) a_items = [] added_items = set(a_items) hand_bbox = [] combined_detections = [] #Save result as det_tracking_result with sv.VideoSink("new_det_tracking_result.mp4", video_info) as sink: #Iterate through model predictions and tracking results for index, (result, result1) in enumerate(zip(model.track(source=VID_PATH, show=False, stream=True, verbose=True, persist=True), model1.track(source=VID_PATH, show=False, stream=True, verbose=True, persist=True))): #Define variables to store interactions that are refreshed per frame interactions = [] person_intersection_str = "" # Obtain predictions from model1 frame1 = result1.orig_img detections_objects1 = sv.Detections.from_ultralytics(result1) detections_objects1 = detections_objects1[detections_objects1.class_id == 0] bboxes1 = result1.boxes #print(detections_objects1) #Obtain predictions from yolov8 model frame = result.orig_img detections = sv.Detections.from_ultralytics(result) detections = detections[detections.class_id < 10] bboxes = result.boxes # Apply mask over the single Zone mask1, mask2 = zone.trigger(detections=detections_objects1), zone.trigger(detections=detections) detections_filtered1, detections_filtered2 = detections_objects1[mask1], detections[mask2] if detections_objects1 and len(detections_objects1) > 0: label1 = label_map1[detections_objects1.class_id[0]] # Get the label for the class_id combined_detections.append((detections_objects1, label1)) for detection, label in combined_detections: print("Detections:", detection) print("Label:", label) if bboxes1.id is not None: detections_objects1.tracker_id = bboxes1.id.cpu().numpy().astype(int) labels = [ f'#{tracker_id} {label_map1[class_id]} {confidence:0.2f}' for _, _, confidence, class_id, tracker_id in detections_objects1 ] #Print labels for detections from model1 for _, _, confidence, class_id, _ in detections_objects1: print(f"Label: {label_map1[class_id]} with confidence: {confidence:.2f}") print(detections) # Apply mask over the single Zone mask = zone.trigger(detections=detections) detections_filtered = detections[mask] print("mask", mask) print("Detection", detections_filtered) if detections and len(detections) > 0: label = label_map[detections.class_id[0]] # Get the label for the class_id combined_detections.append((detections, label)) if bboxes.id is not None: detections.tracker_id = bboxes.id.cpu().numpy().astype(int) labels = [ f'#{tracker_id} {label_map[class_id]} {confidence:0.2f}' for _, _, confidence, class_id, tracker_id in detections ] frame = box_annotator.annotate(scene=frame, detections=detections_filtered, labels=labels) frame = zone_annotator.annotate(scene=frame) objects = [f'#{tracker_id} {label_map[class_id]}' for _, _, confidence, class_id, tracker_id in detections] # for _, _, confidence, class_id, _ in detections: # print(f"Label: {label_map[class_id]} with confidence: {confidence:.2f}") # # Combine detections from both models # # combined_detections = np.concatenate((detections_objects1, detections)) # print(combined_detections) # # Extract xyxy attributes from combined detections # combined_detections_xyxy = [detection[0].xyxy for detection in combined_detections] # print(combined_detections_xyxy) # # Check if combined_detections_xyxy is not empty and contains non-empty arrays # if combined_detections_xyxy and all(arr.size > 0 for arr in combined_detections_xyxy): # # Concatenate xyxy arrays into a single array # combined_xyxy_array = np.concatenate(combined_detections_xyxy, axis=0) # else: # combined_xyxy_array = np.empty((0, 4)) # Create an empty array # # Create a Detections object with the concatenated xyxy array # combined_detections_detections = sv.Detections(xyxy=combined_xyxy_array) # # Apply mask over the combined detections # mask = zone.trigger(detections= combined_detections_detections) # # Filter combined detections based on the mask # combined_detections_filtered = [combined_detections[i] for i in range(len(combined_detections)) if mask[i]] # # Print the mask and filtered detections # #print("Combined Detections mask:", mask) # #print("Combined Detections filtered:", combined_detections_filtered) # # Iterate through combined detections to create labels # combined_labels = [] # for detection in combined_detections_filtered: # detections, label = detection # for _, _, confidence, class_id, tracker_id in detections: # combined_labels.append(f'#{tracker_id} {label_map1[class_id]} {confidence:.2f}') # # Print labels for combined detections # for label in combined_labels: # print("combined_labels", label) # frame = box_annotator.annotate(scene=frame, detections=combined_detections_filtered, labels=combined_labels) # frame = zone_annotator.annotate(scene=frame) # objects = [f'#{tracker_id} {label_map[class_id]}' for _, _, confidence, class_id, tracker_id in combined_detections_filtered] # print("Combined Objects:", objects) #If this is the first time we run the application, #store the objects' labels as they are at the beginning if index == 0: original_labels = objects original_dets = len(detections_filtered) else: #To identify if an object has been added or removed #we'll use the original labels and identify any changes final_labels = objects new_dets = len(detections_filtered) #Identify if an object has been added or removed using Counters removed_objects = Counter(original_labels) + Counter(final_labels) added_objects = Counter(final_labels) - Counter(original_labels) #Create two variables we can increment for drawing text draw_txt_ir = 1 draw_txt_ia = 1 #Check for objects being added or removed #if new_dets - original_dets != 0 and len(removed_objects) >= 1: if new_dets != original_dets or removed_objects: #An object has been removed for k,v in removed_objects.items(): #For each of the objects, check the IOU between a designated object #and a person. if 'person' not in k: removed_object_str = f"{v} {k} purchased" removed_action_str = intersecting_bboxes(bboxes, bboxes1, person_bbox, removed_object_str) print("Removed Action String:", removed_action_str) # Add this line if removed_action_str is not None: log.info(removed_action_str) #Add the purchased items to a "receipt" of sorts item = removed_action_str.split() if len(item) >= 3: item = f"{item [0]} {item [1]} {item [2]}" removed_label = item.split(' ')[-1] if any(removed_label in item for item in purchased_items): purchased_items = {f"{int(item.split()[0]) + 1} {' '.join(item.split()[1:])}" if removed_label in item else item for item in purchased_items} else: purchased_items.add(f"{v} {k}") p_items.append(f" - {v} {k}") print("New_Purchased_Items:", purchased_items) print("Removed_Objects:") #Draw the result on the screen draw_text(frame, text=removed_action_str, point=(50, 50 + draw_txt_ir), color=(0, 0, 255)) draw_text(frame, "Receipt: " + str(purchased_items), point=(50, 800), color=(30, 144, 255)) draw_txt_ir += 80 if len(added_objects) >= 1: #An object has been added for k,v in added_objects.items(): #For each of the objects, check the IOU between a designated object #and a person. if 'person' not in k: added_object_str = f"{v} {k} returned" added_action_str = intersecting_bboxes(bboxes, bboxes1, person_bbox, added_object_str) print("Added Action String:", added_action_str) # Add this line if added_action_str is not None: #If we have determined an interaction with a person, #log the interaction. log.info(added_action_str) item = added_object_str.split() if len(item) >= 3: item = f"{item [0]} {item [1]} {item [2]}" item = item.split(' ')[-1] if any(item in item for item in purchased_items): purchased_items = {f"{int(item.split()[0]) - 1} {' '.join(item.split()[1:])}" if item in item else item for item in purchased_items} if any(item.startswith('0 ') for item in purchased_items): purchased_items = {item for item in purchased_items if not item.startswith('0 ')} print("Updated_Purchased_Items:", purchased_items) #p_items.remove(item) added_items.add(added_object_str) a_items.append(added_object_str) print("Added_Objects:") #Draw the result on the screen draw_text(frame, text=added_action_str, point=(50, 300 + draw_txt_ia), color=(0, 128, 0)) draw_text(frame, "Receipt: " + str(purchased_items), point=(50, 800), color=(30, 144, 255)) draw_txt_ia += 80 # Clear the combined_detections list combined_detections.clear() draw_text(frame, "Receipt: " + str(purchased_items), point=(50, 800), color=(30, 144, 255)) sink.write_frame(frame) ### Additional _No response_
closed
2024-03-18T04:04:29Z
2024-03-18T08:46:23Z
https://github.com/roboflow/supervision/issues/1016
[ "question" ]
Abhijeet241093
1
hyperspy/hyperspy
data-visualization
3,464
Cannot navigate signal with 1D or 2D navigator with keyboard on macOS
#### Describe the bug Hi everyone, not sure what I'm doing wrong here... I cannot navigate a signal on my macOS v15.1 with HyperSpy v2.2. I've tried left/right with all modifier keys (shift, control, option, and command) and combinations thereof. Navigating with the mouse works as before. #### To Reproduce ```python import numpy as np import hyperspy.api as hs s = hs.signals.Signal2D(np.random.random((10, 10, 10, 10))) s.plot() # Try to navigate but cannot ``` #### Expected behavior To navigate the signal as usual. #### Python environment: - HyperSpy version: 2.2 - Python version: 3.12.7 #### Additional context
open
2024-11-17T11:35:48Z
2024-11-18T15:19:43Z
https://github.com/hyperspy/hyperspy/issues/3464
[ "type: bug" ]
hakonanes
9
plotly/dash
data-visualization
2,966
performance issues when building custom components using dash-component-boilerplate
When using the [dash-component-boilerplate] to build my custom React component, the component becomes very sluggish. This component is related to rendering graphics on a canvas. React framework show this ![lazy1](https://github.com/user-attachments/assets/46302f02-48bb-47a4-9a51-eeb76901a137) and when i use in dash, show this ![lazy](https://github.com/user-attachments/assets/00fedd64-8441-4cc0-91e2-c2c9b8c2ebde)
closed
2024-08-27T13:02:42Z
2024-08-28T02:08:20Z
https://github.com/plotly/dash/issues/2966
[ "performance", "bug", "P3" ]
manyuemeiquqi
3
Kanaries/pygwalker
plotly
125
Cannot load more than
When I try to embed pygwalker in `streamlit`, I get the following error: ``` Dataframe is too large for ipynb files. Only 14862 sample items are printed to the file. ``` Is it a known issue that pygwalker cannot handle large datasets? Thanks a lot for the work, the project looks super cool 😄 Best, Adrien
closed
2023-06-05T08:41:15Z
2023-07-06T02:02:19Z
https://github.com/Kanaries/pygwalker/issues/125
[ "fixed but needs feedback", "P1" ]
ruaultadrien
2
ipython/ipython
jupyter
14,635
selene_sdk issue
i got this error message and couldn't find where's the issue ``` ValueError Traceback (most recent call last) <ipython-input-3-c4059c3098d2> in <module> ----> 1 parse_configs_and_run(configs, lr=0.01) 2 print("Fin de Exécussion") ~/anaconda3/envs/selene-gpu/lib/python3.6/site-packages/selene_sdk/utils/config_utils.py in parse_configs_and_run(configs, create_subdirectory, lr) 349 "Using a random seed ensures results are reproducible.") 350 --> 351 execute(operations, configs, current_run_output_dir) ~/anaconda3/envs/selene-gpu/lib/python3.6/site-packages/selene_sdk/utils/config_utils.py in execute(operations, configs, output_dir) 190 "evaluate" in operations: 191 train_model.create_test_set() --> 192 train_model.train_and_validate() 193 194 elif op == "evaluate": ~/anaconda3/envs/selene-gpu/lib/python3.6/site-packages/selene_sdk/train_model.py in train_and_validate(self) 428 for step in range(self._start_step, self.max_steps): 429 self.step = step --> 430 self.train() 431 432 if step % self.nth_step_save_checkpoint == 0: ~/anaconda3/envs/selene-gpu/lib/python3.6/site-packages/selene_sdk/train_model.py in train(self) 461 462 predictions = self.model(inputs.transpose(1, 2)) --> 463 loss = self.criterion(predictions, targets) 464 465 self.optimizer.zero_grad() ~/anaconda3/envs/selene-gpu/lib/python3.6/site-packages/torch/nn/modules/module.py in _call_impl(self, *input, **kwargs) 1100 if not (self._backward_hooks or self._forward_hooks or self._forward_pre_hooks or _global_backward_hooks 1101 or _global_forward_hooks or _global_forward_pre_hooks): -> 1102 return forward_call(*input, **kwargs) 1103 # Do not call functions when jit is used 1104 full_backward_hooks, non_full_backward_hooks = [], [] ~/anaconda3/envs/selene-gpu/lib/python3.6/site-packages/torch/nn/modules/loss.py in forward(self, input, target) 601 602 def forward(self, input: Tensor, target: Tensor) -> Tensor: --> 603 return F.binary_cross_entropy(input, target, weight=self.weight, reduction=self.reduction) 604 605 ~/anaconda3/envs/selene-gpu/lib/python3.6/site-packages/torch/nn/functional.py in binary_cross_entropy(input, target, weight, size_average, reduce, reduction) 2906 raise ValueError( 2907 "Using a target size ({}) that is different to the input size ({}) is deprecated. " -> 2908 "Please ensure they have the same size.".format(target.size(), input.size()) 2909 ) 2910 ValueError: Using a target size (torch.Size([64, 12])) that is different to the input size (torch.Size([64, 11])) is deprecated. Please ensure they have the same size. ```
closed
2024-12-29T20:32:35Z
2025-01-01T21:18:22Z
https://github.com/ipython/ipython/issues/14635
[]
syrine-27
2
pyjanitor-devs/pyjanitor
pandas
1,068
Discussion: arguments `old_min` and `old_max` should be removed from `min_max_scale`
```python >>> import pandas as pd >>> import janitor # Use one column dataframe to avoid scaling the entire data or the column data problem >>> df = pd.Series([0, 1, 2]).to_frame() # use the minimum and maximum value of data >>> df.min_max_scale() 0 0 0.0 1 0.5 2 1.0 # Overwrite the value of data. The result seems wired for the user, but it's ok for the formula view. # Question 1: 0 should be scaled or not? 0 is out range of [old_min 1, old_max 2]. # Question 2: I already define the new_min (0) and new_max of value. Why do there have -1? # Question 3: The API differs from sklearn.preprocessing.MinMaxScaler # Min-Max normalization formula # X_std = (X - X.min(axis=0)) / (X.max(axis=0) - X.min(axis=0)) # X_scaled = X_std * (max - min) + min >>> df.min_max_scale(old_min=1, old_max=2) 0 0 -1.0 1 0.0 2 1.0 ``` In the end, it's hard to trace the `min_max_scale` [committing history](https://github.com/pyjanitor-devs/pyjanitor/commits/dev/janitor/functions/min_max_scale.py) to know the reason why added these options.
closed
2022-04-27T03:52:39Z
2022-06-02T01:10:30Z
https://github.com/pyjanitor-devs/pyjanitor/issues/1068
[]
Zeroto521
1
alteryx/featuretools
data-science
1,885
No code coverage on __main__.py
https://github.com/alteryx/featuretools/pull/1882 Is passing for all CI checks except for code coverage, where suddenly there's no coverage of `__main__.py`. That PR's scipy update could be to blame, or it could be some untracked change (setuptools 60.8 vs setuptools 60.7). We should determine why coverage was lost--though the "coverage" was just an import--and improve our tests so that `__main__.py` is truly covered.
closed
2022-02-08T16:30:35Z
2022-03-02T21:46:42Z
https://github.com/alteryx/featuretools/issues/1885
[]
tamargrey
0
graphql-python/graphene-django
django
949
Error in GraphQL Mutation Expected value of type ID
Model ```python class Series(models.Model): title = models.CharField(max_length=255, unique=True, db_index=True) desc = RichTextUploadingField(verbose_name="Description", default= "Coming Soon...", max_length=10000) series_type = models.ForeignKey(SeriesType, on_delete=models.CASCADE) SERIES_STATUS = ( (0, 'Not Yet Released'), (1, 'Done') ) user = models.ForeignKey(User, on_delete=models.CASCADE) status = models.PositiveSmallIntegerField(choices=SERIES_STATUS, default=0) ``` Schema ```python class SeriesNode(DjangoObjectType): class Meta: model = models.Series filter_fields = ['title', 'alt'] interfaces = (relay.Node, ) class SeriesMutation(DjangoModelFormMutation): series = graphene.Field(SeriesNode) class Meta: form_class = forms.AdvancedAddSeries class Mutation(graphene.ObjectType): create_series = SeriesMutation.Field() ``` Query Mutation ```gql mutation CreateSeries($input: SeriesMutationInput!){ createSeries(input:$input){ series{ title desc seriesType{ id } } errors{ field messages } } } ``` Query Variables ```json { "input": { "title": "Series1", "desc": "to be updated", "seriesType": { "id": "U2VyaWVzVHlwZU5vZGU6Mg==" }, "user": { "id": "VXNlck5vZGU6MQ==" }, "status": "A_0" } } ``` Image of Error ![Image of Error](https://i.imgur.com/X9e6jiq.png) Reply ```json { "data": { "createSeries": { "series": null, "errors": [ { "field": "series_type", "messages": [ "Select a valid choice. That choice is not one of the available choices." ] }, { "field": "status", "messages": [ "Select a valid choice. A_0 is not one of the available choices." ] }, { "field": "user", "messages": [ "Select a valid choice. That choice is not one of the available choices." ] } ] } } } ```
closed
2020-04-28T09:20:52Z
2020-05-02T19:40:35Z
https://github.com/graphql-python/graphene-django/issues/949
[]
modbender
3
voila-dashboards/voila
jupyter
1,377
User facing changelog for the 0.5.0 release
<!--To help us understand and resolve your issue, please fill out the form to the best of your ability.--> <!--You can feel free to delete the sections that do not apply.--> ### Problem We should highlight the major changes landing in `0.5.0` instead of just pointing users to the raw changelog: https://github.com/voila-dashboards/voila/blob/main/CHANGELOG.md. ### Suggested Improvement Follow JupyterLab 4 and Notebook 7 changelogs and create a "Highlights" section in the changelog for user facing changes. - Update to JupyterLab 4 - `--classic-tree` from https://github.com/voila-dashboards/voila/pull/1374 - more
closed
2023-08-10T13:20:21Z
2023-08-16T12:48:12Z
https://github.com/voila-dashboards/voila/issues/1377
[ "documentation" ]
jtpio
0
Esri/arcgis-python-api
jupyter
1,435
Branch editing error
**Describe the bug** Branch editing in python is not working properly. **Screenshots to reproduce** ![image](https://user-images.githubusercontent.com/20046591/212927983-d4ccdd65-1983-4cd2-9915-e789710f4ff2.png) ![image](https://user-images.githubusercontent.com/20046591/212925085-0e562660-30dc-48d0-954b-d3aa4e7ad7ac.png) ![image](https://user-images.githubusercontent.com/20046591/212925105-b46fe636-8515-48ab-ab4d-22e263b5e188.png) error: Exception: Unexpected operation (Error Code: 0) **Expected behavior** Through rest api it is working, I expect the same behaviour as I do not intent to build this workflow if the arcgis module intent to implement it. ``` with vms.get('version name', "edit") as version: #version.start_editing() update_result = version.edit(<>) # I expected this to work ``` **Platform (please complete the following information):** - OS: Win Server 2019 - Browser chrome - | Name| Version| Build| Channel| |-|-|-|-| |arcgis| 2.0.1 | py39_2825| esri| |arcgispro| 3.0 | 0 | esri| **Additional context** Add any other context about the problem here, attachments etc.
open
2023-01-17T14:39:01Z
2024-03-12T14:00:24Z
https://github.com/Esri/arcgis-python-api/issues/1435
[ "bug" ]
hildermesmedeiros
5
KaiyangZhou/deep-person-reid
computer-vision
536
Testing Result
How do I get the image files names for the visrank_topk during testing for the query images? I want to show the file names from the gallery set that have high match with the query image.
open
2023-03-05T12:56:26Z
2023-03-05T12:56:26Z
https://github.com/KaiyangZhou/deep-person-reid/issues/536
[]
abhaykumart12
0
agronholm/anyio
asyncio
178
bidirectional buffered stream?
Hello, since the API rewrite, it looks like I need to use a `BufferedByteReceiveStream` to use `receive_exactly`. But the class is only for receiving, not writing. Is it by intention that I need to carry around two objects if I want both `receive_exactly` and `send`? Thanks!
closed
2020-12-17T17:19:32Z
2020-12-17T18:38:11Z
https://github.com/agronholm/anyio/issues/178
[]
joernheissler
1
django-oscar/django-oscar
django
3,978
Dashboard-->vouchersets--> sorting "Num orders", "Num baskets". Cannot resolve keyword 'num_basket_additions' into field
ERROR: type should be string, got "\r\nhttps://latest.oscarcommerce.com/en-gb/dashboard/vouchers/sets/?sort=num_basket_additions"
open
2022-09-09T10:10:09Z
2024-02-12T10:56:57Z
https://github.com/django-oscar/django-oscar/issues/3978
[ "☁ Bug", "Good first issue" ]
martinsrudzroga
4
ivy-llc/ivy
tensorflow
27,999
Fix Ivy Failing Test: paddle - elementwise.not_equal
closed
2024-01-23T07:51:14Z
2024-01-23T11:41:51Z
https://github.com/ivy-llc/ivy/issues/27999
[ "Sub Task" ]
MuhammadNizamani
0
litestar-org/litestar
pydantic
3,822
Bug: `litestar run` CLI has several readability issues
### Description First problem: low contrast on light theme: <img width="788" alt="Снимок экрана 2024-10-16 в 23 04 11" src="https://github.com/user-attachments/assets/7cb84b46-ea93-4b53-84d8-a7fd7f05d6f2"> I can hardly read what grey and yellow texts say. One can argue that this is a problem of my setup / theme, but I've never seen this before in other apps. Second problem: <img width="788" alt="Снимок экрана 2024-10-16 в 23 04 06" src="https://github.com/user-attachments/assets/8af38089-6d61-43c9-bc73-c1e6ad189ba1"> Option's name of `--create-self-signed-c...` (certificate?) is cut. I think that this is the most important part of the help here. And it should not cut the options' names. The same happens with `--unix-domain-so…` ### URL to code causing the issue _No response_ ### MCVE _No response_ ### Steps to reproduce ```bash 1. Run `litestar run -h` ``` ### Screenshots _No response_ ### Logs _No response_ ### Litestar Version main ### Platform - [ ] Linux - [ ] Mac - [ ] Windows - [ ] Other (Please specify in the description above)
open
2024-10-16T20:11:01Z
2025-03-20T15:55:00Z
https://github.com/litestar-org/litestar/issues/3822
[ "Bug :bug:", "CLI" ]
sobolevn
3
roboflow/supervision
pytorch
1,274
[KeyPoints] - extend `from_mediapipe` with Google MediaPipe FaceMesh
# Description Much like #1174 and #1232 adding pose landmark support, we'd also like to add face detection support to the `from_mediapipe` method. * Add `Skeleton.FACEMESH_TESSELETION` of size `468` to the [Skeleton](https://github.com/roboflow/supervision/blob/447ef41fc45353130ec4dccdc7eeaf68b622fb7e/supervision/keypoint/skeletons.py#L7) enum. * The nodes can be found here: https://github.com/google-ai-edge/mediapipe/blob/8cb99f934073572ce73912bb402a94f1875e420a/mediapipe/python/solutions/face_mesh_connections.py#L74 * Docs can be found here: https://github.com/google-ai-edge/mediapipe/blob/master/docs/solutions/face_mesh.md * Add the code to the `from_mediapipe` function in [`KeyPoints`](https://github.com/roboflow/supervision/blob/447ef41fc45353130ec4dccdc7eeaf68b622fb7e/supervision/keypoint/core.py#L16) object that is introduced in #1232. * We'd like to support responses from both legacy and modern way to call the face mesher - see links below. ![facemesh](https://github.com/roboflow/supervision/assets/6500785/59433e66-74e0-448c-b902-4f19947d379e) # Links: - Google Mediapipe repository: https://github.com/google/mediapipe - Google Mediapipe face landmarker: https://ai.google.dev/edge/mediapipe/solutions/vision/face_landmarker - Python Guide (Modern): https://ai.google.dev/edge/mediapipe/solutions/vision/face_landmarker/python - Legacy: https://colab.research.google.com/github/googlesamples/mediapipe/blob/main/examples/face_landmarker/python/%5BMediaPipe_Python_Tasks%5D_Face_Landmarker.ipynb - Skeletons: https://github.com/google-ai-edge/mediapipe/blob/8cb99f934073572ce73912bb402a94f1875e420a/mediapipe/python/solutions/face_mesh_connections.py#L74 # Additional - Note: Please share a Google Colab with minimal code to test the new feature. We know it's additional work, but it will speed up the review process. The reviewer must test each change. Setting up a local environment to do this is time-consuming. Please ensure that Google Colab can be accessed without any issues (make it public). Thank you! 🙏🏻
closed
2024-06-11T11:27:49Z
2024-07-05T09:56:51Z
https://github.com/roboflow/supervision/issues/1274
[ "enhancement", "api:keypoints" ]
LinasKo
8
cleanlab/cleanlab
data-science
735
Extend label issue detection in Datalab to work even without pred_probs input
Goal: extend the label issue check in Datalab to work even if user only provided: `features`, `labels` to `Datalab.find_issues()`. There are multiple ways this can be achieved: Option 1 (easiest): Use sklearn `KNNclassifier` (or `LogisticRegression`) applied to `X=features, y=labels` in order to produce out-of-sample `pred_probs` and then continue as usual. Option 2: Use methods from other papers like these (requires benchmarking them first): - [SelfClean: A Self-Supervised Data Cleaning Strategy](https://arxiv.org/abs/2305.17048) - [Detecting Corrupted Labels Without Training a Model to Predict](https://arxiv.org/abs/2110.06283)
closed
2023-05-31T22:02:27Z
2023-07-27T19:43:36Z
https://github.com/cleanlab/cleanlab/issues/735
[ "enhancement", "help-wanted" ]
jwmueller
2
junyanz/pytorch-CycleGAN-and-pix2pix
deep-learning
1,607
Is there a sample I can use to paint an image without cutting it?
I more or less understood the test, but is there any way to paint images (I trained a small model with references on how to do it) without having to lower the quality so much? if the image is 256 you can hardly see anything even if you raise the quality.
open
2023-10-29T23:20:33Z
2023-10-29T23:20:33Z
https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/issues/1607
[]
Keiser04
0
yt-dlp/yt-dlp
python
11,928
PBS - Unable to extract
### DO NOT REMOVE OR SKIP THE ISSUE TEMPLATE - [X] I understand that I will be **blocked** if I *intentionally* remove or skip any mandatory\* field ### Checklist - [X] I'm reporting that yt-dlp is broken on a **supported** site - [X] I've verified that I have **updated yt-dlp to nightly or master** ([update instructions](https://github.com/yt-dlp/yt-dlp#update-channels)) - [X] I've checked that all provided URLs are playable in a browser with the same IP and same login details - [X] I've checked that all URLs and arguments with special characters are [properly quoted or escaped](https://github.com/yt-dlp/yt-dlp/wiki/FAQ#video-url-contains-an-ampersand--and-im-getting-some-strange-output-1-2839-or-v-is-not-recognized-as-an-internal-or-external-command) - [X] I've searched [known issues](https://github.com/yt-dlp/yt-dlp/issues/3766) and the [bugtracker](https://github.com/yt-dlp/yt-dlp/issues?q=) for similar issues **including closed ones**. DO NOT post duplicates - [X] I've read the [guidelines for opening an issue](https://github.com/yt-dlp/yt-dlp/blob/master/CONTRIBUTING.md#opening-an-issue) - [X] I've read about [sharing account credentials](https://github.com/yt-dlp/yt-dlp/blob/master/CONTRIBUTING.md#are-you-willing-to-share-account-details-if-needed) and I'm willing to share it if required ### Region US ### Provide a description that is worded well enough to be understood https://www.pbs.org/video/take-a-chance-wdZQCx/ [pbs] Downloading JSON metadata Extracting cookies from firefox Extracted 2912 cookies from firefox [pbs] Extracting URL: https://www.pbs.org/video/take-a-chance-wdZQCx/ [pbs] take-a-chance-wdZQCx: Downloading webpage [pbs] Downloading widget/partnerplayer page [pbs] Downloading portalplayer page ERROR: An extractor error has occurred. (caused by KeyError('title')); please report this issue on https://github.com/yt-dlp/yt-dlp/issues?q= , filling out the appropriate issue template. Confirm you are on the latest version using yt-dlp -U File "yt_dlp\extractor\common.py", line 742, in extract File "yt_dlp\extractor\pbs.py", line 689, in _real_extract KeyError: 'title' ### Provide verbose output that clearly demonstrates the problem - [X] Run **your** yt-dlp command with **-vU** flag added (`yt-dlp -vU <your command line>`) - [X] If using API, add `'verbose': True` to `YoutubeDL` params instead - [X] Copy the WHOLE output (starting with `[debug] Command-line config`) and insert it below ### Complete Verbose Output ```shell [debug] Command-line config: ['-vU', '-o', 'lidia', 'https://www.pbs.org/video/take-a-chance-wdZQCx/'] [debug] Encodings: locale cp1252, fs utf-8, pref cp1252, out utf-8, error utf-8, screen utf-8 [debug] yt-dlp version nightly@2024.12.26.232815 from yt-dlp/yt-dlp-nightly-builds [0b6b7742c] (win_exe) [debug] Python 3.10.11 (CPython AMD64 64bit) - Windows-10-10.0.19045-SP0 (OpenSSL 1.1.1t 7 Feb 2023) [debug] exe versions: ffmpeg 2020-11-04-git-cfdddec0c8-full_build-www.gyan.dev, ffprobe 2020-11-04-git-cfdddec0c8-full_build-www.gyan.dev [debug] Optional libraries: Cryptodome-3.21.0, brotli-1.1.0, certifi-2024.12.14, curl_cffi-0.5.10, mutagen-1.47.0, requests-2.32.3, sqlite3-3.40.1, urllib3-2.3.0, websockets-14.1 [debug] Proxy map: {} [debug] Request Handlers: urllib, requests, websockets, curl_cffi [debug] Loaded 1837 extractors [debug] Fetching release info: https://api.github.com/repos/yt-dlp/yt-dlp-nightly-builds/releases/latest Latest version: nightly@2024.12.26.232815 from yt-dlp/yt-dlp-nightly-builds yt-dlp is up to date (nightly@2024.12.26.232815 from yt-dlp/yt-dlp-nightly-builds) [debug] Using fake IP 6.66.219.101 (US) as X-Forwarded-For [pbs] Downloading JSON metadata [pbs] Extracting URL: https://www.pbs.org/video/take-a-chance-wdZQCx/ [pbs] take-a-chance-wdZQCx: Downloading webpage [pbs] Extracting URL: https://www.pbs.org/video/take-a-chance-wdZQCx/ [pbs] take-a-chance-wdZQCx: Downloading webpage [pbs] Downloading widget/partnerplayer page [pbs] Downloading portalplayer page ERROR: An extractor error has occurred. (caused by KeyError('title')); please report this issue on https://github.com/yt-dlp/yt-dlp/issues?q= , filling out the appropriate issue template. Confirm you are on the latest version using yt-dlp -U File "yt_dlp\extractor\common.py", line 742, in extract File "yt_dlp\extractor\pbs.py", line 689, in _real_extract KeyError: 'title' ```
closed
2024-12-27T21:23:08Z
2025-01-03T16:51:58Z
https://github.com/yt-dlp/yt-dlp/issues/11928
[ "duplicate", "site-bug" ]
wallyps
5
keras-team/autokeras
tensorflow
1,120
Multi-label classification with two labels
### Bug Description <!--- A clear and concise description of what the bug is. --> ImageClassifier classification head treats the multi-label classification with 2 labels as multi-class classification one-hot encoded labels. ### Bug Reproduction Code for reproducing the bug: ---- from sklearn.datasets import make_multilabel_classification X, Y = make_multilabel_classification(n_samples=100, n_features = 64, n_classes=2, n_labels=1, allow_unlabeled=False, random_state=1) X = X.reshape((100, 8, 8)) clf = ak.ImageClassifier(max_trials=2, multi_label=True) clf.fit(X, Y, epochs=3, verbose=2) ---- Data used by the code: synthetic data created with scikit-learn ### Setup Details Include the details about the versions of: - OS type and version: - Python: 3.6 - autokeras: 1.0.2 - keras-tuner: - scikit-learn: - numpy: - pandas: - tensorflow: 2.1.0 ### Additional context <!--- If applicable, add any other context about the problem. -->
closed
2020-05-05T18:50:55Z
2020-06-01T18:48:34Z
https://github.com/keras-team/autokeras/issues/1120
[ "bug report", "pinned" ]
qingquansong
0
sigmavirus24/github3.py
rest-api
336
Proxy attributes to stored JSON
This way as the GitHub API expands, even if we don't explicitly set it, people can still do things like ``` py pr = github3.pull_request('user', 'project', number) pr.merged ``` It won't be documented in our docs but they'll be able to use it at least
closed
2015-01-07T17:44:47Z
2015-12-27T16:56:19Z
https://github.com/sigmavirus24/github3.py/issues/336
[]
sigmavirus24
8
plotly/dash
plotly
2,295
Dropdown Options Extending Beyond Container
For a space-limited dashboard, it's common to have dropdown options with names that are much longer than the space allocated for the dropdown button. Additionally, for my application assume that: - Each option needs to be a single line - The full option text should be visible when the dropdown is open (i.e. no ellipses) - The size of the dropdown and its container cannot be increased Dash Bootstrap's dbc.Select component handles this well by treating the dropdown as a pop-up that can extend beyond its container when open. However, dbc.Select lacks the advanced features of dcc.Dropdown and is not an option for me. Thanks! ![dropdown_example](https://user-images.githubusercontent.com/56934645/199278587-b5f1dbe1-2159-414f-9bb8-bf68dc822763.png)
open
2022-11-01T16:01:59Z
2024-08-13T19:22:08Z
https://github.com/plotly/dash/issues/2295
[ "feature", "P3" ]
TGeary
2
holoviz/panel
plotly
7,334
Less readable for panel.pane.DataFrame in Jupyter Dark Theme
<!-- Thanks for contacting us! Please read and follow these instructions carefully, then you can delete this introductory text. Note that the issue tracker is NOT the place for usage questions and technical assistance; post those at [Discourse](https://discourse.holoviz.org) instead. Issues without the required information below may be closed immediately. --> #### ALL software version info <details> <summary>Software Version Info</summary> ```plaintext altair 5.4.1 anyio 4.6.0 appnope 0.1.4 argon2-cffi 23.1.0 argon2-cffi-bindings 21.2.0 arrow 1.3.0 asttokens 2.4.1 astunparse 1.6.3 async-lru 2.0.4 attrs 24.2.0 babel 2.16.0 beautifulsoup4 4.12.3 black 24.8.0 bleach 6.1.0 bokeh 3.5.2 bqplot 0.12.43 certifi 2024.8.30 cffi 1.17.1 charset-normalizer 3.3.2 click 8.1.7 comm 0.2.2 contourpy 1.3.0 cycler 0.12.1 debugpy 1.8.6 decorator 5.1.1 defusedxml 0.7.1 executing 2.1.0 fastjsonschema 2.20.0 fonttools 4.54.1 fqdn 1.5.1 gast 0.4.0 h11 0.14.0 httpcore 1.0.5 httpx 0.27.2 idna 3.10 ipydatagrid 1.3.2 ipyflow 0.0.200 ipyflow-core 0.0.200 ipykernel 6.29.5 ipympl 0.9.4 ipython 8.27.0 ipython-genutils 0.2.0 ipywidgets 8.1.5 isoduration 20.11.0 itable 0.0.1 jedi 0.19.1 Jinja2 3.1.4 joblib 1.4.2 json5 0.9.25 jsonpointer 3.0.0 jsonschema 4.23.0 jsonschema-specifications 2023.12.1 jupyter 1.1.1 jupyter_client 8.6.3 jupyter-console 6.6.3 jupyter_core 5.7.2 jupyter-events 0.10.0 jupyter-lsp 2.2.5 jupyter_server 2.14.2 jupyter_server_terminals 0.5.3 jupyterlab 4.2.5 jupyterlab-lsp 5.1.0 jupyterlab_pygments 0.3.0 jupyterlab_server 2.27.3 jupyterlab_widgets 3.0.13 kiwisolver 1.4.7 linkify-it-py 2.0.3 Markdown 3.7 markdown-it-py 3.0.0 MarkupSafe 2.1.5 matplotlib 3.9.2 matplotlib-inline 0.1.7 mdit-py-plugins 0.4.2 mdurl 0.1.2 mistune 3.0.2 mypy-extensions 1.0.0 narwhals 1.8.3 nbclassic 1.1.0 nbclient 0.10.0 nbconvert 7.16.4 nbformat 5.10.4 nest-asyncio 1.6.0 notebook 7.2.2 notebook_shim 0.2.4 numpy 2.1.1 overrides 7.7.0 packaging 24.1 pandas 2.2.3 pandas-flavor 0.6.0 pandocfilters 1.5.1 panel 1.5.0 param 2.1.1 parso 0.8.4 pathspec 0.12.1 patsy 0.5.6 pexpect 4.9.0 pillow 10.4.0 pingouin 0.5.5 pip 24.2 platformdirs 4.3.6 prometheus_client 0.21.0 prompt_toolkit 3.0.48 psutil 6.0.0 ptyprocess 0.7.0 pure_eval 0.2.3 py2vega 0.6.1 pyccolo 0.0.54 pycparser 2.22 Pygments 2.18.0 pyparsing 3.1.4 python-dateutil 2.9.0.post0 python-json-logger 2.0.7 pytz 2024.2 pyviz_comms 3.0.3 PyYAML 6.0.2 pyzmq 26.2.0 referencing 0.35.1 requests 2.32.3 rfc3339-validator 0.1.4 rfc3986-validator 0.1.1 rpds-py 0.20.0 scikit-learn 1.5.2 scipy 1.14.1 seaborn 0.13.2 Send2Trash 1.8.3 setuptools 75.1.0 six 1.16.0 sniffio 1.3.1 soupsieve 2.6 stack-data 0.6.3 statsmodels 0.14.3 tabulate 0.9.0 terminado 0.18.1 threadpoolctl 3.5.0 tinycss2 1.3.0 tornado 6.4.1 tqdm 4.66.5 traitlets 5.14.3 traittypes 0.2.1 types-python-dateutil 2.9.0.20240906 typing_extensions 4.12.2 tzdata 2024.2 uc-micro-py 1.0.3 uri-template 1.3.0 urllib3 2.2.3 voila 0.5.7 wcwidth 0.2.13 webcolors 24.8.0 webencodings 0.5.1 websocket-client 1.8.0 websockets 13.1 wheel 0.44.0 widgetsnbextension 4.0.13 xarray 2024.9.0 xyzservices 2024.9.0 ``` </details> #### Description of expected behavior and the observed behavior Is there any argument to set background into defaut HTML render background (gray-darkgary) for `pd.DataFrame` in Jupyter dark theme. The defaut black-white background is less readable, especially combined with `pandas.DataFrame.style`. This is no problem with light theme. #### Complete, minimal, self-contained example code that reproduces the issue ```python import panel as pn import pingouin as pg import pandas as pd from pandas.io.formats.style import Styler import numpy as np pn.extension() ``` ```python data = pg.read_dataset("mixed_anova") data_style: Styler = data.style data = data_style.background_gradient(cmap='Blues', subset='Scores') data_pn = pn.pane.DataFrame(data, max_height=200, sizing_mode="stretch_both") data_pn ``` ```python data ``` #### Screenshots or screencasts of the bug in action <img width="811" alt="image" src="https://github.com/user-attachments/assets/2a6b44d7-f420-44ff-a5ce-f1797c979237"> <img width="835" alt="image" src="https://github.com/user-attachments/assets/41b7d30f-0aa7-4bde-b0ff-de820d7f935f">
open
2024-09-27T16:30:43Z
2024-10-24T15:19:05Z
https://github.com/holoviz/panel/issues/7334
[]
YongcaiHuang
1
AUTOMATIC1111/stable-diffusion-webui
deep-learning
15,320
[Feature Request]: Add Hypernetwork Refresh API for API Mode.
### Is there an existing issue for this? - [x] I have searched the existing issues and checked the recent builds/commits ### What would your feature do ? Hello, I've recently been working with Stable Diffusion and my project is deployed on a server, necessitating operation via API mode. I noticed that the API includes functions like refresh-checkpoints / reload-checkpoint. However, I've found there's no API for updating the hypernetwork list. This absence means that when new .pt files are added during service operation, they cannot be immediately read, and a complete service restart is required. As an aside, I noticed there's a refresh button in the web API, but I couldn't find a corresponding API endpoint. <img width="599" alt="image" src="https://github.com/AUTOMATIC1111/stable-diffusion-webui/assets/83401245/d3ef66d1-4a65-4259-b613-12cfaa3ad8e4"> Lastly, I apologize as my English is not very strong and my coding skills are somewhat limited. I appreciate any guidance or advice. Thank you. my stable-diffusion-webui version : 1.4.1
closed
2024-03-19T07:14:35Z
2024-04-12T03:02:42Z
https://github.com/AUTOMATIC1111/stable-diffusion-webui/issues/15320
[ "enhancement" ]
FEXAQAQ
1
numba/numba
numpy
9,225
python312 什么时候可以用
<!-- Thanks for opening an issue! To help the Numba team handle your information efficiently, please first ensure that there is no other issue present that already describes the issue you have (search at https://github.com/numba/numba/issues?&q=is%3Aissue). --> ## Reporting a bug <!-- Before submitting a bug report please ensure that you can check off these boxes: --> - [x] I have tried using the latest released version of Numba (most recent is visible in the change log (https://github.com/numba/numba/blob/main/CHANGE_LOG). - [x] I have included a self contained code sample to reproduce the problem. i.e. it's possible to run as 'python bug.py'. <!-- Please include details of the bug here, including, if applicable, what you expected to happen! -->
closed
2023-10-05T01:49:50Z
2023-10-05T07:44:49Z
https://github.com/numba/numba/issues/9225
[ "duplicate" ]
Franklyn1987
1
exaloop/codon
numpy
368
Upstreaming OpenMP changes discussion
This is just an attempt to start a discussion about what it would take to upstream the changes (or perhaps some another solution) for codon.
open
2023-04-24T06:10:16Z
2024-11-10T06:05:58Z
https://github.com/exaloop/codon/issues/368
[ "enhancement" ]
seanfarley
5
vchaptsev/cookiecutter-django-vue
graphql
40
Don't npm install on every serve
No reason to install all the node modules every time you run the app, it adds a ton of time to startup needlessly. There should be a dockerfile for the Frontend app that does this and finally just runs the serve command.
open
2019-09-08T19:34:12Z
2020-04-08T22:05:29Z
https://github.com/vchaptsev/cookiecutter-django-vue/issues/40
[ "refactor" ]
mekhami
0
Kludex/mangum
asyncio
236
[Question] How to get logs like Zappa
Hi there I followed this tutorial to get FastAPI up into a Lambda function: https://adem.sh/blog/tutorial-fastapi-aws-lambda-serverless It seems to be working, but when I tail the logs (`sls logs --function app --stage test`), I see my 'hello' INFO log in there, but it's enclosed in a large block of other logging. It looks like the following: ``` START 2022-02-13 13:58:36,501 Event received. 2022-02-13 13:58:36,501 Waiting for application startup. 2022-02-13 13:58:36,501 LifespanCycleState.STARTUP: 'lifespan.startup.complete' event received from application. 2022-02-13 13:58:36,501 Application startup complete. 2022-02-13 13:58:36,501 HTTP cycle starting. 2022-02-13 13:58:36,502 hello 2022-02-13 13:58:36,502 HTTPCycleState.REQUEST: 'http.response.start' event received from application. 2022-02-13 13:58:36,502 HTTPCycleState.RESPONSE: 'http.response.body' event received from application. 2022-02-13 13:58:36,503 Waiting for application shutdown. 2022-02-13 13:58:36,503 LifespanCycleState.SHUTDOWN: 'lifespan.shutdown.complete' event received from application. END Duration: 3.55 ms Billed Duration: 4 ms Memory Size: 1024 MB Max Memory Used: 79 MB ``` What would I need to do to tail nice coloured logs like I'm used to with Flask/Zappa with the option to filter them? Ideally calls to each endpoint would be logged on a single line, my own log statements would be a single lines, and the uncaught exceptions would also be visible. Basically, I'd like to tail the cloud logs so that they look as similar to the local FastAPI logs as possible.
closed
2022-02-13T14:04:26Z
2022-03-05T04:40:02Z
https://github.com/Kludex/mangum/issues/236
[]
dsmurrell
5
feature-engine/feature_engine
scikit-learn
195
test code in rst files
for each transformer, and also in the quickstart we have code in rst files. I would like to introduce tests, so when we make changes, the tests would highlight if something is broken and needs fixing. At the moment, we need to manually check. This will get worse when we add more complicated tutorials on rst files.
closed
2020-12-09T10:04:30Z
2024-08-25T16:58:32Z
https://github.com/feature-engine/feature_engine/issues/195
[ "docs", "code quality" ]
solegalli
0
aio-libs/aiomysql
asyncio
440
AttributeError: '_WindowsSelectorEventLoop' object has no attribute 'acquire'
async with pool.acquire() as conn: async with conn.cursor() as cur: # await cur.execute("SELECT 42;") insert_sql = "insert into article_test(title) values('{}') ".format(title) await cur.execute(insert_sql)
closed
2019-09-20T07:42:23Z
2019-09-20T14:44:04Z
https://github.com/aio-libs/aiomysql/issues/440
[]
hubinggg
1
ultrafunkamsterdam/undetected-chromedriver
automation
1,208
Flagged by Imperva
I've been getting "Error 15" after trying to login to "https://driverpracticaltest.dvsa.gov.uk/login". This is the same issue as #690, however the suggested workaround on that thread no longer works as you don't get an instant captcha, so no cookies to grab. I'm able to get the login page fine but as soon as I click login I get flagged. Any suggestions? Here is my requirements.txt: `undetected-chromedriver==3.4.6 anticaptchaofficial==1.0.29 backcall==0.2.0 cachetools==4.2.0 certifi==2020.12.5 chardet==4.0.0 click==7.1.2 decorator==4.4.2 Flask==1.1.2 google-api-core==1.25.0 google-api-python-client==1.12.8 google-auth==1.24.0 google-auth-httplib2==0.0.4 google-auth-oauthlib==0.4.2 googleapis-common-protos==1.52.0 gunicorn==20.0.4 httplib2==0.18.1 idna==2.10 ipython==7.16.1 ipython-genutils==0.2.0 itsdangerous==1.1.0 jedi==0.18.0 Jinja2==2.11.3 MarkupSafe==1.1.1 mysql-connector==2.2.9 oauthlib==3.1.0 parso==0.8.1 pexpect==4.8.0 pickleshare==0.7.5 prompt-toolkit==3.0.13 protobuf==3.14.0 ptyprocess==0.7.0 py==1.10.0 pyasn1==0.4.8 pyasn1-modules==0.2.8 Pygments==2.7.4 PyJWT==1.7.1 python-dotenv==0.15.0 pytz==2020.5 random-user-agent==1.0.1 requests==2.25.1 requests-oauthlib==1.3.0 rsa==4.7 selenium==3.141.0 six==1.15.0 SQLAlchemy==1.3.22 traitlets==4.3.3 twilio==6.53.0 uritemplate==3.0.1 urllib3==1.26.2 wcwidth==0.2.5 Werkzeug==1.0.1 seleniumwire==4.6.1`
open
2023-04-19T02:53:53Z
2023-06-25T13:40:59Z
https://github.com/ultrafunkamsterdam/undetected-chromedriver/issues/1208
[]
JacobHobday
4
jina-ai/clip-as-service
pytorch
80
Does this service support multiple GPU?
closed
2018-11-30T10:16:43Z
2018-11-30T10:31:05Z
https://github.com/jina-ai/clip-as-service/issues/80
[]
jiqiujia
1
ultralytics/yolov5
deep-learning
12,801
The reasoning result is abnormal
### Search before asking - [X] I have searched the YOLOv5 [issues](https://github.com/ultralytics/yolov5/issues) and found no similar bug report. ### YOLOv5 Component _No response_ ### Bug I'm training on a custom dataset that has only one category,The training is all normal, and the final val result visualization is also normal. ![image](https://github.com/ultralytics/yolov5/assets/72087870/1720fb0a-6ca5-48b4-9322-68d00b843fc8) But when I use the trained model for inference: > python detect.py --weights runs/train/exp/weights/last.pt --data data/bdd100k.yaml --source /root/yolov5/datasets/bdd100k/images/val log: (base) root@autodl-container-23c2469e43-849f7d78:~/yolov5# python detect.py --weights runs/train/exp/weights/last.pt --data data/bdd100k.yaml --source /root/yolov5/datasets/bdd100k/images/train --conf_thres=0.5 --iou_thres=0.1 usage: detect.py [-h] [--weights WEIGHTS [WEIGHTS ...]] [--source SOURCE] [--data DATA] [--imgsz IMGSZ [IMGSZ ...]] [--conf-thres CONF_THRES] [--iou-thres IOU_THRES] [--max-det MAX_DET] [--device DEVICE] [--view-img] [--save-txt] [--save-csv] [--save-conf] [--save-crop] [--nosave] [--classes CLASSES [CLASSES ...]] [--agnostic-nms] [--augment] [--visualize] [--update] [--project PROJECT] [--name NAME] [--exist-ok] [--line-thickness LINE_THICKNESS] [--hide-labels] [--hide-conf] [--half] [--dnn] [--vid-stride VID_STRIDE] detect.py: error: unrecognized arguments: --conf_thres=0.5 --iou_thres=0.1 (base) root@autodl-container-23c2469e43-849f7d78:~/yolov5# python detect.py --weights runs/train/exp/weights/last.pt --data data/bdd100k.yaml --source /root/yolov5/datasets/bdd100k/images/val detect: weights=['runs/train/exp/weights/last.pt'], source=/root/yolov5/datasets/bdd100k/images/val, data=data/bdd100k.yaml, imgsz=[640, 640], conf_thres=0.25, iou_thres=0.45, max_det=1000, device=, view_img=False, save_txt=False, save_csv=False, save_conf=False, save_crop=False, nosave=False, classes=None, agnostic_nms=False, augment=False, visualize=False, update=False, project=runs/detect, name=exp, exist_ok=False, line_thickness=3, hide_labels=False, hide_conf=False, half=False, dnn=False, vid_stride=1 YOLOv5 🚀 v7.0-290-gb2ffe055 Python-3.8.10 torch-1.9.0+cu111 CUDA:0 (NVIDIA GeForce RTX 4090, 24217MiB) Fusing layers... As a result, many bboxes appeared that should not have appeared: ![image](https://github.com/ultralytics/yolov5/assets/72087870/4cb4ce5f-1cdb-4205-bc4b-bf1d43a39a96) ![image](https://github.com/ultralytics/yolov5/assets/72087870/912d5276-69fd-4741-a3ce-477d178dc147) ![image](https://github.com/ultralytics/yolov5/assets/72087870/f3ed3239-bee5-46a4-a48b-6eb44a998ee0) How should I deal with this problem? ### Environment _No response_ ### Minimal Reproducible Example _No response_ ### Additional _No response_ ### Are you willing to submit a PR? - [ ] Yes I'd like to help by submitting a PR!
closed
2024-03-10T04:40:25Z
2024-10-20T19:41:05Z
https://github.com/ultralytics/yolov5/issues/12801
[ "bug" ]
Bin-ze
7