repo_name
stringlengths
9
75
topic
stringclasses
30 values
issue_number
int64
1
203k
title
stringlengths
1
976
body
stringlengths
0
254k
state
stringclasses
2 values
created_at
stringlengths
20
20
updated_at
stringlengths
20
20
url
stringlengths
38
105
labels
sequencelengths
0
9
user_login
stringlengths
1
39
comments_count
int64
0
452
jumpserver/jumpserver
django
14,946
[Bug]
### Product Version ssh 秘钥连接windows报错 ### Product Edition - [x] Community Edition - [ ] Enterprise Edition - [ ] Enterprise Trial Edition ### Installation Method - [x] Online Installation (One-click command installation) - [ ] Offline Package Installation - [ ] All-in-One - [ ] 1Panel - [ ] Kubernetes - [ ] Source Code ### Environment Information 目标机器 ssh server: v9.8.1.0p1-Preview os version :win10 1809 ### 🐛 Bug Description ![Image](https://github.com/user-attachments/assets/c3bb5ae7-d495-453e-8cef-c58c60af8b5c) 测试过用其他客户端,用私钥登录没有问题。 如果用ssh密码登录也是没有问题的,只在用秘钥对登录的时候有问题 ### Recurrence Steps ssh 密钥对登录 ### Expected Behavior _No response_ ### Additional Information _No response_ ### Attempted Solutions _No response_
closed
2025-02-28T02:42:29Z
2025-02-28T02:50:36Z
https://github.com/jumpserver/jumpserver/issues/14946
[ "🐛 Bug" ]
wellsyu
1
PeterL1n/BackgroundMattingV2
computer-vision
87
training question
Hello! I trained the code 'train_refine.py' without any revise using my own dataset to get the pth file.However,I find the network structure I have got is different from the pretrained model you have provide:pytorch_mobilenetv2.The following image1 is your pretrained model structure and the second one image2 is mine ![dbe87887c67e6c02ed1a8263e51e583](https://user-images.githubusercontent.com/55682710/114826419-14b93900-9dfa-11eb-8ee8-acb38f98dc62.png) image1 ![1ba43d7265a1c20d260c80d32b9938c](https://user-images.githubusercontent.com/55682710/114826454-1c78dd80-9dfa-11eb-9347-100a2f4c321f.png) image2 Could you please tell me why the network structure of mine has another 10 layers than yours? and if I want to change the code to get a model like yours,how should I do ? 2.Another question is that I test the model between yours and mine on CPU,I found that your model's flops is twice smaller than mine,which using the same training code.I don’t know if it’s because my network structure has 10 layers more than yours. Like the first question said. my English is not good,sorry And I hope you can solve my doubts,Thank you!
closed
2021-04-15T07:03:38Z
2021-04-22T15:21:06Z
https://github.com/PeterL1n/BackgroundMattingV2/issues/87
[]
PROMISELVKR
4
ageitgey/face_recognition
python
1,531
【BUG】Video example code is not working...
* face_recognition version: 1.3.0 * Python version: 3.9.16 * Operating System: Rocky Linux 9.2 (Blue Onyx) x86_64 ### Description The example `facerec_from_video_file.py` is not running. Here's the the terminal output... ```bash $ /bin/python /home/ander/face_recognition/examples/facerec_from_video_file.py Traceback (most recent call last): File "/home/ander/face_recognition/examples/facerec_from_video_file.py", line 50, in <module> face_encodings = face_recognition.face_encodings(rgb_frame, face_locations) File "/home/ander/.local/lib/python3.9/site-packages/face_recognition/api.py", line 214, in face_encodings return [np.array(face_encoder.compute_face_descriptor(face_image, raw_landmark_set, num_jitters)) for raw_landmark_set in raw_landmarks] File "/home/ander/.local/lib/python3.9/site-packages/face_recognition/api.py", line 214, in <listcomp> return [np.array(face_encoder.compute_face_descriptor(face_image, raw_landmark_set, num_jitters)) for raw_landmark_set in raw_landmarks] TypeError: compute_face_descriptor(): incompatible function arguments. The following argument types are supported: 1. (self: _dlib_pybind11.face_recognition_model_v1, img: numpy.ndarray[(rows,cols,3),numpy.uint8], face: _dlib_pybind11.full_object_detection, num_jitters: int = 0, padding: float = 0.25) -> _dlib_pybind11.vector 2. (self: _dlib_pybind11.face_recognition_model_v1, img: numpy.ndarray[(rows,cols,3),numpy.uint8], num_jitters: int = 0) -> _dlib_pybind11.vector 3. (self: _dlib_pybind11.face_recognition_model_v1, img: numpy.ndarray[(rows,cols,3),numpy.uint8], faces: _dlib_pybind11.full_object_detections, num_jitters: int = 0, padding: float = 0.25) -> _dlib_pybind11.vectors 4. (self: _dlib_pybind11.face_recognition_model_v1, batch_img: List[numpy.ndarray[(rows,cols,3),numpy.uint8]], batch_faces: List[_dlib_pybind11.full_object_detections], num_jitters: int = 0, padding: float = 0.25) -> _dlib_pybind11.vectorss 5. (self: _dlib_pybind11.face_recognition_model_v1, batch_img: List[numpy.ndarray[(rows,cols,3),numpy.uint8]], num_jitters: int = 0) -> _dlib_pybind11.vectors Invoked with: <_dlib_pybind11.face_recognition_model_v1 object at 0x7f8bc98bb2b0>, array([[[ 8, 3, 0], [12, 7, 4], [18, 13, 10], ..., [24, 9, 0], [24, 9, 0], [24, 9, 0]], [[ 8, 3, 0], [12, 7, 4], [18, 13, 10], ..., [24, 9, 0], [24, 9, 0], [24, 9, 0]], [[ 7, 2, 0], [11, 6, 3], [16, 11, 8], ..., [24, 9, 0], [24, 9, 0], [24, 9, 0]], ..., [[ 7, 3, 0], [ 7, 3, 0], [ 9, 3, 0], ..., [17, 1, 0], [11, 1, 2], [11, 1, 2]], [[ 7, 3, 0], [ 7, 3, 0], [ 9, 3, 0], ..., [17, 2, 0], [11, 1, 0], [11, 1, 0]], [[ 7, 3, 0], [ 7, 3, 0], [ 9, 3, 0], ..., [17, 2, 0], [11, 1, 0], [11, 1, 0]]], dtype=uint8), <_dlib_pybind11.full_object_detection object at 0x7f8ba3186e70>, 1 ``` ### What I Did ```bash git clone https://github.com/ageitgey/face_recognition.git cd face_recognition/examples python facerec_from_video_file.py ```
open
2023-09-03T04:51:53Z
2023-12-09T11:58:05Z
https://github.com/ageitgey/face_recognition/issues/1531
[]
andersprenger
2
glumpy/glumpy
numpy
34
WebGL backend
How complicated it would be to implement a WebGL backend? Assuming we have a `gloo.js` that implements gloo in JavaScript, we'd at least need to export an entire window to a structure with the list of programs, GLSL, variables, data, etc. Alternatively, we could have another gloo implementation which creates such structure instead of displaying something, or it could generate GLIR commands like in VisPy. For interactivity we can always reimplement it in JavaScript on top of gloo.js.
closed
2015-03-20T12:25:57Z
2015-08-18T19:36:35Z
https://github.com/glumpy/glumpy/issues/34
[]
rossant
2
tortoise/tortoise-orm
asyncio
1,332
Actual query results and Tortoise results inconsistent with filtering using custom SQL annotations
**Describe the bug** The following demo model outputs SQL that returns multiple results. However, when actually executing the query, Tortoise for unknown reasons only returns one result. Here is the model: ```python class Demo(Model): active = fields.BooleanField(default=True) user_id = fields.BigIntField(index=True) start = fields.DatetimeField(auto_now=True) end = fields.DatetimeField(default=None, null=True) @staticmethod async def get_active(): return Demo.filter(consumed__gt=0.0)\ .filter(active=True)\ .annotate(active_seconds=RawSQL(f'{int(time.time())} - UNIX_TIMESTAMP(`start`)'))\ .filter(active_seconds__lt=90000)\ .sql() ``` Here is the query it outputs: ```sql SELECT `user_id`,`end`,`id`,`active`,`start`,1675345393 - UNIX_TIMESTAMP(`start`) `active_seconds` FROM `demo` WHERE `active`=true AND 1675345393 - UNIX_TIMESTAMP(`start`)<90000 ``` This query returns 4 results, ![image](https://user-images.githubusercontent.com/7929996/216341356-170529e8-82b6-449f-b5ff-6013caa7ff06.png) Running the query through Tortoise again now, it returns nothing, unless I increase active_seconds to 100,000, then it returns 2 results again. **To Reproduce** You'll likely need to re-create your own demo tables and run a query with a filter similar to what is demonstrated above. **Expected behavior** It is doing something outside of the query and filtering results that it should not be filtering. Any results that are returned by the database backend should be processed. For some reason, that is not happening here. I have no idea what it could be doing between running the query, which works and returns the correct number of results, and processing the results into objects.
closed
2023-02-02T13:48:40Z
2023-02-02T14:05:47Z
https://github.com/tortoise/tortoise-orm/issues/1332
[]
ghost
2
pyg-team/pytorch_geometric
deep-learning
9,181
torch::jit::load error
### 🐛 Describe the bug I have done script my model in python, and want load it in c++. It can be confirmed that torch_scatcher and torch_sparse have been successfully compiled. I can run the following example and get the correct result. ```` #include <torch/script.h> #include <torch/torch.h> #include <pytorch_scatter/scatter.h> #include <pytorch_sparse/sparse.h> #include <iostream> int main() { torch::Tensor src = torch::tensor({ 0.5, 0.4, 0.1, 0.6 }); torch::Tensor index = torch::tensor({ 0, 0, 1, 1 }); std::cout << src << std::endl; std::cout << index << std::endl; std::cout << torch::cuda::cudnn_is_available() << std::endl; std::cout << torch::cuda::is_available() << std::endl; std::cout << scatter_sum(src, index, 0, torch::nullopt, torch::nullopt) << std::endl; torch::Tensor tensor = torch::tensor({ 0, 0, 0, 0, 1, 1, 1}); std::cout << tensor << std::endl; std::cout << ind2ptr(tensor, 2) << std::endl; } ```` ```` output: 0.5000 0.4000 0.1000 0.6000 [ CPUFloatType{4} ] 0 0 1 1 [ CPULongType{4} ] 1 1 0.9000 0.7000 [ CPUFloatType{2} ] 0 0 0 0 1 1 1 [ CPULongType{7} ] 0 4 7 [ CPULongType{3} ] ```` But when I load my script model, an error will be thrown. ```` torch::jit::script::Module model; std::string file_name = "D:\\TESTProgram\\Libtorch_1.13_cu116\\TorchTest_1.13+cu116\\Dualgnn_module_0409.pt"; try { model = torch::jit::load(file_name); } catch (std::exception& e) { std::cout << e.what() << std::endl; return -1; } ```` ```` Unknown builtin op: torch_scatter::segment_sum_csr. Could not find any similar ops to torch_scatter::segment_sum_csr. This op may not exist or may not be currently supported in TorchScript. : File "code/__torch__/torch_scatter/segment_csr.py", line 35 indptr: Tensor, out: Optional[Tensor]=None) -> Tensor: _10 = ops.torch_scatter.segment_sum_csr(src, indptr, out) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ <--- HERE return _10 def segment_mean_csr(src: Tensor, 'segment_sum_csr' is being compiled since it was called from 'segment_csr' Serialized File "code/__torch__/torch_scatter/segment_csr.py", line 5 out: Optional[Tensor]=None, reduce: str="sum") -> Tensor: _0 = __torch__.torch_scatter.segment_csr.segment_sum_csr ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ <--- HERE _1 = __torch__.torch_scatter.segment_csr.segment_mean_csr _2 = __torch__.torch_scatter.segment_csr.segment_min_csr 'segment_csr' is being compiled since it was called from 'segment' Serialized File "code/__torch__/torch_geometric/utils/segment.py", line 4 ptr: Tensor, reduce: str="sum") -> Tensor: _0 = __torch__.torch_scatter.segment_csr.segment_csr ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ <--- HERE return _0(src, ptr, None, reduce, ) 'segment' is being compiled since it was called from 'MeanAggregation.reduce' Serialized File "code/__torch__/torch_geometric/nn/aggr/basic.py", line 22 reduce: str="sum") -> Tensor: _1 = __torch__.torch_geometric.nn.aggr.base.expand_left _2 = __torch__.torch_geometric.utils.segment.segment ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ <--- HERE _3 = __torch__.torch_geometric.utils.scatter.scatter _4 = uninitialized(Tensor) 'MeanAggregation.reduce' is being compiled since it was called from 'MeanAggregation.forward' File "E:\Anaconda\envs\Mesh_Net\lib\site-packages\torch_geometric\nn\aggr\basic.py", line 34 ptr: Optional[Tensor] = None, dim_size: Optional[int] = None, dim: int = -2) -> Tensor: return self.reduce(x, index, ptr, dim_size, dim, reduce='mean') ~~~~~ <--- HERE Serialized File "code/__torch__/torch_geometric/nn/aggr/basic.py", line 12 dim_size: Optional[int]=None, dim: int=-2) -> Tensor: _0 = (self).reduce(x, index, ptr, dim_size, dim, "mean", ) ~~~~~~ <--- HERE return _0 def reduce(self: __torch__.torch_geometric.nn.aggr.basic.MeanAggregation, ```` See same question at https://github.com/pyg-team/pytorch_geometric/issues/1718#issuecomment-1072448621 But it's not clear where the problem lies. What other work can I do? Or do you have any suggestions to solve this problem? ### Versions pytorch: 1.13.0 libtorch:1.13.0 cuda: 11.6 pyg: 2.3.1 torch_scatter: 2.1.1 torch_sparse: 0.6.18
closed
2024-04-10T10:32:36Z
2025-03-17T02:00:49Z
https://github.com/pyg-team/pytorch_geometric/issues/9181
[ "bug" ]
qiuqiouba
4
qubvel-org/segmentation_models.pytorch
computer-vision
695
MixVisionTransformer in combination with PAN fails with "encoder does not support dilated mode"
``` import segmentation_models_pytorch as smp smp.PAN(encoder_name="mit_b0") ``` raises the exception: ``` ValueError: MixVisionTransformer encoder does not support dilated mode ``` Since the default PAN uses dilation, this config is uncompatible atm? If we use a configuration of PAN that does not use dilation the error, of course, does not apper: ``` smp.PAN(encoder_name="mit_b0", encoder_output_stride=32) ``` I did not test yet though if output strides of 32 still deliver comparable results. My guess would be that the default stride of 16 should encode a lot more of information that might be beneficial for better performence. Is there any way to get it to work with dilation?
closed
2022-12-13T09:19:30Z
2023-02-20T02:05:23Z
https://github.com/qubvel-org/segmentation_models.pytorch/issues/695
[ "Stale" ]
Daniel451
4
pydata/xarray
numpy
9,137
open_dict_of_datasets function to open any file containing nested groups
### Is your feature request related to a problem? In https://github.com/pydata/xarray/issues/9077#issuecomment-2161622347 I suggested the idea of a function which could open any netCDF file with groups as a dictionary mapping group path strings to `xr.Dataset` objects. The motivation is as follows: - People want the new `xarray.DataTree` class to support inheriting coordinates from parent groups, - This can only be done if the coordinates align with the variables in the child group (i.e. using `xr.align`), - The best time to enforce this alignment is at `DataTree` construction time, - This requirement is not enforced in the netCDF/Zarr model, so this would mean some files can no longer be opened by `open_datatree` directly, as doing so would raise an alignment error, - _But_ we still really want users to have some way to open an arbitrary file with xarray and see what's inside (including displaying all the groups #4840). - A simpler intermediate structure of a dictionary mapping group paths to `xarray.Dataset` objects doesn't enforce alignment, so can represent any file. - We should add a new opening function to allow any file to be opened as this dict-of-datasets structure. - Users can then use this to inspect "untidy" data, and make changes to the dict returned before creating an aligned `DataTree` object via `DataTree.from_dict` if they like. ### Describe the solution you'd like Add a function like this: ```python def open_dict_of_datasets( filename_or_obj: str | os.PathLike[Any] | BufferedIOBase | AbstractDataStore, engine: T_Engine = None, group: Optional[str] = None, **kwargs, ) -> dict[str, Dataset]: """ Open and decode a file or file-like object, creating a dictionary containing one xarray Dataset for each group in the file. Useful when you have e.g. a netCDF file containing many groups, some of which are not alignable with their parents and so the file cannot be opened directly with ``open_datatree``. It is encouraged to use this function to inspect your data, then make the necessary changes to make the structure coercible to a `DataTree` object before calling `DataTree.from_dict()` and proceeding with your analysis. Parameters ---------- filename_or_obj : str, Path, file-like, or DataStore Strings and Path objects are interpreted as a path to a netCDF file or Zarr store. engine : str, optional Xarray backend engine to use. Valid options include `{"netcdf4", "h5netcdf", "zarr"}`. group : str, optional Group to use as the root group to start reading from. Groups above this root group will not be included in the output. **kwargs : dict Additional keyword arguments passed to :py:func:`~xarray.open_dataset` for each group. Returns ------- dict[str, xarray.Dataset] See Also -------- open_datatree() DataTree.from_dict() """ ... ``` This would live inside `backends.api.py`, and be exposed publicly as a top-level function along with the rest of `open_datatree`/`DataTree` etc. as part of #9033. The actual implementation could re-use the code for opening many groups of the same file performantly from #9014. Indeed we could add a `open_dict_of_datasets` method to the `BackendEntryPoint` class, which uses pretty much the same code as the existing `open_datatree` method added in #9014 but just doesn't actually create a `DataTree` object. ### Describe alternatives you've considered Really the main alternative to this is not to have coordinate inheritance in `DataTree` at all (see [9077](https://github.com/pydata/xarray/issues/9077)), in which case `open_datatree` would be sufficient to open any file. --- The name of the function is up for debate. I prefer nothing with the word "datatree" in it since this doesn't actually create a `DataTree` object at any point. (In fact we could and perhaps should have implemented this function years ago, even without the new `DataTree` class.) The reason for not calling it "`open_as_dict_of_datasets`" is that we don't use "as" in the existing `open_dataset`/`open_dataarray` etc. ### Additional context cc @eni-awowale @flamingbear @owenlittlejohns @keewis @shoyer @autydp
closed
2024-06-19T17:08:16Z
2024-09-07T23:34:22Z
https://github.com/pydata/xarray/issues/9137
[ "topic-backends", "enhancement", "topic-DataTree", "io" ]
TomNicholas
7
apify/crawlee-python
automation
1,106
In certain situations, it is impossible to enter the method under @crawler.router.default_handler, and the execution ends directly.
code : ```py async def crawling(urls: List, output_path: str, unique_filter:set) -> None: # initialize crawler configuration concurrency_settings = ConcurrencySettings( max_concurrency=50, max_tasks_per_minute=200, ) session_pool = SessionPool(max_pool_size=100) crawler = BeautifulSoupCrawler( max_request_retries=3, request_handler_timeout=timedelta( seconds=30, ), max_requests_per_crawl=100, max_crawl_depth=1, concurrency_settings=concurrency_settings, session_pool=session_pool, ) # Define the default request handler, which will be called for every request @crawler.router.default_handler async def request_handler(context: BeautifulSoupCrawlingContext) -> None: url = context.request.url logger.info(f'Processing {url} ...') depth = context.request.crawl_depth logger.info(f'The depth of {url} is:{depth}.') await context.enqueue_links( strategy='same-hostname', include=init_filters(), transform_request_function=transform_request, ) await crawler.run(urls) ``` Issue 1: In the above code, debugging revealed that after executing the crawling method, when it reaches await crawler.run(urls), it does not enter the method under @crawler.router.default_handler (sometimes it works, sometimes it doesn't). Issue 2: If crawling a URL fails due to network issues, attempting to crawl the same URL again also does not enter the @crawler.router.default_handler.
open
2025-03-19T07:17:18Z
2025-03-24T11:21:11Z
https://github.com/apify/crawlee-python/issues/1106
[ "t-tooling" ]
CodeDan-CN
5
tflearn/tflearn
data-science
882
About loss in Tensorboard
Hello everyone, I run the example of Multi-layer perceptron, and visualize the loss in Tensorboard. Does "Loss" refer to the training loss on each batch? And "Loss/Validation" refers to the loss on validation set? What does "Loss_var_loss" refer to? ![screenshot from 2017-08-22 10-49-05](https://user-images.githubusercontent.com/30203331/29571631-b4c9b48a-8727-11e7-98ba-0d6ed9dc1c86.png)
open
2017-08-22T14:57:32Z
2017-08-26T07:15:47Z
https://github.com/tflearn/tflearn/issues/882
[]
zhao62
3
python-gitlab/python-gitlab
api
2,564
I can't user user.save() to update the identifies of user
## Description of the problem, including code/CLI snippet I use get user and change the identifies of it,but after use user.save(),it not changes. when i update user's name,it works. but if i update identifies, it not work. The identifies correct ,i can update it by hand. ## Expected Behavior after user.save() update indetifies success ## Actual Behavior not work,don't get any error ## Specifications - python-gitlab version:3.14.0 - API version you are using (v3/v4):v4 - Gitlab server version (or gitlab.com):15.0.1
closed
2023-05-06T11:38:06Z
2023-05-28T09:16:02Z
https://github.com/python-gitlab/python-gitlab/issues/2564
[]
queyijiangnan
2
wkentaro/labelme
computer-vision
1,212
labelme2coco.py crash when just contines __ignore__ label
### Provide environment information (DET2) D:\FPCs>python --version Python 3.9.13 (DET2) D:\FPCs>pip list labelme Package Version Editable project location ----------------------- ------------------ -------------------------- labelme 5.0.5 ### What OS are you using? windows11 ### Describe the Bug (DET2) D:\FPCs>python D:/DeepLearning/labelme/examples/instance_segmentation/labelme2coco.py --labels classes.txt 000003 labels Creating dataset: labels Generating dataset from: 000003\dog.json Traceback (most recent call last): File "D:\DeepLearning\labelme\examples\instance_segmentation\labelme2coco.py", line 209, in <module> main() File "D:\DeepLearning\labelme\examples\instance_segmentation\labelme2coco.py", line 184, in main labels, captions, masks = zip( ValueError: not enough values to unpack (expected 3, got 0) ### Expected Behavior Skip the label file ### To Reproduce 1. Just set __ignore__ label of an image 2. Create classes.txt file 3. run labelme2coco.py
closed
2022-11-06T04:44:18Z
2024-04-08T00:58:34Z
https://github.com/wkentaro/labelme/issues/1212
[ "issue::bug" ]
withkun
4
ymcui/Chinese-LLaMA-Alpaca-2
nlp
57
请问llama2-7b的显存要求是多少
### 提交前必须检查以下项目 - [X] 请确保使用的是仓库最新代码(git pull),一些问题已被解决和修复。 - [X] 我已阅读[项目文档](https://github.com/ymcui/Chinese-LLaMA-Alpaca-2/wiki)和[FAQ章节](https://github.com/ymcui/Chinese-LLaMA-Alpaca-2/wiki/常见问题)并且已在Issue中对问题进行了搜索,没有找到相似问题和解决方案 - [X] 第三方插件问题:例如[llama.cpp](https://github.com/ggerganov/llama.cpp)、[text-generation-webui](https://github.com/oobabooga/text-generation-webui)等,同时建议到对应的项目中查找解决方案 ### 问题类型 模型训练与精调 ### 基础模型 LLaMA-2-7B ### 操作系统 Linux ### 详细描述问题 ``` # 用了6张a10(24G)进行预训练,block开到512,没有加lm_head,embedding层,开启了zero2 offload依旧报错 ``` ### 运行日志或截图 ``` # torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 130.00 MiB (GPU 0; 22.20 GiB total capacity; 20.60 GiB already allocated; 126.12 MiB free; 20.98 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF 0%| | 0/3 [00:00<?, ?it/s ```
closed
2023-08-03T03:35:33Z
2023-08-03T06:03:05Z
https://github.com/ymcui/Chinese-LLaMA-Alpaca-2/issues/57
[]
AlexasXu
2
jupyter/nbviewer
jupyter
895
The error was: Failed to connect to localhost port 8988: Connection refused
Hi! Thanks for using Jupyter Notebook Viewer (nbviewer) and taking the time to report a bug you've encountered. Please use the template below to tell us about the problem. If you've found a bug in a different Jupyter project (e.g., [Jupyter Notebook](http://github.com/jupyter/notebook), [JupyterLab](http://github.com/jupyterlab/jupyterlab), [JupyterHub](http://github.com/jupyterhub/jupyterhub), etc.), please open an issue using that project's issue tracker instead. If you need help using or installing Jupyter Notebook Viewer, please use the [jupyter/help](https://github.com/jupyter/help) issue tracker instead. **Describe the bug** Should be a working notebook however the error that is stated in the title shows up **To Reproduce** Steps to reproduce the behavior: Copy URL and paste into nbviewer **Expected behavior** Should see the notebook **Screenshots** If applicable, add screenshots to help explain your problem. **Desktop (please complete the following information):** - OS: Windows 10 - Browser Firefox - Version Not sure **Additional context** Add any other context about the problem here.
closed
2020-02-04T20:31:55Z
2020-03-04T02:34:02Z
https://github.com/jupyter/nbviewer/issues/895
[]
Mespn520
5
lmcgartland/graphene-file-upload
graphql
57
Option for starting development server
closed
2021-03-03T18:54:34Z
2021-03-03T18:54:58Z
https://github.com/lmcgartland/graphene-file-upload/issues/57
[]
Waidhoferj
0
pydantic/pydantic
pydantic
11,157
make typecheck failing
### Initial Checks - [X] I confirm that I'm using Pydantic V2 ### Description I'm trying to commit a change and the pre-commit hook make typecheck is failing on various bits of v1 code. I reverted my changes and ran the check - same result, so not sure how others are managing to commit! There are 144 errors, so I'll spare everyone the whole output, but a couple of samples are below. I've checked that I've got the latest versions of all dependencies, such as mypy. Typecheck................................................................Failed - hook id: typecheck - exit code: 3 Pyproject file parse attempt 1 error: {} Pyproject file parse attempt 2 error: {} Pyproject file parse attempt 3 error: {} Pyproject file parse attempt 4 error: {} Pyproject file parse attempt 5 error: {} Pyproject file parse attempt 6 error: {} Config file "/Users/Nick/Code/github/pydantic/pyproject.toml" could not be parsed. Verify that format is correct. /Users/Nick/Code/github/pydantic/pydantic/mypy.py /Users/Nick/Code/github/pydantic/pydantic/mypy.py:630:54 - error: Argument of type "SemanticAnalyzerPluginInterface" cannot be assigned to parameter "api" of type "CheckerPluginInterface" in function "error_extra_fields_on_root_model"   "SemanticAnalyzerPluginInterface" is not assignable to "CheckerPluginInterface" (reportArgumentType) /Users/Nick/Code/github/pydantic/pydantic/_internal/_std_types_schema.py /Users/Nick/Code/github/pydantic/pydantic/_internal/_std_types_schema.py:111:20 - error: Cannot instantiate abstract class "PathLike"   "PathLike.__fspath__" is not implemented (reportAbstractUsage) /Users/Nick/Code/github/pydantic/pydantic/_internal/_std_types_schema.py:111:20 - error: Cannot instantiate Protocol class "PathLike" (reportAbstractUsage) /Users/Nick/Code/github/pydantic/pydantic/_internal/_std_types_schema.py:111:35 - error: Expected 0 positional arguments (reportCallIssue) /Users/Nick/Code/github/pydantic/pydantic/v1/_hypothesis_plugin.py /Users/Nick/Code/github/pydantic/pydantic/v1/_hypothesis_plugin.py:33:8 - error: Import "hypothesis.strategies" could not be resolved (reportMissingImports) ... /Users/Nick/Code/github/pydantic/pydantic/v1/validators.py:81:32 - error: Union requires two or more type arguments (reportInvalidTypeArguments) ### Example Code _No response_ ### Python, Pydantic & OS Version ```Text pydantic version: 2.10.3 pydantic-core version: 2.27.1 pydantic-core build: profile=release pgo=false install path: /Users/Nick/Code/github/pydantic/pydantic python version: 3.12.8 | packaged by Anaconda, Inc. | (main, Dec 11 2024, 10:37:40) [Clang 14.0.6 ] platform: macOS-15.2-arm64-arm-64bit related packages: fastapi-0.115.6 mypy-1.13.0 pyright-1.1.391 pydantic-settings-2.7.0 typing_extensions-4.12.2 pydantic-extra-types-2.10.1 commit: a915c7cd ```
closed
2024-12-20T00:08:35Z
2024-12-20T09:18:30Z
https://github.com/pydantic/pydantic/issues/11157
[ "bug V2", "pending" ]
nickyoung-github
1
google-research/bert
nlp
562
Extract features of a word given a text
I am interested in getting the features of only one word in a text, but the current implementation gives the features of all the words in the text. I guess this makes the computations much slower, so I would like to simplify the implementation. Is this possible? Thanks!!!
open
2019-04-08T13:25:17Z
2019-04-09T11:25:27Z
https://github.com/google-research/bert/issues/562
[]
RodSernaPerez
1
zihangdai/xlnet
tensorflow
199
How to use xlnet to guess a word in a sentence
I am wonder how to use the xlnet to guess a word in a sentence.
open
2019-08-01T03:34:30Z
2019-08-01T03:34:30Z
https://github.com/zihangdai/xlnet/issues/199
[]
syu0000
0
jonra1993/fastapi-alembic-sqlmodel-async
sqlalchemy
15
IUserUpdate should have id of UUID
https://github.com/jonra1993/fastapi-alembic-sqlmodel-async/blob/a11c40077ec0bad51508974704d3343d187557a1/fastapi-alembic-sqlmodel-async/app/schemas/user_schema.py : 37
closed
2022-10-08T19:10:38Z
2022-10-09T16:10:17Z
https://github.com/jonra1993/fastapi-alembic-sqlmodel-async/issues/15
[]
bazylhorsey
1
seleniumbase/SeleniumBase
pytest
2,497
Update script to download chromedriver from the newer location (on version 121+)
## Update script to download chromedriver from the newer location (on version 121+) The Chromedriver team is starting to switch `chromedriver` storage from `https://edgedl.me.gvt1.com/edgedl/chrome/chrome-for-testing/` to `https://storage.googleapis.com/chrome-for-testing-public/`. This caused issues here: https://github.com/seleniumbase/SeleniumBase/issues/2495, but thankfully the Chromedriver team quickly made a change to at least temporarily use both locations. That was probably a warning shot so that frameworks are made aware to make changes soon. If downloading `chromedriver` 121 (or newer), SeleniumBase should grab `chromedriver` from the newer location: `https://storage.googleapis.com/chrome-for-testing-public/`.
closed
2024-02-15T16:30:20Z
2024-02-16T02:45:48Z
https://github.com/seleniumbase/SeleniumBase/issues/2497
[ "requirements" ]
mdmintz
1
koxudaxi/datamodel-code-generator
fastapi
1,421
Ability to add custom imports
**Is your feature request related to a problem? Please describe.** Can't customize my template to add new imports **Describe the solution you'd like** New argument `additional_imports` in `generate` function which adds additional imports to final rendered template **Describe alternatives you've considered** - **Additional context** -
closed
2023-07-12T07:32:25Z
2023-07-14T07:45:49Z
https://github.com/koxudaxi/datamodel-code-generator/issues/1421
[]
skonik
0
ultralytics/ultralytics
machine-learning
19,724
The prediction results of the segmentation model are strange
### Search before asking - [x] I have searched the Ultralytics YOLO [issues](https://github.com/ultralytics/ultralytics/issues) and [discussions](https://github.com/orgs/ultralytics/discussions) and found no similar questions. ### Question ## Background To obtain contour data of a specific object, I created a segmentation model using the following steps: 1. Generated a mask for the object using `sam2.1_b.pt` and created labels using `result.masks.xyn.pop()`. ```python normalized_contour = result.masks.xyn.pop() with open(os.path.join(output_label_path, img_file.replace('.jpg', '.txt')), 'w') as f: class_id = 0 points_str = " ".join([f"{x:.4f} {y:.4f}" for x, y in normalized_contour]) output_str = f"{class_id} {points_str}" f.write(output_str) ``` 2. Fine-tuned `yolo11n-seg.pt` using the generated labels. ```python model = YOLO('yolo11n-seg.pt') model.train(data="dataset.yaml", epochs=1000, patience=50, batch=16, imgsz=1024, device=0) ``` 3. Performed predictions using the fine-tuned model (`best.pt`). ```python result = model(img_path, device=0)[0] ``` ## Isuue The prediction results are shown in the image below. When examining the boundary between the mask and the bounding box (circled areas), certain parts of the mask protrude in a square-like shape. ## Question Why is this happening? Are there any possible solutions to this issue? ![Image](https://github.com/user-attachments/assets/06e27401-b00b-458f-86a7-84f588ffc465) ### Additional _No response_
closed
2025-03-16T12:13:09Z
2025-03-17T09:32:27Z
https://github.com/ultralytics/ultralytics/issues/19724
[ "question", "segment" ]
family36
5
LibrePhotos/librephotos
django
1,531
Add option to scrub all region tags in Exif information when using "delete face"
**Describe the enhancement you'd like** I have some pictures that have (wrong) face areas defined from a previous version of digikam - would it be possible to scrub the EXIF info from all face info when using "delete face"? It seems right now only librephoto tags are scrubbed After using the "delete face" I still have region and name information in the file **Describe why this will benefit the LibrePhotos** Deleting face regions that are wrong would improve the data quality and training date for face recognition **Additional context** It seems Librephotos is using the "Region Rectangle" to define the face area. Digikam tags look like this (real example) Region Applied To Dimensions H : 2304 Region Applied To Dimensions Unit: pixel Region Applied To Dimensions W : 3456 Region Name : Personname Region Type : Face, Face Region Area X : 0.330874, 0.161892 Region Area Y : 0.771701, 0.498047 Region Area W : 0.175637, 0.128762 Region Area H : 0.315972, 0.193142 Region Area Unit : normalized, normalized Tags List : People/Personname Adding an option in settings to scrub this when deleting faces would make sense. This should only be applied to face regions, which is the defined in the "Region Type" tag
open
2025-03-04T15:28:15Z
2025-03-05T05:19:41Z
https://github.com/LibrePhotos/librephotos/issues/1531
[ "enhancement" ]
ChrisFab16
1
sherlock-project/sherlock
python
1,665
Error while trying to even install numpy
error: subprocess-exited-with-error × Building wheel for numpy (pyproject.toml) did not run successfully. │ exit code: 1 ╰─> [271 lines of output] Running from numpy source directory. setup.py:67: DeprecationWarning: `numpy.distutils` is deprecated since NumPy 1.23.0, as a result of the deprecation of `distutils` itself. It will be removed for Python >= 3.12. For older Python versions it will remain present. It is recommended to use `setuptools < 60.0` for those Python versions. For more details, see: https://numpy.org/devdocs/reference/distutils_status_migration.html import numpy.distutils.command.sdist Processing numpy/random/_bounded_integers.pxd.in Processing numpy/random/_bounded_integers.pyx.in Processing numpy/random/_common.pyx Processing numpy/random/_generator.pyx Processing numpy/random/_mt19937.pyx Processing numpy/random/_pcg64.pyx Processing numpy/random/_philox.pyx Processing numpy/random/_sfc64.pyx Processing numpy/random/bit_generator.pyx Processing numpy/random/mtrand.pyx Cythonizing sources INFO: blas_opt_info: INFO: blas_armpl_info: INFO: customize UnixCCompiler INFO: libraries armpl_lp64_mp not found in ['/data/data/com.termux/files/usr/lib'] INFO: NOT AVAILABLE INFO: INFO: blas_mkl_info: INFO: libraries mkl_rt not found in ['/data/data/com.termux/files/usr/lib'] INFO: NOT AVAILABLE INFO: INFO: blis_info: INFO: libraries blis not found in ['/data/data/com.termux/files/usr/lib'] INFO: NOT AVAILABLE INFO: INFO: openblas_info: INFO: libraries openblas not found in ['/data/data/com.termux/files/usr/lib'] INFO: NOT AVAILABLE INFO: INFO: accelerate_info: INFO: NOT AVAILABLE INFO: INFO: atlas_3_10_blas_threads_info: INFO: Setting PTATLAS=ATLAS INFO: libraries tatlas not found in ['/data/data/com.termux/files/usr/lib'] INFO: NOT AVAILABLE INFO: INFO: atlas_3_10_blas_info: INFO: libraries satlas not found in ['/data/data/com.termux/files/usr/lib'] INFO: NOT AVAILABLE INFO: INFO: atlas_blas_threads_info: INFO: Setting PTATLAS=ATLAS INFO: libraries ptf77blas,ptcblas,atlas not found in ['/data/data/com.termux/files/usr/lib'] INFO: NOT AVAILABLE INFO: INFO: atlas_blas_info: INFO: libraries f77blas,cblas,atlas not found in ['/data/data/com.termux/files/usr/lib'] INFO: NOT AVAILABLE INFO: /data/data/com.termux/files/usr/tmp/pip-install-uc8hi5p2/numpy_0f93abc54da747c3833d8fbd6cec679c/numpy/distutils/system_info.py:2077: UserWarning: Optimized (vendor) Blas libraries are not found. Falls back to netlib Blas library which has worse performance. A better performance should be easily gained by switching Blas library. if self._calc_info(blas): INFO: blas_info: INFO: libraries blas not found in ['/data/data/com.termux/files/usr/lib'] INFO: NOT AVAILABLE INFO: /data/data/com.termux/files/usr/tmp/pip-install-uc8hi5p2/numpy_0f93abc54da747c3833d8fbd6cec679c/numpy/distutils/system_info.py:2077: UserWarning: Blas (http://www.netlib.org/blas/) libraries not found. Directories to search for the libraries can be specified in the numpy/distutils/site.cfg file (section [blas]) or by setting the BLAS environment variable. if self._calc_info(blas): INFO: blas_src_info: INFO: NOT AVAILABLE INFO: /data/data/com.termux/files/usr/tmp/pip-install-uc8hi5p2/numpy_0f93abc54da747c3833d8fbd6cec679c/numpy/distutils/system_info.py:2077: UserWarning: Blas (http://www.netlib.org/blas/) sources not found. Directories to search for the sources can be specified in the numpy/distutils/site.cfg file (section [blas_src]) or by setting the BLAS_SRC environment variable. if self._calc_info(blas): INFO: NOT AVAILABLE INFO: non-existing path in 'numpy/distutils': 'site.cfg' INFO: lapack_opt_info: INFO: lapack_armpl_info: INFO: libraries armpl_lp64_mp not found in ['/data/data/com.termux/files/usr/lib'] INFO: NOT AVAILABLE INFO: INFO: lapack_mkl_info: INFO: libraries mkl_rt not found in ['/data/data/com.termux/files/usr/lib'] INFO: NOT AVAILABLE INFO: INFO: openblas_lapack_info: INFO: libraries openblas not found in ['/data/data/com.termux/files/usr/lib'] INFO: NOT AVAILABLE INFO: INFO: openblas_clapack_info: INFO: libraries openblas,lapack not found in ['/data/data/com.termux/files/usr/lib'] INFO: NOT AVAILABLE INFO: INFO: flame_info: INFO: libraries flame not found in ['/data/data/com.termux/files/usr/lib'] INFO: NOT AVAILABLE INFO: INFO: atlas_3_10_threads_info: INFO: Setting PTATLAS=ATLAS INFO: libraries tatlas,tatlas not found in /data/data/com.termux/files/usr/lib INFO: <class 'numpy.distutils.system_info.atlas_3_10_threads_info'> INFO: NOT AVAILABLE INFO: INFO: atlas_3_10_info: INFO: libraries satlas,satlas not found in /data/data/com.termux/files/usr/lib INFO: <class 'numpy.distutils.system_info.atlas_3_10_info'> INFO: NOT AVAILABLE INFO: INFO: atlas_threads_info: INFO: Setting PTATLAS=ATLAS INFO: libraries ptf77blas,ptcblas,atlas not found in /data/data/com.termux/files/usr/lib INFO: <class 'numpy.distutils.system_info.atlas_threads_info'> INFO: NOT AVAILABLE INFO: INFO: atlas_info: INFO: libraries f77blas,cblas,atlas not found in /data/data/com.termux/files/usr/lib INFO: <class 'numpy.distutils.system_info.atlas_info'> INFO: NOT AVAILABLE INFO: INFO: lapack_info: INFO: libraries lapack not found in ['/data/data/com.termux/files/usr/lib'] INFO: NOT AVAILABLE INFO: /data/data/com.termux/files/usr/tmp/pip-install-uc8hi5p2/numpy_0f93abc54da747c3833d8fbd6cec679c/numpy/distutils/system_info.py:1902: UserWarning: Lapack (http://www.netlib.org/lapack/) libraries not found. Directories to search for the libraries can be specified in the numpy/distutils/site.cfg file (section [lapack]) or by setting the LAPACK environment variable. return getattr(self, '_calc_info_{}'.format(name))() INFO: lapack_src_info: INFO: NOT AVAILABLE INFO: /data/data/com.termux/files/usr/tmp/pip-install-uc8hi5p2/numpy_0f93abc54da747c3833d8fbd6cec679c/numpy/distutils/system_info.py:1902: UserWarning: Lapack (http://www.netlib.org/lapack/) sources not found. Directories to search for the sources can be specified in the numpy/distutils/site.cfg file (section [lapack_src]) or by setting the LAPACK_SRC environment variable. return getattr(self, '_calc_info_{}'.format(name))() INFO: NOT AVAILABLE INFO: INFO: numpy_linalg_lapack_lite: INFO: FOUND: INFO: language = c INFO: Warning: attempted relative import with no known parent package /data/data/com.termux/files/usr/lib/python3.11/distutils/dist.py:274: UserWarning: Unknown distribution option: 'define_macros' warnings.warn(msg) running bdist_wheel running build running config_cc INFO: unifing config_cc, config, build_clib, build_ext, build commands --compiler options running config_fc INFO: unifing config_fc, config, build_clib, build_ext, build commands --fcompiler options running build_src INFO: build_src INFO: building py_modules sources creating build creating build/src.linux-aarch64-3.11 creating build/src.linux-aarch64-3.11/numpy creating build/src.linux-aarch64-3.11/numpy/distutils INFO: building library "npymath" sources WARN: Could not locate executable armflang WARN: Could not locate executable gfortran WARN: Could not locate executable f95 WARN: Could not locate executable ifort WARN: Could not locate executable ifc WARN: Could not locate executable lf95 WARN: Could not locate executable pgfortran WARN: Could not locate executable nvfortran WARN: Could not locate executable f90 WARN: Could not locate executable f77 WARN: Could not locate executable fort WARN: Could not locate executable efort WARN: Could not locate executable efc WARN: Could not locate executable g77 WARN: Could not locate executable g95 WARN: Could not locate executable pathf95 WARN: Could not locate executable nagfor WARN: Could not locate executable frt WARN: don't know how to compile Fortran code on platform 'posix' creating build/src.linux-aarch64-3.11/numpy/core creating build/src.linux-aarch64-3.11/numpy/core/src creating build/src.linux-aarch64-3.11/numpy/core/src/npymath INFO: conv_template:> build/src.linux-aarch64-3.11/numpy/core/src/npymath/npy_math_internal.h INFO: adding 'build/src.linux-aarch64-3.11/numpy/core/src/npymath' to include_dirs. INFO: conv_template:> build/src.linux-aarch64-3.11/numpy/core/src/npymath/ieee754.c INFO: conv_template:> build/src.linux-aarch64-3.11/numpy/core/src/npymath/npy_math_complex.c INFO: None - nothing done with h_files = ['build/src.linux-aarch64-3.11/numpy/core/src/npymath/npy_math_internal.h'] INFO: building library "npyrandom" sources INFO: building extension "numpy.core._multiarray_tests" sources creating build/src.linux-aarch64-3.11/numpy/core/src/multiarray INFO: conv_template:> build/src.linux-aarch64-3.11/numpy/core/src/multiarray/_multiarray_tests.c INFO: building extension "numpy.core._multiarray_umath" sources Traceback (most recent call last): File "/data/data/com.termux/files/usr/lib/python3.11/site-packages/pip/_vendor/pep517/in_process/_in_process.py", line 351, in <module> main() File "/data/data/com.termux/files/usr/lib/python3.11/site-packages/pip/_vendor/pep517/in_process/_in_process.py", line 333, in main json_out['return_val'] = hook(**hook_input['kwargs']) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/data/data/com.termux/files/usr/lib/python3.11/site-packages/pip/_vendor/pep517/in_process/_in_process.py", line 249, in build_wheel return _build_backend().build_wheel(wheel_directory, config_settings, ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/data/data/com.termux/files/usr/tmp/pip-build-env-goe15s6p/overlay/lib/python3.11/site-packages/setuptools/build_meta.py", line 230, in build_wheel return self._build_with_temp_dir(['bdist_wheel'], '.whl', ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/data/data/com.termux/files/usr/tmp/pip-build-env-goe15s6p/overlay/lib/python3.11/site-packages/setuptools/build_meta.py", line 215, in _build_with_temp_dir self.run_setup() File "/data/data/com.termux/files/usr/tmp/pip-build-env-goe15s6p/overlay/lib/python3.11/site-packages/setuptools/build_meta.py", line 268, in run_setup self).run_setup(setup_script=setup_script) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/data/data/com.termux/files/usr/tmp/pip-build-env-goe15s6p/overlay/lib/python3.11/site-packages/setuptools/build_meta.py", line 158, in run_setup exec(compile(code, __file__, 'exec'), locals()) File "setup.py", line 479, in <module> setup_package() File "setup.py", line 471, in setup_package setup(**metadata) File "/data/data/com.termux/files/usr/tmp/pip-install-uc8hi5p2/numpy_0f93abc54da747c3833d8fbd6cec679c/numpy/distutils/core.py", line 169, in setup return old_setup(**new_attr) ^^^^^^^^^^^^^^^^^^^^^ File "/data/data/com.termux/files/usr/tmp/pip-build-env-goe15s6p/overlay/lib/python3.11/site-packages/setuptools/__init__.py", line 153, in setup return distutils.core.setup(**attrs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/data/data/com.termux/files/usr/lib/python3.11/distutils/core.py", line 148, in setup dist.run_commands() File "/data/data/com.termux/files/usr/lib/python3.11/distutils/dist.py", line 966, in run_commands self.run_command(cmd) File "/data/data/com.termux/files/usr/lib/python3.11/distutils/dist.py", line 985, in run_command cmd_obj.run() File "/data/data/com.termux/files/usr/tmp/pip-build-env-goe15s6p/overlay/lib/python3.11/site-packages/wheel/bdist_wheel.py", line 299, in run self.run_command('build') File "/data/data/com.termux/files/usr/lib/python3.11/distutils/cmd.py", line 313, in run_command self.distribution.run_command(command) File "/data/data/com.termux/files/usr/lib/python3.11/distutils/dist.py", line 985, in run_command cmd_obj.run() File "/data/data/com.termux/files/usr/tmp/pip-install-uc8hi5p2/numpy_0f93abc54da747c3833d8fbd6cec679c/numpy/distutils/command/build.py", line 62, in run old_build.run(self) File "/data/data/com.termux/files/usr/lib/python3.11/distutils/command/build.py", line 135, in run self.run_command(cmd_name) File "/data/data/com.termux/files/usr/lib/python3.11/distutils/cmd.py", line 313, in run_command self.distribution.run_command(command) File "/data/data/com.termux/files/usr/lib/python3.11/distutils/dist.py", line 985, in run_command cmd_obj.run() File "/data/data/com.termux/files/usr/tmp/pip-install-uc8hi5p2/numpy_0f93abc54da747c3833d8fbd6cec679c/numpy/distutils/command/build_src.py", line 144, in run self.build_sources() File "/data/data/com.termux/files/usr/tmp/pip-install-uc8hi5p2/numpy_0f93abc54da747c3833d8fbd6cec679c/numpy/distutils/command/build_src.py", line 161, in build_sources self.build_extension_sources(ext) File "/data/data/com.termux/files/usr/tmp/pip-install-uc8hi5p2/numpy_0f93abc54da747c3833d8fbd6cec679c/numpy/distutils/command/build_src.py", line 318, in build_extension_sources sources = self.generate_sources(sources, ext) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/data/data/com.termux/files/usr/tmp/pip-install-uc8hi5p2/numpy_0f93abc54da747c3833d8fbd6cec679c/numpy/distutils/command/build_src.py", line 378, in generate_sources source = func(extension, build_dir) ^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/data/data/com.termux/files/usr/tmp/pip-install-uc8hi5p2/numpy_0f93abc54da747c3833d8fbd6cec679c/numpy/core/setup.py", line 506, in generate_config_h check_math_capabilities(config_cmd, ext, moredefs, mathlibs) File "/data/data/com.termux/files/usr/tmp/pip-install-uc8hi5p2/numpy_0f93abc54da747c3833d8fbd6cec679c/numpy/core/setup.py", line 192, in check_math_capabilities raise SystemError("One of the required function to build numpy is not" SystemError: One of the required function to build numpy is not available (the list is ['sin', 'cos', 'tan', 'sinh', 'cosh', 'tanh', 'fabs', 'floor', 'ceil', 'sqrt', 'log10', 'log', 'exp', 'asin', 'acos', 'atan', 'fmod', 'modf', 'frexp', 'ldexp', 'expm1', 'log1p', 'acosh', 'asinh', 'atanh', 'rint', 'trunc', 'exp2', 'copysign', 'nextafter', 'strtoll', 'strtoull', 'cbrt', 'log2', 'pow', 'hypot', 'atan2', 'creal', 'cimag', 'conj']). [end of output] note: This error originates from a subprocess, and is likely not a problem with pip. ERROR: Failed building wheel for numpy Failed to build numpy ERROR: Could not build wheels for numpy, which is required to install pyproject.toml-based projects
closed
2023-01-17T03:37:11Z
2023-01-25T12:16:11Z
https://github.com/sherlock-project/sherlock/issues/1665
[]
Onionbread35
2
pywinauto/pywinauto
automation
668
Implement WindowWrapper for UIA backend with move_window() method
Found this while reading this StackOverflow question: https://stackoverflow.com/q/54475685/3648361
closed
2019-02-01T21:18:14Z
2020-05-23T21:46:54Z
https://github.com/pywinauto/pywinauto/issues/668
[ "enhancement", "Priority-Critical", "UIA-related", "good first issue", "refactoring_critical" ]
vasily-v-ryabov
1
littlecodersh/ItChat
api
41
msg['ActualNickName']乱码
昨天还好好的,今天就变成了乱码,找不到原因所在,来求助
closed
2016-07-20T02:43:09Z
2016-07-20T11:00:16Z
https://github.com/littlecodersh/ItChat/issues/41
[ "bug" ]
xzjs
5
marcomusy/vedo
numpy
879
Cutter tools create leftovers in plotter
It seems some (all?) cutter tools create some leftovers in the plotters that get picked up by subsequent cutting operations
open
2023-06-08T14:58:40Z
2023-08-29T10:32:31Z
https://github.com/marcomusy/vedo/issues/879
[ "bug" ]
jo-mueller
0
AutoViML/AutoViz
scikit-learn
80
Filename is an empty string or file not able to be loaded
I get this error with even the simplest csv input file ``` a,b 1,2 3,4 ``` providing full path to the filename, using and specifying different separators... nothing seems to work.
closed
2023-01-17T12:04:02Z
2023-01-23T23:08:06Z
https://github.com/AutoViML/AutoViz/issues/80
[]
delocalizer
2
kizniche/Mycodo
automation
946
Cannot save MQTT input configuration changes
I am using Mycodo 8.9.0. Whenever I add an MQTT input, click the (+) sign and then click "Save" - no changes made at all - I receive the following error : Error: Modify Input: '<' not supported between instances of 'NoneType' and 'float' The error happens regardless of which fields I change or attempt to modify (even when no fields are modified as I mentioned above). I'm new to mycodo so please do let me know if I'm doing something wrong. Thanks in advance for your help!
closed
2021-03-10T16:31:38Z
2021-03-16T02:41:56Z
https://github.com/kizniche/Mycodo/issues/946
[ "bug", "Fixed and Committed" ]
danielfppps
5
qubvel-org/segmentation_models.pytorch
computer-vision
997
Mention NVIDIA non-commercial in top LICENSE section
Could you mention NVIDIA license, which is written in encoders/mix_transformer.py, in the top LICENSE section? This can cause a problem for commercial use including Kaggle, in which the competition rule often requires commercial use. I misunderstood that segFormer had become completely MIT. For example, mmcv has a LICENSES page, which lists files with NVIDIA license. https://github.com/open-mmlab/mmcv/blob/main/LICENSES.md Thanks for developing and maintaining this great library! I am using a lot for Kaggle.
closed
2024-12-05T00:39:25Z
2024-12-15T00:37:46Z
https://github.com/qubvel-org/segmentation_models.pytorch/issues/997
[]
junkoda
3
python-restx/flask-restx
api
196
Swagger's preauthorize_apikey feature
Currently there is no "flask_restx" way to use the Swagger ``preauthorize_apikey`` feature. (You can always patch the javascript returned by apidoc using the Api.documentation decorator, but it seems to be the worst way to do it) We needed this feature, in order to display Swagger documentation allready "populated" with user's apiKey. Our use case : - a user login with login/password couple in order to fetch an api Token and see swagger doc - when displaying swagger documentation for this authenticated user, the curl example should contains the Token argument I wrote two commit implementing this feature in two ways : - https://github.com/yweber/flask-restx/commit/4c6955eadaa4c93ec8fe6d14d322e1ec01ecc9e3 - a straight-forward template modification using a global Flask.config item referencing a function returning preauth informations - https://github.com/yweber/flask-restx/commit/85310b3eadbb3d94b18bfecf083fc8cb9c5c6753 - adding a decorator to ``flask_restx.Api`` class in order to register a function returning preauth informations Both PR will be created soon. I don't know wich one is the better nor wich one fits best with flask_restx philosophy. - the global configuration solution is.... global : you register a function once and it will be used for all Api instance. It will be messy if different apiKey swagger's authorization names are used - the ``Api.apikey_preauthorization`` decorator allows to register a preauth information function per Api : you have to do it for each Api instance with swagger ``preauthorize_apikey`` enabled - Right now, registered functions do not takes any argument. With the decorator's solution it seems to be trivial to pass the ``flask_restx.Api`` instance as argument. I'm not a flask expert, but it looks like it is useless : the flask application context is accessible globally (with ``Flask.current_app`` or ``Flask.session`` etc.) Is there a use case where this function would like to access the current ``flask_restx.Api`` instance ? Finally, a mixed solution is possible : - merging the configuration and the decorator : allowing both with a priority on the function registered with the decorator Thank's for your time reading this issue (and the associated PRs :) ) !
open
2020-08-13T13:07:10Z
2020-08-13T13:07:10Z
https://github.com/python-restx/flask-restx/issues/196
[ "enhancement" ]
yweber
0
TheKevJames/coveralls-python
pytest
41
Missing 'url' key raises uncaught KeyError on coveralls.io 503 response
Could not reproduce with `coveralls debug` as coveralls.io had evidently fixed its server-side error by this time. Traceback from original run below: ``` Submitting coverage to coveralls.io... Coverage submitted! Failure to submit data. Response [503]: <!DOCTYPE html> <html> <head> <style type="text/css"> html, body, iframe { margin: 0; padding: 0; height: 100%; } iframe { display: block; width: 100%; border: none; } </style> <title>Application Error</title> </head> <body> <iframe src="https://s3.amazonaws.com/assets.coveralls.io/maintenance.html"> <p>Application Error</p> </iframe> </body> </html> Traceback (most recent call last): File "/home/rof/.virtualenv/bin/coveralls", line 9, in <module> load_entry_point('coveralls==0.4.1', 'console_scripts', 'coveralls')() File "/home/rof/.virtualenv/local/lib/python2.7/site-packages/coveralls/cli.py", line 52, in main log.info(result['url']) KeyError: 'url' ```
closed
2014-02-13T19:26:56Z
2014-05-05T17:47:00Z
https://github.com/TheKevJames/coveralls-python/issues/41
[]
isms
7
allure-framework/allure-python
pytest
236
Change folder strucutre from `src` to module name
[//]: # ( . Note: for support questions, please use Stackoverflow or Gitter**. . This repository's issues are reserved for feature requests and bug reports. . . In case of any problems with Allure Jenkins plugin** please use the following repository . to create an issue: https://github.com/jenkinsci/allure-plugin/issues . . Make sure you have a clear name for your issue. The name should start with a capital . letter and no dot is required in the end of the sentence. An example of good issue names: . . - The report is broken in IE11 . - Add an ability to disable default plugins . - Support emoji in test descriptions ) #### I'm submitting a ... - [ ] bug report - [x] feature request - [ ] support request => Please do not submit support request here, see note at the top of this template. #### What is the current behavior? Folder structure is like this: ``` - allure-pytest\ - src\ - source files (...) - setup.py - other files (...) ``` #### If the current behavior is a bug, please provide the steps to reproduce and if possible a minimal demo of the problem Modules are not available for imports when installing with `pip install --editable .` command. #### What is the expected behavior? We could just rename the `src` folder with the module name: ``` - allure-pytest\ - allure_pytest\ - source files (...) - setup.py - other files (...) ``` Sure it is redundant (and aesthetically I don't like it myself) but this will easy the development process until the problem with `pip --editable` is solved (see below). #### What is the motivation / use case for changing the behavior? The pip editable install does not work with current structure, using `package_dir` option: https://github.com/pypa/pip/issues/3160 #### Please tell us about your environment: - Allure version: 2.6.0 - Test framework: pytest@3.6 - Allure adaptor: allure-pytest@2.3.3b1 #### Other information [//]: # ( . e.g. detailed explanation, stacktraces, related issues, suggestions . how to fix, links for us to have more context, eg. Stackoverflow, Gitter etc )
closed
2018-05-25T10:14:35Z
2022-12-05T17:32:14Z
https://github.com/allure-framework/allure-python/issues/236
[]
Sup3rGeo
8
mljar/mljar-supervised
scikit-learn
650
Invalid comparison between dtype=timedelta64[ns] and float64
Traceback (most recent call last): File "/opt/conda/lib/python3.11/site-packages/pandas/core/arrays/datetimelike.py", line 935, in _cmp_method other = self._validate_comparison_value(other) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/lib/python3.11/site-packages/pandas/core/arrays/datetimelike.py", line 571, in _validate_comparison_value raise InvalidComparison(other) pandas.errors.InvalidComparison: 3.4028234663852886e+38 During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/opt/conda/lib/python3.11/site-packages/supervised/base_automl.py", line 1195, in _fit trained = self.train_model(params) ^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/lib/python3.11/site-packages/supervised/base_automl.py", line 401, in train_model mf.train(results_path, model_subpath) File "/opt/conda/lib/python3.11/site-packages/supervised/model_framework.py", line 197, in train ].fit_and_transform( ^^^^^^^^^^^^^^^^^^ File "/opt/conda/lib/python3.11/site-packages/supervised/preprocessing/preprocessing.py", line 298, in fit_and_transform X_train[numeric_cols] = X_train[numeric_cols].clip( ^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/lib/python3.11/site-packages/pandas/core/frame.py", line 11457, in clip return super().clip(lower, upper, axis=axis, inplace=inplace, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/lib/python3.11/site-packages/pandas/core/generic.py", line 8215, in clip return self._clip_with_scalar(lower, upper, inplace=inplace) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/lib/python3.11/site-packages/pandas/core/generic.py", line 8024, in _clip_with_scalar subset = self <= upper ^^^^^^^^^^^^^ File "/opt/conda/lib/python3.11/site-packages/pandas/core/ops/common.py", line 81, in new_method return method(self, other) ^^^^^^^^^^^^^^^^^^^ File "/opt/conda/lib/python3.11/site-packages/pandas/core/arraylike.py", line 52, in __le__ return self._cmp_method(other, operator.le) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/lib/python3.11/site-packages/pandas/core/frame.py", line 7445, in _cmp_method new_data = self._dispatch_frame_op(other, op, axis=axis) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/lib/python3.11/site-packages/pandas/core/frame.py", line 7484, in _dispatch_frame_op bm = self._mgr.apply(array_op, right=right) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/lib/python3.11/site-packages/pandas/core/internals/managers.py", line 350, in apply applied = b.apply(f, **kwargs) ^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/lib/python3.11/site-packages/pandas/core/internals/blocks.py", line 329, in apply result = func(self.values, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/lib/python3.11/site-packages/pandas/core/ops/array_ops.py", line 279, in comparison_op res_values = op(lvalues, rvalues) ^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/lib/python3.11/site-packages/pandas/core/ops/common.py", line 81, in new_method return method(self, other) ^^^^^^^^^^^^^^^^^^^ File "/opt/conda/lib/python3.11/site-packages/pandas/core/arraylike.py", line 52, in __le__ return self._cmp_method(other, operator.le) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/lib/python3.11/site-packages/pandas/core/arrays/datetimelike.py", line 937, in _cmp_method return invalid_comparison(self, other, op) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/lib/python3.11/site-packages/pandas/core/ops/invalid.py", line 36, in invalid_comparison raise TypeError(f"Invalid comparison between dtype={left.dtype} and {typ}") TypeError: Invalid comparison between dtype=timedelta64[ns] and float64 Please set a GitHub issue with above error message at: https://github.com/mljar/mljar-supervised/issues/new
open
2023-09-12T15:11:19Z
2023-09-12T15:13:49Z
https://github.com/mljar/mljar-supervised/issues/650
[]
adrienpacifico
1
microsoft/qlib
machine-learning
1,428
Anyone successfully run a US benchmark yet? There seem to be a bug with US version, instrument variable got evaluated to NAN.
## 🐛 Bug Description <!-- A clear and concise description of what the bug is. --> ## To Reproduce Steps to reproduce the behavior: 1. take any yaml file under examples/benchmark. I'll take workflow_config_lightgbm_Alpha158.yaml for example. 2. Change all fields from china version to US version: 2.1 change (provider_uri: "~/.qlib/qlib_data/cn_data") to (provider_uri: "~/.qlib/qlib_data/us_data") 2.2 change( region: cn) to (region: us) 2.3 change (market: &market csi300) to (market: &market sp500) 2.4 change (benchmark: &benchmark SH000300) to (benchmark: &benchmark ^GSPC) 3. Run qrun workflow_config_lightgbm_Alpha158.yaml ## Expected Behavior AttributeError: 'float' object has no attribute 'lower' Upon closer debugging, the instrument variable was evaluated to Nan. ## Screenshot <img width="1045" alt="image" src="https://user-images.githubusercontent.com/1435138/215260135-671ad6bc-690e-4651-9314-4ecf138ae5b2.png"> ## Environment **Note**: User could run `cd scripts && python collect_info.py all` under project directory to get system information and paste them here directly. Windows AMD64 Windows-10-10.0.22621-SP0 10.0.22621 Python version: 3.8.15 (default, Nov 24 2022, 14:38:14) [MSC v.1916 64 bit (AMD64)] Qlib version: 0.9.0.99 numpy==1.23.5 pandas==1.5.2 scipy==1.9.3 requests==2.28.1 sacred==0.8.2 python-socketio==5.7.2 redis==4.4.0 python-redis-lock==4.0.0 schedule==1.1.0 cvxpy==1.2.3 hyperopt==0.1.2 fire==0.5.0 statsmodels==0.13.5 xlrd==2.0.1 plotly==5.11.0 matplotlib==3.6.2 tables==3.8.0 pyyaml==6.0 mlflow==1.30.0 tqdm==4.64.1 loguru==0.6.0 lightgbm==3.3.3 tornado==6.2 joblib==1.2.0 fire==0.5.0 ruamel.yaml==0.17.21 ## Additional Notes
open
2023-01-28T10:01:03Z
2023-07-22T11:45:39Z
https://github.com/microsoft/qlib/issues/1428
[ "bug" ]
tianlongwang
4
coqui-ai/TTS
pytorch
3,731
[Feature request] GPU Mac Silicon Chip
I would like to use the GPU from my Mac Silicon Chip. :)
closed
2024-05-11T04:27:35Z
2024-07-19T05:21:06Z
https://github.com/coqui-ai/TTS/issues/3731
[ "wontfix", "feature request" ]
kabelklaus
3
Johnserf-Seed/TikTokDownload
api
247
下载的时候会直接把cpu拉满
下载的时候会直接把cpu拉满,可以有个数值输入框控制一下cpu的占用嘛
closed
2022-11-11T15:44:25Z
2022-11-27T11:46:45Z
https://github.com/Johnserf-Seed/TikTokDownload/issues/247
[ "额外求助(help wanted)", "无效(invalid)" ]
HelloZhou3301
1
aminalaee/sqladmin
asyncio
700
Add messages support
### Checklist - [X] There are no similar issues or pull requests for this yet. ### Is your feature related to a problem? Please describe. I would like to display feedback to users after a form submission, not just error messages. This would allow for warnings and success messages. ### Describe the solution you would like. Django Admin uses this https://docs.djangoproject.com/en/dev/ref/contrib/messages/#django.contrib.messages.add_message ### Describe alternatives you considered _No response_ ### Additional context I may be willing to work on this, if there is interest.
open
2024-01-19T23:25:17Z
2024-05-15T20:07:55Z
https://github.com/aminalaee/sqladmin/issues/700
[]
jonocodes
11
sergree/matchering
numpy
32
[Discussion] Desktop Application 🖥
I've been looking into different technologies for making Rust desktop applications because that's personally something I want to get into. I think that [Flutter](https://flutter.dev) is one of the most promising GUI frameworks around right now, and I just yesterday discovered [nativeshell](https://github.com/nativeshell/nativeshell) which is a way to build desktop applications with Rust and Flutter. I was thinking about what might be a good demo application for me to build using nativeview and then I thought of Matchering. If I get the time, I might try to make a native desktop application for Matching, but I've still got to figure out the best way to embed Matching in a desktop application without requring Python to be installed. I heard that you had experimented with a Rust version of matchering, which would be the easiest way to get matchering embedded, but if that isn't ready yet then that won't be an option. The other option is to embed the Python interpreter in Rust. This should work, and I've done it before in smaller use-cases, I just have to look into it more. I wanted to open this issue to start the discussion and ask whether or not the Rust version of matchering is anywhere close to usable or if I should just try to embed the Python interpreter.
closed
2021-06-08T16:23:36Z
2024-10-23T19:28:22Z
https://github.com/sergree/matchering/issues/32
[ "enhancement" ]
zicklag
3
waditu/tushare
pandas
1,538
请求接入公募基金净值数据接口(fund_nav)
你好管理员, 新近注册Tushare,承蒙照顾,以博士在读身份获得了千余的初始积分。但还是厚颜地想再请求一下。 我在做一些个人投资,想提取场外公募基金的净值数据,稍微做一些均线分析。说来惭愧,我也是2020年底入市的这批韭菜之一。单就这个接口,需要2000积分,想问问有没可能再补个500积分。或者有没有别的解决办法。 ID: 435618.
open
2021-04-11T14:53:07Z
2021-05-20T11:08:53Z
https://github.com/waditu/tushare/issues/1538
[]
LiuGuanTing
1
opengeos/leafmap
plotly
927
Problem with save_draw_features
<!-- Please search existing issues to avoid creating duplicates. --> ### Environment Information - leafmap version: 0.38.5 - Python version: 3.10.13 - Operating System: Ubuntu 22.04 ### Description ``` { "name": "ValueError", "message": "Assigning CRS to a GeoDataFrame without a geometry column is not supported. Use GeoDataFrame.set_geometry to set the active geometry column.", "stack": "--------------------------------------------------------------------------- AttributeError Traceback (most recent call last) File ~/GeoSegmentation/.venv/lib/python3.10/site-packages/geopandas/geodataframe.py:517, in GeoDataFrame.crs(self) 516 try: --> 517 return self.geometry.crs 518 except AttributeError: File ~/GeoSegmentation/.venv/lib/python3.10/site-packages/pandas/core/generic.py:6299, in NDFrame.__getattr__(self, name) 6298 return self[name] -> 6299 return object.__getattribute__(self, name) File ~/GeoSegmentation/.venv/lib/python3.10/site-packages/geopandas/geodataframe.py:253, in GeoDataFrame._get_geometry(self) 247 msg += ( 248 \"\ There are no existing columns with geometry data type. You can \" 249 \"add a geometry column as the active geometry column with \" 250 \"df.set_geometry. \" 251 ) --> 253 raise AttributeError(msg) 254 return self[self._geometry_column_name] AttributeError: You are calling a geospatial method on the GeoDataFrame, but the active geometry column to use has not been set. There are no existing columns with geometry data type. You can add a geometry column as the active geometry column with df.set_geometry. During handling of the above exception, another exception occurred: AttributeError Traceback (most recent call last) File ~/GeoSegmentation/.venv/lib/python3.10/site-packages/pandas/core/generic.py:6325, in NDFrame.__setattr__(self, name, value) 6324 try: -> 6325 existing = getattr(self, name) 6326 if isinstance(existing, Index): File ~/GeoSegmentation/.venv/lib/python3.10/site-packages/pandas/core/generic.py:6299, in NDFrame.__getattr__(self, name) 6298 return self[name] -> 6299 return object.__getattribute__(self, name) File ~/GeoSegmentation/.venv/lib/python3.10/site-packages/geopandas/geodataframe.py:519, in GeoDataFrame.crs(self) 518 except AttributeError: --> 519 raise AttributeError( 520 \"The CRS attribute of a GeoDataFrame without an active \" 521 \"geometry column is not defined. Use GeoDataFrame.set_geometry \" 522 \"to set the active geometry column.\" 523 ) AttributeError: The CRS attribute of a GeoDataFrame without an active geometry column is not defined. Use GeoDataFrame.set_geometry to set the active geometry column. During handling of the above exception, another exception occurred: ValueError Traceback (most recent call last) File /home/user/GeoSegmentation/notebook/esempio.py:6 3 m = leafmap.Map() 4 m ----> 6 m.save_draw_features(\"data.geojson\") File ~/GeoSegmentation/.venv/lib/python3.10/site-packages/leafmap/leafmap.py:3889, in Map.save_draw_features(self, out_file, indent, crs, **kwargs) 3883 geojson = { 3884 \"type\": \"FeatureCollection\", 3885 \"features\": self.draw_features, 3886 } 3888 gdf = gpd.GeoDataFrame.from_features(geojson) -> 3889 gdf.crs = \"epsg:4326\" 3890 gdf.to_crs(crs).to_file(out_file, **kwargs) File ~/GeoSegmentation/.venv/lib/python3.10/site-packages/geopandas/geodataframe.py:223, in GeoDataFrame.__setattr__(self, attr, val) 221 object.__setattr__(self, attr, val) 222 else: --> 223 super().__setattr__(attr, val) File ~/GeoSegmentation/.venv/lib/python3.10/site-packages/pandas/core/generic.py:6341, in NDFrame.__setattr__(self, name, value) 6333 if isinstance(self, ABCDataFrame) and (is_list_like(value)): 6334 warnings.warn( 6335 \"Pandas doesn't allow columns to be \" 6336 \"created via a new attribute name - see \" (...) 6339 stacklevel=find_stack_level(), 6340 ) -> 6341 object.__setattr__(self, name, value) File ~/GeoSegmentation/.venv/lib/python3.10/site-packages/geopandas/geodataframe.py:529, in GeoDataFrame.crs(self, value) 527 \"\"\"Sets the value of the crs\"\"\" 528 if self._geometry_column_name is None: --> 529 raise ValueError( 530 \"Assigning CRS to a GeoDataFrame without a geometry column is not \" 531 \"supported. Use GeoDataFrame.set_geometry to set the active \" 532 \"geometry column.\", 533 ) 535 if hasattr(self.geometry.values, \"crs\"): 536 if self.crs is not None: ValueError: Assigning CRS to a GeoDataFrame without a geometry column is not supported. Use GeoDataFrame.set_geometry to set the active geometry column." } ``` ### What I Did I use this code: ``` import leafmap m = leafmap.Map() m m.save_draw_features("data.geojson") ```
closed
2024-10-21T15:43:45Z
2024-10-21T19:58:41Z
https://github.com/opengeos/leafmap/issues/927
[ "bug" ]
automataIA
1
deepset-ai/haystack
pytorch
8,089
Mermaid Crashes If trying to draw a large pipeline
Thanks in advance for your help :) **Describe the bug** I was building a huge pipeline, 30 components and 35 connections, and for debugging proposes I wanted to display the diagram, but both .draw() and .show() methods failed. It still works with small pipelines by the way. **Error message** ``` Failed to draw the pipeline: https://mermaid.ink/img/ returned status 400 No pipeline diagram will be saved. Failed to draw the pipeline: could not connect to https://mermaid.ink/img/ (400 Client Error: Bad Request for url: https://mermaid.ink/img/{place holder for 2km long data} No pipeline diagram will be saved. Traceback (most recent call last): File "/Users/carlosfernandezloran/Desktop/babyagi-classic-haystack/.venv/lib/python3.10/site-packages/haystack/core/pipeline/draw.py", line 87, in _to_mermaid_image resp.raise_for_status() File "/Users/carlosfernandezloran/Desktop/babyagi-classic-haystack/.venv/lib/python3.10/site-packages/requests/models.py", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) requests.exceptions.HTTPError: 400 Client Error: Bad Request for url: https://mermaid.ink/img/{another placeholder} The above exception was the direct cause of the following exception: Traceback (most recent call last): File "/Users/carlosfernandezloran/Desktop/babyagi-classic-haystack/babyagi.py", line 188, in <module> pipe.draw(path=Path("pipe")) File "/Users/carlosfernandezloran/Desktop/babyagi-classic-haystack/.venv/lib/python3.10/site-packages/haystack/core/pipeline/base.py", line 649, in draw image_data = _to_mermaid_image(self.graph) File "/Users/carlosfernandezloran/Desktop/babyagi-classic-haystack/.venv/lib/python3.10/site-packages/haystack/core/pipeline/draw.py", line 95, in _to_mermaid_image raise PipelineDrawingError( haystack.core.errors.PipelineDrawingError: There was an issue with https://mermaid.ink/, see the stacktrace for details. ``` **Expected behavior** I expect the .show() and .draw() methods to work for all pipelines, no matter the size. This might be a Mermaid problem and not strictly haystacks, but we would need to work to implement a local diagram generator as said in #7896 **To Reproduce** I will not add all the 200 lines of add_component, connect statements, but you can imagine how it goes. **System:** - OS: macOS - GPU/CPU: M1 - Haystack version (commit or version number): 2.3.0
closed
2024-07-25T22:08:43Z
2025-01-28T11:18:55Z
https://github.com/deepset-ai/haystack/issues/8089
[ "P3" ]
CarlosFerLo
10
Lightning-AI/pytorch-lightning
data-science
20,027
[Fabric Lightning] Named barriers
### Description & Motivation To prevent ranks losing alignment due to user error -- it would be beneficial to have named barriers with lightning allowing nodes to move forward only if same barrier name is met. ### Pitch For example: ``` if fabric.global_rank == 0: fabric.barrier("rank_0") else: fabric.barrier("not_rank_0") ``` will fail in this case, and upon timeout each rank will raise an error with the barrier at which it is held up. This is as opposed to potential user error where due to incorrect logic the various ranks might go different paths, reach some other barrier which in turn enables the whole flow to continue. An issue that will likely repeat itself is with `fabric.save`. It is not obvious to new users (that don't dig into the documentation) that this should be called in all nodes, as it implements its own internal barrier call. A typical mistake would be to construct ``` if fabric.global_rank == 0: fabric.save(...) fabric.barrier() do_training_stuff fabric.barrier() ``` In this case, rank 0 will start to lag behind as it performs an additional barrier call. If `fabric.save` would implement `fabric.barrier("save")` then the above program would exit printing that there is an alignment issue. ### Alternatives _No response_ ### Additional context https://github.com/Lightning-AI/pytorch-lightning/issues/19780 cc @borda @awaelchli
open
2024-06-28T11:14:00Z
2024-06-28T12:25:44Z
https://github.com/Lightning-AI/pytorch-lightning/issues/20027
[ "feature", "help wanted", "distributed" ]
tesslerc
1
awesto/django-shop
django
579
Payment modul
I have a question about creating a payment module for one of the operators. The operator I want to integrate requires that POST data to the transaction log after it returns a token for further authorization. One of these data is OrderId, which can be sent only once to the payment system. After this authorization and status check is carried out by the token given when the payment is registered. Should I implement the payment as it is with the "Pay in advance" method? Where an order is created with the possibility of later payment. Or is it possible to give the orderID in advance to the operator and go to his site to pay for the order? I have tracked how it is in the case of paypal payment and there the orderID is created only after returning from paypal with information on the correct payment of the order.
closed
2017-05-15T08:12:25Z
2017-08-25T12:03:14Z
https://github.com/awesto/django-shop/issues/579
[]
maltitco
21
python-restx/flask-restx
flask
535
Choices Property Does Not Work For JSON List
When defining choices for a list in the JSON data input, validation does not work. This is true if type is `list` or if type is `str` and action is `"append"`. ### **Code** ```python import flask from flask_restx import Api, Namespace, Resource from flask_restx import reqparse from flask_restx import Api parser = reqparse.RequestParser() parser.add_argument( "argList", dest="arg_list", type=list, location="json", default=[], choices=[ "one", "two", "three", ], required=False, help=f"An argument list", ) # Our Flask app and API app = flask.Flask(__name__) api = Api( app, version="1.0.0", title="Tester", description="Test parsing arguments", ) class RouteWithArgs(Resource): @api.expect(parser) def put( self, ): args = parser.parse_args() return {"data": "Args look good!"}, 200 # routes api.add_resource(RouteWithArgs, "/args") if __name__ == "__main__": app.run(debug=True) ``` ### **Repro Steps** (if applicable) 1. Run Flask application for code above with `python <file-name>.py` 2. Send a request with either allowed or disallowed values 3. Observe that you receive an error message either way ### **Expected Behavior** I would expect to receive an error message with a disallowed parameter and no error message when providing allowed parameters. ### **Actual Behavior** An error is returned no matter what is present in the request. ### **Error Messages/Stack Trace** ```>>> response = requests.put("http://localhost:5000/args", headers={"Content-Type": "application/json"}, data=json.dumps({"argList": ["a"]})) >>> response.json() {'errors': {'argList': "An argument list The value '['a']' is not a valid choice for 'argList'."}, 'message': 'Input payload validation failed'} >>> response = requests.put("http://localhost:5000/args", headers={"Content-Type": "application/json"}, data=json.dumps({"argList": ["one"]})) >>> response.json() {'errors': {'argList': "An argument list The value '['one']' is not a valid choice for 'argList'."}, 'message': 'Input payload validation failed'} ``` ### **Environment** - Python 3.8.12 - Flask 2.0.1 - Flask-RESX 0.5.1 - Flask Cors 3.0.10
open
2023-04-03T19:13:31Z
2023-04-12T18:54:06Z
https://github.com/python-restx/flask-restx/issues/535
[ "bug" ]
pype-leila
2
CorentinJ/Real-Time-Voice-Cloning
pytorch
1,163
vocoder.pt drive link is not working.
Getting 404 error while trying to download the vocoder model for the drive link: https://drive.google.com/uc?ixd=1cf2NO6FtI0jDuy8AV3Xgn6leO6dHjIgu
open
2023-02-14T14:57:09Z
2023-02-14T14:57:09Z
https://github.com/CorentinJ/Real-Time-Voice-Cloning/issues/1163
[]
seriesscar
0
google/trax
numpy
1,065
ConvTranspose Layer
It would be nice to have a **Transpose Convolution Layer** added to the ```trax.layers.convolution``` class.
closed
2020-10-03T06:18:03Z
2020-12-10T16:18:00Z
https://github.com/google/trax/issues/1065
[ "enhancement", "good first issue" ]
SauravMaheshkar
3
ymcui/Chinese-BERT-wwm
nlp
144
transformer2.2.2 加载参数失败
直接加载会报错 OSError: Model name '/Users/wonbyron/bert/chinese_roberta_wwm_large_ext_pytorch/' was not found in model name list (bert-base-uncased, bert-large-uncased, bert-base-cased, bert-large-cased, bert-base-multilingual-uncased, bert-base-multilingual-cased, bert-base-chinese, bert-base-german-cased, bert-large-uncased-whole-word-masking, bert-large-cased-whole-word-masking, bert-large-uncased-whole-word-masking-finetuned-squad, bert-large-cased-whole-word-masking-finetuned-squad, bert-base-cased-finetuned-mrpc, bert-base-german-dbmdz-cased, bert-base-german-dbmdz-uncased). We assumed '/Users/wonbyron/bert/chinese_roberta_wwm_large_ext_pytorch/config.json' was a path or url to a configuration file named config.json or a directory containing such a file but couldn't find any such file at this path or url. 经检查,应该将config文件改成bert.config才行
closed
2020-09-15T02:04:20Z
2020-09-21T07:38:11Z
https://github.com/ymcui/Chinese-BERT-wwm/issues/144
[]
RoacherM
4
KevinMusgrave/pytorch-metric-learning
computer-vision
505
using pytorch training reference script with pytorch-metric-learning
Hi @KevinMusgrave ! I have recently been using the reference scripts pytorch provides to train my models (which is wonderful btw) BUT, I would love to use pytorch-metric-learning with this reference script. The training script and blog re this is here: https://github.com/pytorch/vision/tree/main/references/classification https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/ I am particularly interested in classification: https://github.com/pytorch/vision/blob/main/references/classification/train.py However, the issue ofc is that they all use CE loss which requires the logits - but I am not sure how to use say ArcFace Loss with this training reference script. Essentially, I would need the logits to make this work, but atm, all my arcface loss models work with an embedder output and distance metrics. I was wondering if you could provide some guidance/advise on how to proceed to include metric learning in the reference training script. Thank you!
closed
2022-07-28T07:07:13Z
2022-08-02T18:24:20Z
https://github.com/KevinMusgrave/pytorch-metric-learning/issues/505
[ "question" ]
abaqusstudent
2
amidaware/tacticalrmm
django
1,406
Feature Request: Expose agent errors in the TRMM console
**Is your feature request related to a problem? Please describe.** The `agent.log` has some errors that indicate possible problems but you don't know they are problems until you work with that specific agent. **Describe the solution you'd like** It would be nice if these system level or agent level errors were exposed in the TRMM console. If the agent can't connect to the server, then of course it can't report the errors. However, the majority of the errors can be reported to the server. Out of the 4 errors below, 3 could be reported to the server. The "MeshAgent.exe: file does not exist" error will be found when you go to remote to the agent and the "Connect" button is greyed out. In this case, repairing the agent did not do anything; Mesh needed to be reinstalled. The other 2 errors indicate possible problems with the agent and it's better to fix the issue before they become major problems, or before you try to troubleshoot a problem and run into the specific scenario which caused the error. **Describe alternatives you've considered** One alternative is to use a check on an agent to parse the logs and report the errors. Using a script check has one major problem: 1. TRMM checks do not have a memory. They cannot know the last timestamp that was scanned to know where to pickup in the log to prevent duplicate/missing alerts. **Additional context** IMHO this should be implemented as part of the core functionality. The reporting should be done as part of the frontend interface to view "TRMM errors", not agent-specific errors that you would expect for script checks for a human to fix. TRMM errors are generally programming issues (i.e. adding extra error handling) and should be reported/treated as such. ```text time="2023-01-18T08:30:03-05:00" level=error msg="SyncMeshNodeID() getMeshNodeID() exec: \"C:\\\\Program Files\\\\Mesh Agent\\\\MeshAgent.exe\": file does not exist: " ``` ```text time="2022-11-26T19:02:03-05:00" level=error msg="error creating NewUpdateSession: ole.CoInitializeEx(0, ole.COINIT_MULTITHREADED): Cannot change thread mode after it is set." ``` ```text time="2022-03-25T15:09:49-04:00" level=error msg="x509: certificate has expired or is not yet valid: " ``` ```text time="2022-10-18T01:37:13-04:00" level=error msg="Checkrunner RunChecks exit status 2: Exception 0xc0000005 0x0 0xc000618000 0x7ff81957600f PC=0x7ff81957600f runtime.cgocall(0x9f57e0, 0xc000056ac0) C:/Program Files/Go/src/runtime/cgocall.go:157 +0x4a fp=0xc000373660 sp=0xc000373628 pc=0x993f6a syscall.SyscallN(0xc0003737b0?, {0xc0003736f8?, 0x74006e00650076?, 0x1acaf300001?}) C:/Program Files/Go/src/runtime/syscall_windows.go:556 +0x109 fp=0xc0003736d8 sp=0xc000373660 pc=0x9f0a49 syscall.Syscall9(0xc00060a500?, 0x0?, 0x3?, 0xc0003737d0?, 0xd921e6?, 0x0?, 0x0?, 0x0?, 0x0?, 0x0,...) C:/Program Files/Go/src/runtime/syscall_windows.go:506 +0x78 fp=0xc000373750 sp=0xc0003736d8 pc=0x9f0758 github.com/amidaware/rmmagent/agent.FormatMessage(0x3800, 0xe7a662?, 0x80001779, 0x0, 0x2?, 0x10000, 0x0?) C:/users/public/documents/agent/agent/syscall_windows.go:69 +0xc5 fp=0xc0003737e0 sp=0xc000373750 pc=0xd91fe5 github.com/amidaware/rmmagent/agent.getResourceMessage({0xc0002092e0?, 0x2ac?}, {0xc000209bb0, 0x8}, 0xb858bf7d?, 0x11f2d80?) C:/users/public/documents/agent/agent/eventlog_windows.go:169 +0x1d8 fp=0xc0003838b8 sp=0xc0003737e0 pc=0xd81d98 github.com/amidaware/rmmagent/agent.(*Agent).GetEventLog(0xc00022e4e0, {0xc0002092e0, 0x6}, 0x1) C:/users/public/documents/agent/agent/eventlog_windows.go:92 +0x5b0 fp=0xc000383ae8 sp=0xc0003838b8 pc=0xd815b0 github.com/amidaware/rmmagent/agent.(*Agent).EventLogCheck(_, {{{0x0, 0x0}, {0x0, 0x0}, 0x0}, {0x0, 0x0, 0x0}, 0xd0, ...}, ...) C:/users/public/documents/agent/agent/checks.go:259 +0x77 fp=0xc000383d18 sp=0xc000383ae8 pc=0xd7e3d7 github.com/amidaware/rmmagent/agent.(*Agent).RunChecks.func7(0xc000209370, 0x0?) C:/users/public/documents/agent/agent/checks.go:152 +0x148 fp=0xc000383fc0 sp=0xc000383d18 pc=0xd7bfe8 github.com/amidaware/rmmagent/agent.(*Agent).RunChecks.func14() C:/users/public/documents/agent/agent/checks.go:154 +0x2e fp=0xc000383fe0 sp=0xc000383fc0 pc=0xd7be6e runtime.goexit() C:/Program Files/Go/src/runtime/asm_amd64.s:1571 +0x1 fp=0xc000383fe8 sp=0xc000383fe0 pc=0x9f3f21 created by github.com/amidaware/rmmagent/agent.(*Agent).RunChecks C:/users/public/documents/agent/agent/checks.go:149 +0x81b goroutine 1 [semacquire]: sync.runtime_Semacquire(0xc00020d160?) C:/Program Files/Go/src/runtime/sema.go:56 +0x25 sync.(*WaitGroup).Wait(0xe5d920?) C:/Program Files/Go/src/sync/waitgroup.go:136 +0x52 github.com/amidaware/rmmagent/agent.(*Agent).RunChecks(0xc00022e4e0, 0x0) C:/users/public/documents/agent/agent/checks.go:156 +0x828 main.main() C:/users/public/documents/agent/main.go:112 +0xe5b goroutine 43 [syscall, locked to thread]: syscall.SyscallN(0x7ff819434ad0?, {0xc000077888?, 0x3?, 0x0?}) C:/Program Files/Go/src/runtime/syscall_windows.go:556 +0x109 syscall.Syscall(0xc000027620?, 0x0?, 0x2030000?, 0x20?, 0x2030000?) C:/Program Files/Go/src/runtime/syscall_windows.go:494 +0x3b syscall.WaitForSingleObject(0x1ac215b6216?, 0xffffffff) C:/Program Files/Go/src/syscall/zsyscall_windows.go:1145 +0x65 os.(*Process).wait(0xc000090330) C:/Program Files/Go/src/os/exec_windows.go:18 +0x65 os.(*Process).Wait(...) C:/Program Files/Go/src/os/exec.go:132 os/exec.(*Cmd).Wait(0xc0000c42c0) C:/Program Files/Go/src/os/exec/exec.go:510 +0x54 os/exec.(*Cmd).Run(0xc000238340?) C:/Program Files/Go/src/os/exec/exec.go:341 +0x39 github.com/amidaware/rmmagent/agent.(*Agent).RunPythonCode(0xc00022e4e0, {0xe976ff?, 0x0?}, 0xd, {0xc000281c50, 0x0, 0x0?}) C:/users/public/documents/agent/agent/agent.go:483 +0x58d github.com/amidaware/rmmagent/agent.(*Agent).GetCPULoadAvg(0xc00022e4e0) C:/users/public/documents/agent/agent/agent.go:328 +0x3e github.com/amidaware/rmmagent/agent.(*Agent).CPULoadCheck(_, {{{0x0, 0x0}, {0x0, 0x0}, 0x0}, {0x0, 0x0, 0x0}, 0x59, ...}, ...) C:/users/public/documents/agent/agent/checks.go:231 +0x3b github.com/amidaware/rmmagent/agent.(*Agent).RunChecks.func2({{{0x0, 0x0}, {0x0, 0x0}, 0x0}, {0x0, 0x0, 0x0}, 0x59, {0xc0002091f0, ...}, ...}, ...) C:/users/public/documents/agent/agent/checks.go:105 +0xa5 created by github.com/amidaware/rmmagent/agent.(*Agent).RunChecks C:/users/public/documents/agent/agent/checks.go:103 +0x10fe goroutine 45 [syscall, locked to thread]: syscall.SyscallN(0x7ff819434ad0?, {0xc00007b6d8?, 0x3?, 0x0?}) C:/Program Files/Go/src/runtime/syscall_windows.go:556 +0x109 syscall.Syscall(0x0?, 0xc0002c0440?, 0x35?,0xc000096000?, 0x1ac215c8014?) C:/Program Files/Go/src/runtime/syscall_windows.go:494 +0x3b syscall.WaitForSingleObject(0x20?, 0xffffffff) C:/Program Files/Go/src/syscall/zsyscall_windows.go:1145 +0x65 os.(*Process).wait(0xc000496ba0) C:/Program Files/Go/src/os/exec_windows.go:18 +0x65 os.(*Process).Wait(...) C:/Program Files/Go/src/os/exec.go:132 os/exec.(*Cmd).Wait(0xc0000c4000) C:/Program Files/Go/src/os/exec/exec.go:510 +0x54 github.com/amidaware/rmmagent/agent.(*Agent).RunScript(0xc00022e4e0, {0xc000202300?, 0x1ac215b3332?}, {0xc000209204, 0xa}, {0x1248e08, 0x0, 0xc000283c78?}, 0x5a, 0x0) C:/users/public/documents/agent/agent/agent_windows.go:178 +0xd34 github.com/amidaware/rmmagent/agent.(*Agent).ScriptCheck(_, {{{0xc000209204, 0xa}, {0xc000202300, 0x16a}, 0x0}, {0x0, 0x0, 0x0}, 0xab, ...}, ...) C:/users/public/documents/agent/agent/checks.go:172 +0xbf github.com/amidaware/rmmagent/agent.(*Agent).RunChecks.func5({{{0xc000209204, 0xa}, {0xc000202300, 0x16a}, 0x0}, {0x0, 0x0, 0x0}, 0xab, {0xc000209210, ...}, ...}, ...) C:/users/public/documents/agent/agent/checks.go:126 +0xc8 created by github.com/amidaware/rmmagent/agent.(*Agent).RunChecks C:/users/public/documents/agent/agent/checks.go:123 +0xdfd goroutine 20 [syscall, locked to thread]: syscall.SyscallN(0x0?, {0xc000281c70?, 0x0?, 0x0?}) C:/Program Files/Go/src/runtime/syscall_windows.go:556 +0x109 syscall.Syscall6(0x10?, 0x1ac21dd38e0?, 0x35?, 0xc000281d10?, 0x99c89e?, 0x1ac21dd38e0?, 0x35?, 0x0?) C:/Program Files/Go/src/runtime/syscall_windows.go:500 +0x50 syscall.ReadFile(0xc000281d35?, {0xc000400000?, 0x200, 0x800000?}, 0x7ffff800000?, 0x2?) C:/Program Files/Go/src/syscall/zsyscall_windows.go:1024 +0x94 syscall.Read(0xc0000b2c80?, {0xc000400000?,0x99a43d?, 0xc000281db0?}) C:/Program Files/Go/src/syscall/syscall_windows.go:380 +0x2e internal/poll.(*FD).Read(0xc0000b2c80, {0xc000400000, 0x200, 0x200}) C:/Program Files/Go/src/internal/poll/fd_windows.go:427 +0x1b4 os.(*File).read(...) C:/Program Files/Go/src/os/file_posix.go:31 os.(*File).Read(0xc00008c058, {0xc000400000?, 0x1ac4a7e0028?, 0xc000281ea0?}) C:/Program Files/Go/src/os/file.go:119 +0x5e bytes.(*Buffer).ReadFrom(0xc000089590, {0xf589a0, 0xc00008c058}) C:/Program Files/Go/src/bytes/buffer.go:204 +0x98 io.copyBuffer({0xf580a0, 0xc000089590}, {0xf589a0, 0xc00008c058}, {0x0, 0x0, 0x0}) C:/Program Files/Go/src/io/io.go:412 +0x14b io.Copy(...) C:/Program Files/Go/src/io/io.go:385 os/exec.(*Cmd).writerDescriptor.func1() C:/Program Files/Go/src/os/exec/exec.go:311 +0x3a os/exec.(*Cmd).Start.func1(0x0?) C:/Program Files/Go/src/os/exec/exec.go:444 +0x25 created by os/exec.(*Cmd).Start C:/Program Files/Go/src/os/exec/exec.go:443 +0x845 goroutine 21 [syscall, locked to thread]: syscall.SyscallN(0xa2f6c5?, {0xc000285c70?, 0xe75aa2?, 0x8?}) C:/Program Files/Go/src/runtime/syscall_windows.go:556 +0x109 syscall.Syscall6(0xc000027350?, 0xc000220820?, 0xc000089470?, 0xc00009e0a0?, 0xc00009e0b4?, 0xc00009e0b0?, 0xc00008a180?, 0x0?) C:/Program Files/Go/src/runtime/syscall_windows.go:500 +0x50 syscall.ReadFile(0x0?, {0xc000304200?, 0x200, 0x800000?}, 0x7ffff800000?, 0x2?) C:/Program Files/Go/src/syscall/zsyscall_windows.go:1024 +0x94 syscall.Read(0xc0000b3180?, {0xc000304200?, 0xebc720?, 0xc000285db0?}) C:/Program Files/Go/src/syscall/syscall_windows.go:380 +0x2e internal/poll.(*FD).Read(0xc0000b3180, {0xc000304200, 0x200, 0x200}) C:/Program Files/Go/src/internal/poll/fd_windows.go:427 +0x1b4 os.(*File).read(...) C:/Program Files/Go/src/os/file_posix.go:31 os.(*File).Read(0xc00008c070, {0xc000304200?, 0xc000276300?, 0xc000285ea0?}) C:/Program Files/Go/src/os/file.go:119 +0x5e bytes.(*Buffer).ReadFrom(0xc0000895c0, {0xf589a0, 0xc00008c070}) C:/Program Files/Go/src/bytes/buffer.go:204 +0x98 io.copyBuffer({0xf580a0, 0xc0000895c0}, {0xf589a0, 0xc00008c070}, {0x0, 0x0, 0x0}) C:/Program Files/Go/src/io/io.go:412 +0x14b io.Copy(...) C:/Program Files/Go/src/io/io.go:385 os/exec.(*Cmd).writerDescriptor.func1() C:/Program Files/Go/src/os/exec/exec.go:311 +0x3a os/exec.(*Cmd).Start.func1(0xc000276300?) C:/Program Files/Go/src/os/exec/exec.go:444 +0x25 created by os/exec.(*Cmd).Start C:/Program Files/Go/src/os/exec/exec.go:443 +0x845 goroutine 22 [select]: os/exec.(*Cmd).Start.func2() C:/Program Files/Go/src/os/exec/exec.go:452 +0x75 created by os/exec.(*Cmd).Start C:/Program Files/Go/src/os/exec/exec.go:451 +0x82a goroutine 73 [IO wait]: internal/poll.runtime_pollWait(0x1ac21856558, 0x72) C:/Program Files/Go/src/runtime/netpoll.go:302 +0x89 internal/poll.(*pollDesc).wait(0xc0001bf505?, 0xc0001bf505?, 0x0) C:/Program Files/Go/src/internal/poll/fd_poll_runtime.go:83 +0x32 internal/poll.execIO(0xc00011aa18, 0xebc568) C:/Program Files/Go/src/internal/poll/fd_windows.go:175 +0xe5 internal/poll.(*FD).Read(0xc00011aa00, {0xc0001bf500, 0x13b8, 0x13b8}) C:/Program Files/Go/src/internal/poll/fd_windows.go:441 +0x25f net.(*netFD).Read(0xc00011aa00, {0xc0001bf500?, 0xc0000704a0?, 0xc0001bf505?}) C:/Program Files/Go/src/net/fd_posix.go:55 +0x29 net.(*conn).Read(0xc00008c048, {0xc0001bf500?, 0xa97ebeacd5d1a31f?, 0x1224?}) C:/Program Files/Go/src/net/net.go:183 +0x45 crypto/tls.(*atLeastReader).Read(0xc000210708, {0xc0001bf500?, 0x0?, 0xc00048d8a0?}) C:/Program Files/Go/src/crypto/tls/conn.go:785 +0x3d bytes.(*Buffer).ReadFrom(0xc0000b8cf8, {0xf58140, 0xc000210708}) C:/Program Files/Go/src/bytes/buffer.go:204 +0x98 crypto/tls.(*Conn).readFromUntil(0xc0000b8a80, {0x1ac21856828?, 0xc00008c048}, 0x13b8?) C:/Program Files/Go/src/crypto/tls/conn.go:807 +0xe5 crypto/tls.(*Conn).readRecordOrCCS(0xc0000b8a80, 0x0) C:/Program Files/Go/src/crypto/tls/conn.go:614 +0x116 crypto/tls.(*Conn).readRecord(...) C:/Program Files/Go/src/crypto/tls/conn.go:582 crypto/tls.(*Conn).Read(0xc0000b8a80, {0xc0000d3000, 0x1000, 0x21010401?}) C:/Program Files/Go/src/crypto/tls/conn.go:1285 +0x16f bufio.(*Reader).Read(0xc000065560, {0xc00029e660, 0x9, 0xc00031cc00?}) C:/Program Files/Go/src/bufio/bufio.go:236 +0x1b4 io.ReadAtLeast({0xf58040, 0xc000065560}, {0xc00029e660, 0x9, 0x9}, 0x9) C:/Program Files/Go/src/io/io.go:331 +0x9a io.ReadFull(...) C:/Program Files/Go/src/io/io.go:350 net/http.http2readFrameHeader({0xc00029e660?, 0x9?, 0xc000188ad0?}, {0xf58040?, 0xc000065560?}) C:/Program Files/Go/src/net/http/h2_bundle.go:1566 +0x6e net/http.(*http2Framer).ReadFrame(0xc00029e620) C:/Program Files/Go/src/net/http/h2_bundle.go:1830 +0x95 net/http.(*http2clientConnReadLoop).run(0xc00048df98) C:/Program Files/Go/src/net/http/h2_bundle.go:8820 +0x130 net/http.(*http2ClientConn).readLoop(0xc000188a80) C:/Program Files/Go/src/net/http/h2_bundle.go:8716 +0x6f created by net/http.(*http2Transport).newClientConn C:/Program Files/Go/src/net/http/h2_bundle.go:7444 +0xa65 goroutine 114 [syscall, locked to thread]: syscall.SyscallN(0x0?, {0xc000283c70?, 0xc000066640?, 0x0?}) C:/Program Files/Go/src/runtime/syscall_windows.go:556 +0x109 syscall.Syscall6(0x10?, 0x1ac21dd15d0?, 0x35?, 0xc000283d10?, 0x99c89e?, 0x1ac21dd15d0?, 0xc000283d35?, 0xd97491?) C:/Program Files/Go/src/runtime/syscall_windows.go:500 +0x50 syscall.ReadFile(0x135?, {0xc000304000?, 0x200, 0x800000?}, 0x7ffff800000?, 0x2?) C:/Program Files/Go/src/syscall/zsyscall_windows.go:1024 +0x94 syscall.Read(0xc0000b3680?, {0xc000304000?, 0x0?, 0xc000283db0?}) C:/Program Files/Go/src/syscall/syscall_windows.go:380 +0x2e internal/poll.(*FD).Read(0xc0000b3680, {0xc000304000, 0x200, 0x200}) C:/Program Files/Go/src/internal/poll/fd_windows.go:427 +0x1b4 os.(*File.read(...) C:/Program Files/Go/src/os/file_posix.go:31 os.(*File).Read(0xc000006040, {0xc000304000?, 0xd7c5e0?, 0xc000283ea0?}) C:/Program Files/Go/src/os/file.go:119 +0x5e bytes.(*Buffer).ReadFrom(0xc00026a2d0, {0xf589a0, 0xc000006040}) C:/Program Files/Go/src/bytes/buffer.go:204 +0x98 io.copyBuffer({0xf580a0, 0xc00026a2d0}, {0xf589a0, 0xc000006040}, {0x0, 0x0, 0x0}) C:/Program Files/Go/src/io/io.go:412 +0x14b io.Copy(...) C:/Program Files/Go/src/io/io.go:385 os/exec.(*Cmd).writerDescriptor.func1() C:/Program Files/Go/src/os/exec/exec.go:311 +0x3a os/exec.(*Cmd).Start.func1(0x0?) C:/Program Files/Go/src/os/exec/exec.go:444 +0x25 created by os/exec.(*Cmd).Start C:/Program Files/Go/src/os/exec/exec.go:443 +0x845 goroutine 115 [syscall, locked to thread]: syscall.SyscallN(0x0?, {0xc000489c70?, 0x1ac215be721?, 0x0?}) C:/Program Files/Go/src/runtime/syscall_windows.go:556 +0x109 syscall.Syscall6(0x10?, 0x1ac21dd38e0?, 0x35?, 0xc000489d10?, 0x99c89e?, 0x1ac21dd38e0?, 0xc000489d35?, 0x99d0e5?) C:/Program Files/Go/src/runtime/syscall_windows.go:500 +0x50 syscall.ReadFile(0xac21570a35?, {0xc000400200?, 0x200, 0x800000?}, 0x7ffff800000?, 0x2?) C:/Program Files/Go/src/syscall/zsyscall_windows.go:1024 +0x94 syscall.Read(0xc0000b3b80?, {0xc000400200?, 0xc0000b8e00?, 0xc000489db0?}) C:/Program Files/Go/src/syscall/syscall_windows.go:380 +0x2e internal/poll.(*FD).Read(0xc0000b3b80, {0xc000400200, 0x200, 0x200}) C:/Program Files/Go/src/internal/poll/fd_windows.go:427 +0x1b4 os.(*File).read(...) C:/Program Files/Go/src/os/file_posix.go:31 os.(*File).Read(0xc0000060f0, {0xc000400200?, 0x0?, 0xc000489ea0?}) C:/Program Files/Go/src/os/file.go:119 +0x5e bytes.(*Buffer).ReadFrom(0xc00026a300, {0xf589a0, 0xc0000060f0}) C:/Program Files/Go/src/bytes/buffer.go:204 +0x98 io.copyBuffer({0xf580a0, 0xc00026a300}, {0xf589a0, 0xc0000060f0}, {0x0, 0x0, 0x0}) C:/Program Files/Go/src/io/io.go:412 +0x14b io.Copy(...) C:/Program Files/Go/src/io/io.go:385 os/exec.(*Cmd).writerDescriptor.func1() C:/Program Files/Go/src/os/exec/exec.go:311 +0x3a os/exec.(*Cmd).Start.func1(0x0?) C:/Program Files/Go/src/os/exec/exec.go:444 +0x25 created by os/exec.(*Cmd).Start C:/Program Files/Go/src/os/exec/exec.go:443 +0x845 goroutine 116 [chan receive]: github.com/amidaware/rmmagent/agent.(*Agent).RunScript.func1(0x0?) C:/users/public/documents/agent/agent/agent_windows.go:172 +0x39 created by github.com/amidaware/rmmagent/agent.(*Agent).RunScript C:/users/public/documents/agent/agent/agent_windows.go:170 +0xd27 rax 0x0 rbx 0xc000373884 rcx 0x0 rdi 0x198c9ffb10 rsi 0xc000373882 rbp 0x198c9ff370 rsp 0x198c9ff270 r8 0x0 r9 0x7fde8cc33301 r10 0xff01 r11 0x0 r12 0x1acaf31b884 r13 0x0 r14 0xc000618000 r15 0x0 rip 0x7ff81957600f rflags 0x10202 cs 0x33 fs 0x53 gs 0x2b " ```
open
2023-01-18T14:36:30Z
2023-02-05T21:50:21Z
https://github.com/amidaware/tacticalrmm/issues/1406
[ "enhancement" ]
NiceGuyIT
0
ydataai/ydata-profiling
jupyter
981
TypeError From ProfileReport in Google Colab
### Current Behaviour In Google Colab the `.to_notebook_iframe` method on `ProfileReport` throws an error: ```Python TypeError: concat() got an unexpected keyword argument 'join_axes' ``` This issue has been spotted in other contexts and there are questions in StackOverflow: https://stackoverflow.com/questions/61362942/concat-got-an-unexpected-keyword-argument-join-axes ### Expected Behaviour This section not applicable. Reporting bug that throws an error. ### Data Description You can reproduce the error with this data: ```Python https://projects.fivethirtyeight.com/polls/data/favorability_polls.csv ``` ### Code that reproduces the bug ```Python import pandas as pd from pandas_profiling import ProfileReport df = pd.read_csv('https://projects.fivethirtyeight.com/polls/data/favorability_polls.csv') profile = ProfileReport(df) profile.to_notebook_iframe ``` ### pandas-profiling version Version 1.4.1 ### Dependencies ```Text absl-py==1.0.0 alabaster==0.7.12 albumentations==0.1.12 altair==4.2.0 appdirs==1.4.4 argon2-cffi==21.3.0 argon2-cffi-bindings==21.2.0 arviz==0.12.0 astor==0.8.1 astropy==4.3.1 astunparse==1.6.3 atari-py==0.2.9 atomicwrites==1.4.0 attrs==21.4.0 audioread==2.1.9 autograd==1.4 Babel==2.10.1 backcall==0.2.0 beautifulsoup4==4.6.3 bleach==5.0.0 blis==0.4.1 bokeh==2.3.3 Bottleneck==1.3.4 branca==0.5.0 bs4==0.0.1 CacheControl==0.12.11 cached-property==1.5.2 cachetools==4.2.4 catalogue==1.0.0 certifi==2021.10.8 cffi==1.15.0 cftime==1.6.0 chardet==3.0.4 charset-normalizer==2.0.12 click==7.1.2 cloudpickle==1.3.0 cmake==3.22.4 cmdstanpy==0.9.5 colorcet==3.0.0 colorlover==0.3.0 community==1.0.0b1 contextlib2==0.5.5 convertdate==2.4.0 coverage==3.7.1 coveralls==0.5 crcmod==1.7 cufflinks==0.17.3 cvxopt==1.2.7 cvxpy==1.0.31 cycler==0.11.0 cymem==2.0.6 Cython==0.29.28 daft==0.0.4 dask==2.12.0 datascience==0.10.6 debugpy==1.0.0 decorator==4.4.2 defusedxml==0.7.1 descartes==1.1.0 dill==0.3.4 distributed==1.25.3 dlib @ file:///dlib-19.18.0-cp37-cp37m-linux_x86_64.whl dm-tree==0.1.7 docopt==0.6.2 docutils==0.17.1 dopamine-rl==1.0.5 earthengine-api==0.1.307 easydict==1.9 ecos==2.0.10 editdistance==0.5.3 en-core-web-sm @ https://github.com/explosion/spacy-models/releases/download/en_core_web_sm-2.2.5/en_core_web_sm-2.2.5.tar.gz entrypoints==0.4 ephem==4.1.3 et-xmlfile==1.1.0 fa2==0.3.5 fastai==1.0.61 fastdtw==0.3.4 fastjsonschema==2.15.3 fastprogress==1.0.2 fastrlock==0.8 fbprophet==0.7.1 feather-format==0.4.1 filelock==3.6.0 firebase-admin==4.4.0 fix-yahoo-finance==0.0.22 Flask==1.1.4 flatbuffers==2.0 folium==0.8.3 future==0.16.0 gast==0.5.3 GDAL==2.2.2 gdown==4.4.0 gensim==3.6.0 geographiclib==1.52 geopy==1.17.0 gin-config==0.5.0 glob2==0.7 google==2.0.3 google-api-core==1.31.5 google-api-python-client==1.12.11 google-auth==1.35.0 google-auth-httplib2==0.0.4 google-auth-oauthlib==0.4.6 google-cloud-bigquery==1.21.0 google-cloud-bigquery-storage==1.1.1 google-cloud-core==1.0.3 google-cloud-datastore==1.8.0 google-cloud-firestore==1.7.0 google-cloud-language==1.2.0 google-cloud-storage==1.18.1 google-cloud-translate==1.5.0 google-colab @ file:///colabtools/dist/google-colab-1.0.0.tar.gz google-pasta==0.2.0 google-resumable-media==0.4.1 googleapis-common-protos==1.56.0 googledrivedownloader==0.4 graphviz==0.10.1 greenlet==1.1.2 grpcio==1.44.0 gspread==3.4.2 gspread-dataframe==3.0.8 gym==0.17.3 h5py==3.1.0 HeapDict==1.0.1 hijri-converter==2.2.3 holidays==0.10.5.2 holoviews==1.14.8 html5lib==1.0.1 httpimport==0.5.18 httplib2==0.17.4 httplib2shim==0.0.3 humanize==0.5.1 hyperopt==0.1.2 ideep4py==2.0.0.post3 idna==2.10 imageio==2.4.1 imagesize==1.3.0 imbalanced-learn==0.8.1 imblearn==0.0 imgaug==0.2.9 importlib-metadata==4.11.3 importlib-resources==5.7.1 imutils==0.5.4 inflect==2.1.0 iniconfig==1.1.1 intel-openmp==2022.1.0 intervaltree==2.1.0 ipykernel==4.10.1 ipython==5.5.0 ipython-genutils==0.2.0 ipython-sql==0.3.9 ipywidgets==7.7.0 itsdangerous==1.1.0 jax==0.3.8 jaxlib @ https://storage.googleapis.com/jax-releases/cuda11/jaxlib-0.3.7+cuda11.cudnn805-cp37-none-manylinux2014_x86_64.whl jedi==0.18.1 jieba==0.42.1 Jinja2==2.11.3 joblib==1.1.0 jpeg4py==0.1.4 jsonschema==4.3.3 jupyter==1.0.0 jupyter-client==5.3.5 jupyter-console==5.2.0 jupyter-core==4.10.0 jupyterlab-pygments==0.2.2 jupyterlab-widgets==1.1.0 kaggle==1.5.12 kapre==0.3.7 keras==2.8.0 Keras-Preprocessing==1.1.2 keras-vis==0.4.1 kiwisolver==1.4.2 korean-lunar-calendar==0.2.1 libclang==14.0.1 librosa==0.8.1 lightgbm==2.2.3 llvmlite==0.34.0 lmdb==0.99 LunarCalendar==0.0.9 lxml==4.2.6 Markdown==3.3.6 MarkupSafe==2.0.1 matplotlib==3.2.2 matplotlib-inline==0.1.3 matplotlib-venn==0.11.7 missingno==0.5.1 mistune==0.8.4 mizani==0.6.0 mkl==2019.0 mlxtend==0.14.0 more-itertools==8.12.0 moviepy==0.2.3.5 mpmath==1.2.1 msgpack==1.0.3 multiprocess==0.70.12.2 multitasking==0.0.10 murmurhash==1.0.7 music21==5.5.0 natsort==5.5.0 nbclient==0.6.2 nbconvert==5.6.1 nbformat==5.3.0 nest-asyncio==1.5.5 netCDF4==1.5.8 networkx==2.6.3 nibabel==3.0.2 nltk==3.2.5 notebook==5.3.1 numba==0.51.2 numexpr==2.8.1 numpy==1.21.6 nvidia-ml-py3==7.352.0 oauth2client==4.1.3 oauthlib==3.2.0 okgrade==0.4.3 opencv-contrib-python==4.1.2.30 opencv-python==4.1.2.30 openpyxl==3.0.9 opt-einsum==3.3.0 osqp==0.6.2.post0 packaging==21.3 palettable==3.3.0 pandas==1.3.5 pandas-datareader==0.9.0 pandas-gbq==0.13.3 pandas-profiling==1.4.1 pandocfilters==1.5.0 panel==0.12.1 param==1.12.1 parso==0.8.3 pathlib==1.0.1 patsy==0.5.2 pep517==0.12.0 pexpect==4.8.0 pickleshare==0.7.5 Pillow==7.1.2 pip-tools==6.2.0 plac==1.1.3 plotly==5.5.0 plotnine==0.6.0 pluggy==0.7.1 pooch==1.6.0 portpicker==1.3.9 prefetch-generator==1.0.1 preshed==3.0.6 prettytable==3.2.0 progressbar2==3.38.0 prometheus-client==0.14.1 promise==2.3 prompt-toolkit==1.0.18 protobuf==3.17.3 psutil==5.4.8 psycopg2==2.7.6.1 ptyprocess==0.7.0 py==1.11.0 pyarrow==6.0.1 pyasn1==0.4.8 pyasn1-modules==0.2.8 pycocotools==2.0.4 pycparser==2.21 pyct==0.4.8 pydata-google-auth==1.4.0 pydot==1.3.0 pydot-ng==2.0.0 pydotplus==2.0.2 PyDrive==1.3.1 pyemd==0.5.1 pyerfa==2.0.0.1 pyglet==1.5.0 Pygments==2.6.1 pygobject==3.26.1 pymc3==3.11.4 PyMeeus==0.5.11 pymongo==4.1.1 pymystem3==0.2.0 PyOpenGL==3.1.6 pyparsing==3.0.8 pyrsistent==0.18.1 pysndfile==1.3.8 PySocks==1.7.1 pystan==2.19.1.1 pytest==3.6.4 python-apt==0.0.0 python-chess==0.23.11 python-dateutil==2.8.2 python-louvain==0.16 python-slugify==6.1.2 python-utils==3.1.0 pytz==2022.1 pyviz-comms==2.2.0 PyWavelets==1.3.0 PyYAML==3.13 pyzmq==22.3.0 qdldl==0.1.5.post2 qtconsole==5.3.0 QtPy==2.1.0 regex==2019.12.20 requests==2.23.0 requests-oauthlib==1.3.1 resampy==0.2.2 rpy2==3.4.5 rsa==4.8 scikit-image==0.18.3 scikit-learn==1.0.2 scipy==1.4.1 screen-resolution-extra==0.0.0 scs==3.2.0 seaborn==0.11.2 semver==2.13.0 Send2Trash==1.8.0 setuptools-git==1.2 Shapely==1.8.1.post1 simplegeneric==0.8.1 six==1.15.0 sklearn==0.0 sklearn-pandas==1.8.0 smart-open==6.0.0 snowballstemmer==2.2.0 sortedcontainers==2.4.0 SoundFile==0.10.3.post1 soupsieve==2.3.2.post1 spacy==2.2.4 Sphinx==1.8.6 sphinxcontrib-serializinghtml==1.1.5 sphinxcontrib-websupport==1.2.4 SQLAlchemy==1.4.36 sqlparse==0.4.2 srsly==1.0.5 statsmodels==0.10.2 sympy==1.7.1 tables==3.7.0 tabulate==0.8.9 tblib==1.7.0 tenacity==8.0.1 tensorboard==2.8.0 tensorboard-data-server==0.6.1 tensorboard-plugin-wit==1.8.1 tensorflow @ file:///tensorflow-2.8.0-cp37-cp37m-linux_x86_64.whl tensorflow-datasets==4.0.1 tensorflow-estimator==2.8.0 tensorflow-gcs-config==2.8.0 tensorflow-hub==0.12.0 tensorflow-io-gcs-filesystem==0.25.0 tensorflow-metadata==1.7.0 tensorflow-probability==0.16.0 termcolor==1.1.0 terminado==0.13.3 testpath==0.6.0 text-unidecode==1.3 textblob==0.15.3 Theano-PyMC==1.1.2 thinc==7.4.0 threadpoolctl==3.1.0 tifffile==2021.11.2 tinycss2==1.1.1 tomli==2.0.1 toolz==0.11.2 torch @ https://download.pytorch.org/whl/cu113/torch-1.11.0%2Bcu113-cp37-cp37m-linux_x86_64.whl torchaudio @ https://download.pytorch.org/whl/cu113/torchaudio-0.11.0%2Bcu113-cp37-cp37m-linux_x86_64.whl torchsummary==1.5.1 torchtext==0.12.0 torchvision @ https://download.pytorch.org/whl/cu113/torchvision-0.12.0%2Bcu113-cp37-cp37m-linux_x86_64.whl tornado==5.1.1 tqdm==4.64.0 traitlets==5.1.1 tweepy==3.10.0 typeguard==2.7.1 typing-extensions==4.2.0 tzlocal==1.5.1 uritemplate==3.0.1 urllib3==1.24.3 vega-datasets==0.9.0 wasabi==0.9.1 wcwidth==0.2.5 webencodings==0.5.1 Werkzeug==1.0.1 widgetsnbextension==3.6.0 wordcloud==1.5.0 wrapt==1.14.0 xarray==0.18.2 xgboost==0.90 xkit==0.0.0 xlrd==1.1.0 xlwt==1.3.0 yellowbrick==1.4 zict==2.2.0 zipp==3.8.0 ``` ``` ### OS Google Colab ### Checklist - [X] There is not yet another bug report for this issue in the [issue tracker](https://github.com/ydataai/pandas-profiling/issues) - [X] The problem is reproducible from this bug report. [This guide](http://matthewrocklin.com/blog/work/2018/02/28/minimal-bug-reports) can help to craft a minimal bug report. - [X] The issue has not been resolved by the entries listed under [Frequent Issues](https://pandas-profiling.ydata.ai/docs/master/rtd/pages/support.html#frequent-issues).
closed
2022-05-13T19:00:16Z
2022-05-16T18:06:54Z
https://github.com/ydataai/ydata-profiling/issues/981
[ "documentation 📖" ]
adamrossnelson
3
deepset-ai/haystack
machine-learning
8,171
Outdated documentation
Most of the examples provided in your documentation do not seem to be functioning correctly. Even on your website’s first page, under the “Quick Start” section (https://haystack.deepset.ai/overview/quick-start), there appears to be an error regarding the “PredefinedPipeline.” The line “from haystack import Pipeline, PredefinedPipeline” results in an error indicating that “PredefinedPipeline” cannot be found. Where can I find the correct and up-to-date documentation?
closed
2024-08-08T04:13:33Z
2024-09-07T22:52:48Z
https://github.com/deepset-ai/haystack/issues/8171
[ "type:documentation", "community-triage" ]
dariush-saberi
4
autogluon/autogluon
data-science
3,856
[BUG]image classification doesn't work
Ubuntu 20.04 autogluon 1.0.0 My original train_df had column labels 'img' and 'lbl'. This code failed: ``` from autogluon.multimodal import MultiModalPredictor predictor = MultiModalPredictor(label='lbl', problem_type='multiclass', presets='medium_quality', path='models/mq') predictor.fit(train_data=train_df, presets='medium_quality', column_types={'img':'image_path'}) ``` That code resulted in the first 3 checkpoints getting saved and no improvement thereafter, no matter which backbone or preset I used. At inference time, predict_proba assigned equal probs to all classes for each row. Note that I had to specify column type else the text predictor would get used since the img column is detected as text instead of filepaths. Tested that the Quick Start shopee example does work. Initially I thought changing the column names helped but turns out that was just reverting to a text predictor because I hadn't specified the column type.
closed
2024-01-11T20:34:06Z
2024-01-11T21:49:06Z
https://github.com/autogluon/autogluon/issues/3856
[ "bug: unconfirmed", "Needs Triage" ]
rxjx
1
Avaiga/taipy
automation
1,685
[BUG] Investigate Azure issue
### What would you like to share or ask? From a user feedback: We’re having some odd issues with Taipy App deployment. The Taipy App uses the Taipy framework and has an external connection (i.e., Azure Cosmos). 1. Create WebApp and Deploy Taipy App using Azure CLI a. Create WebApp resource and Deploy Taipy App ‘taipyapp2-DEV’ using the command ‘az webapp up’. b. Results: OK. The deployment succeeds and the webapp runs without error. 2. Deploying a Taipy App using Azure CLI to a pre-created WebApp resource. a. Deploy to ‘taipyapp-DEV’. (Note this is the WebApp I asked you to create yesterday. I assume the WebApp was created via Azure Portal) b. The Azure CLI command ‘az web app up’ (the same as 1) is used to deploy, and we specify the name of the WebApp to deploy to. c. Results: Fails during deployment because resource not found. Error states that the WebApp resource cannot be found using Azure CLI ‘az webapp up’ command. It is odd because I can list WebApp via the ‘az webapp list’ command. 3. Deploying a Taipy App using Azure CLI to a pre-created WebApp a. Deploy to ‘webapp-DEV’. Note this was created a long time ago. I assume the WebApp was created via Azure Portal b. Azure CLI command ‘az webapp up’ (same as 1) is used to deploy and we specify the name of the WebApp to deploy to. c. Results: Fails during deployment with a build failure. 4. Deploying a Taipy App using DevOps pipeline to a pre-created WebApp a. Deploy to ‘webapp-DEV’. Note this was created a long time ago and the deployment uses the build and release pipelines that you set up for us. b. Results: Build / Deploy succeeds but App throw ‘Monkey Patch Error’ (the one I showed you before). This is an odd error because the Deployment using 1 above uses the exact same code, requirements.txt file, etc. so the only difference is the deployment method and the way the WebApp was created. Likely we need to look at the build and deploy script too. So, we think it’s a combination of two issues: - There is something different about the App created via ‘az webapp up’ command and the one’s created separately. On the surface, I didn’t see any major differences. - There is some adjustment needed for the build and/or deploy script to match what ‘az webapp up’ is doing. ### Code of Conduct - [X] I have checked the [existing issues](https://github.com/Avaiga/taipy/issues?q=is%3Aissue+). - [ ] I am willing to work on this issue (optional)
open
2024-08-20T10:39:43Z
2025-02-07T13:33:25Z
https://github.com/Avaiga/taipy/issues/1685
[ "🖧 Devops", "💥Malfunction", "🆘 Help wanted", "🟧 Priority: High" ]
FlorianJacta
0
MentatInnovations/datastream.io
jupyter
33
Use correct library versions in requirements.txt
Datastream.io is not working because some of the library dependencies are not set to the correct version (tornado and elasticsearch in my case). Here is the pip freeze (python3.5) of the fully working datastream.io: `bokeh==1.3.0 dateparser==0.7.1 -e git+https://github.com/MentatInnovations/datastream.io@a243b89ec3c4e06473b5004c498c472ffd37ead2#egg=dsio elasticsearch==5.5.3 Jinja2==2.10.1 joblib==0.13.2 kibana-dashboard-api==0.1.2 MarkupSafe==1.1.1 numpy==1.17.0 packaging==19.0 pandas==0.24.2 Pillow==6.1.0 pyparsing==2.4.1.1 python-dateutil==2.8.0 pytz==2019.1 PyYAML==5.1.1 regex==2019.6.8 scikit-learn==0.21.2 scipy==1.3.0 six==1.12.0 tornado==4.5.3 tzlocal==2.0.0 urllib3==1.25.3 `
open
2019-07-31T07:21:04Z
2019-07-31T07:21:04Z
https://github.com/MentatInnovations/datastream.io/issues/33
[]
Aid91
0
OpenInterpreter/open-interpreter
python
616
azure openai api version support in yaml config file
### Is your feature request related to a problem? Please describe. Currently using open-interpreter version 0.1.7 together with azure openai, I need to specify the api_version as an environment variable in my shell configuration file, e.g: export: AZURE_API_VERSION=2023-08-01-preview ### Describe the solution you'd like I would like to be able to specify the api version in open-interpreter's config.yaml just like the api_key and api_base. An argument like api_version would be appreciated. ### Describe alternatives you've considered _No response_ ### Additional context _No response_
closed
2023-10-10T08:55:20Z
2024-03-18T19:51:13Z
https://github.com/OpenInterpreter/open-interpreter/issues/616
[ "Enhancement", "Good First issue" ]
rasmusstrong
2
kizniche/Mycodo
automation
652
Internet not detect
## Mycodo Issue Report: - Specific Mycodo Version: 7.4.2 #### Problem Description Please list: Internet is not detected even if internet is accessible. ![image](https://user-images.githubusercontent.com/6541280/56763621-dc357600-6770-11e9-9ab6-b10aeee222f2.png) Eth0 connection is straight to a laptop to interface with Mycodo. Wlan0 connection is the one with access to the internet. ### Errors ![image](https://user-images.githubusercontent.com/6541280/56763484-8f519f80-6770-11e9-885c-48fba1b9b0b4.png) ![image](https://user-images.githubusercontent.com/6541280/56763542-b0b28b80-6770-11e9-9160-8d8c64527a5d.png) ### Additional Notes Routing table has Wlan0 as the main gateway. ![image](https://user-images.githubusercontent.com/6541280/56763805-3cc4b300-6771-11e9-9bc3-489acb7de630.png)
closed
2019-04-25T19:46:15Z
2019-06-07T19:13:25Z
https://github.com/kizniche/Mycodo/issues/652
[]
pigelb
3
horovod/horovod
deep-learning
3,866
How to create a tensor variable on the chief worker?
I need a scalar variable to count something. In parameter server mode, I created it on the first ps node and all the workers can run `add_op` to update it. It works fine. ``` with tf.device('/job:ps/task:0/cpu:0'): var_for_count = tf.get_variable('count_variable', (), tf.int32, initializer=tf.zeros_initializer) add_op = var_for_count.assign_add(1, use_locking=True) ``` In horovod mode, there exists just the worker nodes. So, I created the scalar variable on the chief worker only and expected all the workers can also use `add_op` to update it like this. ``` with tf.device('/job:worker/task:0/cpu:0'): var_for_count = tf.get_variable('count_variable', (), tf.int32, initializer=tf.zeros_initializer) add_op = var_for_count.assign_add(1, use_locking=True) ``` However, it caused an error. ``` tensorflow.python.framework.errors_impl.InvalidArgumentError: Cannot assign a device for operation count_variable: node count_variable was explicitly assigned to /job:worker/task:0/device:CPU:0 but available devices are [ /job:localhost/replica:0/task:0/device:CPU:0, /job:localhost/replica:0/task:0/device:GPU:0] ```
closed
2023-03-20T10:46:39Z
2023-03-20T18:01:01Z
https://github.com/horovod/horovod/issues/3866
[]
formath
0
PokemonGoF/PokemonGo-Bot
automation
5,816
How to run bot with mutliple users ?
Hello, I install "Bot" and "Web UI" both and then they work pretty good now. Because I saw the top right corner of the design of [my web page](http://imgur.com/UhKua95) showing "Bots", I wonder if we can run more bots and display on the same page?
closed
2016-11-15T17:49:25Z
2016-11-16T08:59:39Z
https://github.com/PokemonGoF/PokemonGo-Bot/issues/5816
[]
jamiekuo
3
sgl-project/sglang
pytorch
3,769
sgl-kernel for aarch64
Hello, Thank you very much for your great work on SGLang! I was wondering if it would be possible to release wheels for `sgl-kernel` for aarch64 (the one on pypi right now only supports x86_64). Alternatively, it would be very helpful if you could provide instructions on how to build `sgl-kernel` from source as well!
open
2025-02-21T17:19:00Z
2025-03-12T16:10:08Z
https://github.com/sgl-project/sglang/issues/3769
[ "help wanted" ]
GeorgiosSmyrnis
2
tfranzel/drf-spectacular
rest-api
1,251
Wrong Type for FileField based fields in POST type bodies
**Describe the bug** If I have a model with a models.FileField field, the type of this field is 'url' since the GET Request would include a url to the image, which is right. But when doing post requests, you don't have to provide an url but an file. **To Reproduce** It would be most helpful to provide a small snippet to see how the bug was provoked. ```python class Bar(models.Model): Image = models.FileField(upload_to="events/", null=True, blank=True) ... Boilerplate with serializers.HyperlinkedModelSerializer Router ``` The generated schema then contains ```yml post: operationId: bars_create tags: - bars requestBody: content: application/json: schema: $ref: '#/components/schemas/Bar' ``` and `#/components/schemas/Bar` says: ```yml Bar: type: object properties: image: type: string format: uri nullable: true ``` **Expected behavior** If i understand https://swagger.io/docs/specification/describing-request-body/file-upload/ correctly it should be `format: binary`
closed
2024-06-05T16:44:11Z
2024-06-08T09:47:44Z
https://github.com/tfranzel/drf-spectacular/issues/1251
[]
autoantwort
2
OpenInterpreter/open-interpreter
python
611
download language model
### Is your feature request related to a problem? Please describe. i need to download language model when use local. but disk space available How to change the download path ? Download to `C:\Users\z\AppData\Local\Open Interpreter\Open Interpreter\models`? [?] (Y/n): y You do not have enough disk space available to download this model. Open Interpreter will require approval before running code. ### Describe the solution you'd like How to change the download path ? ### Describe alternatives you've considered _No response_ ### Additional context _No response_
closed
2023-10-09T20:21:50Z
2023-10-10T00:14:08Z
https://github.com/OpenInterpreter/open-interpreter/issues/611
[ "Enhancement" ]
While941
3
jofpin/trape
flask
396
Validation of User Input for Port and URL (Lines 138, 139)
https://github.com/jofpin/trape/blob/6baae245691997742a51979767254d7da580eadd/core/trape.py#L138C4-L138C37 **Potential Issue:** User inputs for the `port` and `URL` fields are currently not validated, which could lead to errors or potential security risks. **Suggestion:** Add validation checks for port ranges and URL format. This ensures input safety and reduces the likelihood of invalid configurations. **Code Suggestion:** ``` try: port = int(options.port) if port < 1 or port > 65535: raise ValueError("Port out of range") except ValueError as e: print(f"Invalid port: {e}") sys.exit(1) if not options.url.startswith(('http://', 'https://')): print("Invalid URL format. URL must start with 'http://' or 'https://'") sys.exit(1) ``` **Explanation:** This input validation strengthens security and ensures the application receives expected input formats.
open
2024-11-06T22:49:25Z
2024-11-06T22:49:25Z
https://github.com/jofpin/trape/issues/396
[]
nitish-yaddala
0
ploomber/ploomber
jupyter
418
Building online APIs from pipelines with scripts/notebooks
we only support exporting online APIs from pipelines with Python functions
closed
2021-11-12T16:37:24Z
2022-08-19T19:26:38Z
https://github.com/ploomber/ploomber/issues/418
[]
edublancas
0
sebp/scikit-survival
scikit-learn
94
What is the origin of time for predict function?
Based on the docs: > If samples are ordered according to their predicted risk score (in ascending order), one obtains the sequence of events, as predicted by the model. This is the return value of the predict() method of all survival models in scikit-survival. In my use case I need to predict the order in which individuals will die (in absolute/global time frame) given that they survived till the end (last day) of study. I interpret predicted risk scores (using `predict()` function) as relative time to events. However, it's not clear to me what is the origin of time for them? Is it the time of birth for each individual (which would require adjusting risk scores in my use case), or is it the end of study time?
closed
2020-02-20T13:45:01Z
2021-04-01T09:58:19Z
https://github.com/sebp/scikit-survival/issues/94
[ "question" ]
mateuszbuda
4
home-assistant/core
python
141,038
Fritzboxtool: wlan with Fritzbox 5690pro
### The problem Some actions doesnt work correctly: Swiching wifi 5 ghz on or off applies to 6 ghz band Action for the 5ghz band are missing. This box supports 5, 6 and 2.4 ghz but you can only swich 2 bands. Furher feature request: I would like to limit the wifi to 50% in the night but there is no action for. ### What version of Home Assistant Core has the issue? 2025.3.3 ### What was the last working version of Home Assistant Core? _No response_ ### What type of installation are you running? Home Assistant OS ### Integration causing the issue Fritzboxtools ### Link to integration documentation on our website _No response_ ### Diagnostics information _No response_ ### Example YAML snippet ```yaml alias: Nachtschaltung Fritzbox description: "" triggers: - trigger: time at: "23:00:00" - type: turned_off device_id: 0f95a9f999b2383f933599333e279e5a entity_id: 25f533c2cc809888e9e3964d51b79b6d domain: remote trigger: device conditions: - condition: time after: "23:00:00" before: "04:59:00" - condition: device type: is_off device_id: 0f95a9f999b2383f933599333e279e5a entity_id: 25f533c2cc809888e9e3964d51b79b6d domain: remote actions: - type: turn_off device_id: 1963e78c4301cb8c1160fdb4fc1c8558 entity_id: a41d918ab06b7cb7e3584c8e824cf01a domain: switch - type: turn_off device_id: 1963e78c4301cb8c1160fdb4fc1c8558 entity_id: dba2c72a9586466a2a53617a2a0157f8 domain: switch - wait_for_trigger: - trigger: time at: "05:00:00" continue_on_timeout: false - type: turn_on device_id: 1963e78c4301cb8c1160fdb4fc1c8558 entity_id: a41d918ab06b7cb7e3584c8e824cf01a domain: switch - type: turn_on device_id: 1963e78c4301cb8c1160fdb4fc1c8558 entity_id: dba2c72a9586466a2a53617a2a0157f8 domain: switch mode: single ``` ### Anything in the logs that might be useful for us? ```txt ``` ### Additional information _No response_
open
2025-03-21T04:46:11Z
2025-03-23T10:57:22Z
https://github.com/home-assistant/core/issues/141038
[ "integration: fritz", "feature-request" ]
fif81
4
tartiflette/tartiflette
graphql
209
Exception raised in arguments coercer doesn't returns expected error
* **Tartiflette version:** 0.8.3 * **Python version:** 3.7.1 * **Executed in docker:** No * **Is a regression from a previous versions?** No SDL example: ```graphql directive @validateLimit( limit: Int! ) on ARGUMENT_DEFINITION | INPUT_FIELD_DEFINITION type Query { aList( nbItems: Int! @validateLimit(limit: 2) ): [String!] } ``` Python: ```python class LimitReachedException(Exception): def coerce_value(self, *_args, path=None, locations=None, **_kwargs): computed_locations = [] try: for location in locations: computed_locations.append(location.collect_value()) except AttributeError: pass except TypeError: pass return { "message": "Limit reached", "path": path, "locations": computed_locations, "type": "bad_request", } @Directive("validateLimit", schema_name="test_issue209") class ValidateLimitDirective(CommonDirective): @staticmethod async def on_argument_execution( directive_args, next_directive, argument_definition, args, ctx, info ): value = await next_directive(argument_definition, args, ctx, info) if value > directive_args["limit"]: raise LimitReachedException("Limit has been reached") return value @Resolver("Query.aList", schema_name="test_issue209") async def resolver_query_a_list(parent, args, ctx, info): nb_items = args["nbItems"] return [f"{nb_items}.{index}" for index in range(nb_items)] ``` Query: ```graphql query { aList(nbItems: 3) } == { "data": { "aList": null }, "errors": [ { "message": "Limit has been reached", "path": [ "aList" ], "locations": [ { "line": 3, "column": 15 } ] } ] } ``` Expected: ```json { "data": { "aList": null }, "errors": [ { "message": "Limit reached", "path": [ "aList" ], "locations": [ { "line": 3, "column": 15 } ], "type": "bad_request" } ] } ```
closed
2019-04-16T12:39:32Z
2019-04-16T12:52:58Z
https://github.com/tartiflette/tartiflette/issues/209
[ "bug" ]
Maximilien-R
0
sanic-org/sanic
asyncio
2,664
Dark mode / custom CSS for Sanic's own output
### Is there an existing issue for this? - [X] I have searched the existing issues ### Is your feature request related to a problem? Please describe. Sanic currently creates error pages and assuming that PR #2662 is merged will be producing file listings with bright white background. The Internet is moving to dark mode, with more or less all sites implementing dark background via `@media (prefers-color-scheme: dark)` if not as the only option. The bright white hurts eyes on modern screens that often output 200 nits of bright light for it, and many are used to working in all-dark-background environments, coders too often in all-dark rooms. ### Describe the solution you'd like Sanic generates its output from Python source code where the CSS is included as a string. Adding the media selector for automatic dark mode would be simple, or if minimalism is preferred, Sanic could even only implement a dark mode (but it is more polite to implement both so that users' browsers choose the one matching their desktop preference). However, there is legitimate use for applications and enterprises using Sanic wanting to customize the pages further such that even the errors at least to a degree agree with their general visual style. This would be far harder to implement. Fetching the CSS as an extra file on an error page would be a bad idea, so basically Sanic would instead need to load those strings from some external source (e.g. during server startup). I am opening this issue for discussion on the matter, that would work as a basis for a PR to come. ### Additional context _No response_
closed
2023-01-25T13:22:48Z
2023-03-21T18:53:34Z
https://github.com/sanic-org/sanic/issues/2664
[ "feature request" ]
Tronic
2
litestar-org/litestar
pydantic
3,646
Bug: order of types in openapi spec is not consistent in json rendering
### Description We are seeing the order of types change in openapi generation, which makes comparing golden versions of the openapi spec problematic. I think the specific problem we are seeing comes from https://github.com/litestar-org/litestar/blob/ffaf5616b19f6f0f4128209c8b49dbcb41568aa2/litestar/_openapi/schema_generation/schema.py#L160 where we use the `set` operation to uniquify the list of types. The order doesn't matter to the correctness of the openapi spec, so perhaps the responsibility for ensuring a determistic spec file could also come from the serializer, but either way it would be helpful if we could always render the same openapi spec the same way. ### URL to code causing the issue _No response_ ### MCVE ```python # Your MCVE code here ``` ### Steps to reproduce ```bash 1. Go to '...' 2. Click on '....' 3. Scroll down to '....' 4. See error ``` ### Screenshots _No response_ ### Logs _No response_ ### Litestar Version 2.9.1 ### Platform - [ ] Linux - [ ] Mac - [ ] Windows - [ ] Other (Please specify in the description above)
open
2024-07-25T13:57:31Z
2025-03-20T15:54:50Z
https://github.com/litestar-org/litestar/issues/3646
[ "Bug :bug:", "OpenAPI" ]
atom-andrew
2
mirumee/ariadne
api
478
Update project docs to point to Github discussions instead of Spectrum
Starting August 2021 Spectrum will become read-only and its sprit lives on as GitHub Discussions. Readme, issue template and website should be updated to direct users to discussions page, and announcement should be made on spectrum about this.
closed
2021-03-01T22:59:35Z
2021-03-19T13:20:11Z
https://github.com/mirumee/ariadne/issues/478
[ "docs", "meta" ]
rafalp
0
sloria/TextBlob
nlp
267
Center word with negative polarity
Hello, Why does the word have negative polarity. ?
open
2019-05-22T17:08:34Z
2019-05-22T17:08:34Z
https://github.com/sloria/TextBlob/issues/267
[]
jahnavipatel2
0
sqlalchemy/alembic
sqlalchemy
634
Server default not matching for `func.now()` with SQLite
My model has ```python created = Column(DateTime, server_default=func.now()) ``` And every time I invoke `autogenerate` with `compare_server_default=True` on sqlite, it generates the same migrations that do nothing: ```python def upgrade(): # ### commands auto generated by Alembic - please adjust! ### with op.batch_alter_table('visitors', schema=None) as batch_op: batch_op.alter_column('created', existing_type=sa.DATETIME(), server_default=sa.text('(CURRENT_TIMESTAMP)'), existing_nullable=True) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### with op.batch_alter_table('visitors', schema=None) as batch_op: batch_op.alter_column('created', existing_type=sa.DATETIME(), server_default=sa.text('(CURRENT_TIMESTAMP)'), existing_nullable=True) # ### end Alembic commands ### ```
closed
2019-12-10T12:57:40Z
2020-03-11T16:45:52Z
https://github.com/sqlalchemy/alembic/issues/634
[ "question" ]
tdaff
10
deepinsight/insightface
pytorch
1,736
CUDA version
When importing insightface I'm keep having 'libcudart.s.0.11.0 : cannot open shared object file : No such file or directory ' error I think this is because of CUDA version. So my question is what version of insightface is using under CUDA 10 version?
open
2021-08-30T16:27:19Z
2021-08-31T00:40:45Z
https://github.com/deepinsight/insightface/issues/1736
[]
dlwjddms
2
mckinsey/vizro
plotly
770
How to custom action for selector feature
### Question Dear all, I hope to use click data on the scatter plot to control the input of another figure. I can use the control component to achieve the function of control the figure. I am also able to extract clickData from the action. However, not sure how to pass the information in the custom action to another figure. This works ``` vm.Parameter( targets=["my_bio_figure.material"], selector=vm.Dropdown(options=list(df_perovskite.material), value="YTcO3", multi=False), ) ``` This doesn't work ``` actions=[vm.Action(function=select_interaction(), inputs=["scatter_chart.clickData"],outputs=["my_bio_figure.material"])] ``` The full code ``` import vizro.models as vm import vizro.plotly.express as px from vizro import Vizro from vizro.tables import dash_ag_grid import pandas as pd from vizro.models.types import capture import dash_bio as dashbio import dash_bio.utils.ngl_parser as ngl_parser import ase.db from pymatgen.io.ase import AseAtomsAdaptor import nvcs from pymatgen.core import Structure import nglview from vizro.actions import filter_interaction df_perovskite = pd.read_csv("cubic.csv") structure_db = ase.db.connect("perovskites.db") data_path = "https://raw.githubusercontent.com/plotly/datasets/master/Dash_Bio/Molecular/" @capture("figure") def custom_bio_molecule_figure(data_frame, material): atoms = structure_db.get_atoms(material) pmg_structure = AseAtomsAdaptor().get_structure(atoms) sites_displayed = nvcs.structure._get_displayed(pmg_structure) pmg_structure_displayed = Structure.from_sites([si.site for si in sites_displayed]) atoms_displayed = AseAtomsAdaptor().get_atoms(pmg_structure_displayed) ngl_ase_adaptor = nglview.ASEStructure(atoms_displayed) #data_list = [ngl_ase_adaptor.get_structure_string()] content = ngl_ase_adaptor.get_structure_string() data = { 'filename': material, 'ext': 'pdb', 'selectedValue': '1', 'chain': 'ALL', 'aaRange': 'ALL', 'chosen': {'atoms':'', 'residues':''}, 'color': '#e41a1c', 'config': {'type': 'text/plain', 'input': content}, 'resetView': True, 'uploaded': True } data_list = [data] print(data_list) molstyles_dict = { "representations": ["ball+stick", 'unitcell'], } return dashbio.NglMoleculeViewer( id="ngl_molecule_viewer_id", data=data_list, molStyles=molstyles_dict, ) @capture("action") def select_interaction(clickData): """Returns the input value.""" material = clickData['points'][0]['customdata'][0] print(material) #print(clickData["custom_data"]) #return clickData["custom_data"] return material page = vm.Page( title="Perovskites", layout=vm.Layout(grid=[[0, 0, 1], [0, 0, 2]]), components=[vm.AgGrid(figure=dash_ag_grid(data_frame=df_perovskite)), vm.Graph( id = "scatter_chart", figure = px.scatter(df_perovskite, x="lattice_constant (AA)", y="bulk_modulus (eV/AA^3)", custom_data = ["material"]), actions=[vm.Action(function=select_interaction(), inputs=["scatter_chart.clickData"],outputs=["my_bio_figure.material"])] ), vm.Figure(id="my_bio_figure", figure=custom_bio_molecule_figure(data_frame=pd.DataFrame(), material="YTcO3")), ], controls=[ vm.Parameter( targets=["scatter_chart.x"], selector=vm.Dropdown(options=list(df_perovskite.columns), value="lattice_constant (AA)", multi=False), ), vm.Parameter( targets=["scatter_chart.y"], selector=vm.Dropdown(options=list(df_perovskite.columns), value="bulk_modulus (eV/AA^3)", multi=False), ), vm.Parameter( targets=["my_bio_figure.material"], selector=vm.Dropdown(options=list(df_perovskite.material), value="YTcO3", multi=False), ), ] ) dashboard = vm.Dashboard(pages=[page], theme="vizro_light") if __name__ == "__main__": Vizro().build(dashboard).run() ``` Thank you very much for your help. ### Code/Examples _No response_ ### Which package? vizro ### Code of Conduct - [X] I agree to follow the [Code of Conduct](https://github.com/mckinsey/vizro/blob/main/CODE_OF_CONDUCT.md).
closed
2024-10-01T23:02:16Z
2024-11-26T08:38:58Z
https://github.com/mckinsey/vizro/issues/770
[ "General Question :question:" ]
yaoyi92
6
nschloe/tikzplotlib
matplotlib
261
Percent in Axis label produces hard to read error. need to escape '%' or Warning?
Regarding #50 When assigning a axis label, I was describing a percent, and used the percent symbol. Everything was produced fine in python, and went as expected. However, I could not figure out why it kept crashing in latex a week later. It took me around an hour and a half, as the latex error output was not helpful at all Here's reproducible code ``` import pandas as pd import matplotlib.pyplot as plt from matplotlib2tikz import save as tikz_save #RANDOM DATA des = [1,2,3,4] perc_below = [1,2,3,4] df3 = pd.DataFrame({'one':perc_below, 'two':des}) df3.plot(fontsize=20, kind='line',y='one',x='two') plt.xlabel('example',fontsize=20) # ISSUE LIES BELOW plt.ylabel('example %',fontsize=20) tikz_save('example.tex')` ``` Tex output is as expected... In my opinion, this should be escaped, as the work around is a backslash when assigning the label. However, this would lead to different behavior as matplotlib. (I also export to pngs, which would end up with a backslash in them) I understand if you do not agree. In that case, a warning when the graph is produced would be great, as again, the latex error was completely unhelpful. I love the library, BTW!
closed
2018-12-08T01:16:36Z
2019-03-17T13:27:18Z
https://github.com/nschloe/tikzplotlib/issues/261
[]
RichardLettich
4
PeterL1n/BackgroundMattingV2
computer-vision
207
请问V2版本resnet怎么转成onnx模型?
转了好久没通过
open
2024-02-22T06:23:55Z
2024-02-22T06:23:55Z
https://github.com/PeterL1n/BackgroundMattingV2/issues/207
[]
cnywt
0
sinaptik-ai/pandas-ai
pandas
961
Add Faker into white list or add ability to expand white list.
### 🚀 The feature Add Faker into white list or add ability to expand white list. ### Motivation, pitch I've asked question "Generate me 10 new synthetic rows based on provided examples" and got error: Generated code includes import of faker which is not in whitelist. Log: ``` Question: Generate me 10 new synthetic rows based on provided examples Running PandasAI with openai LLM... Prompt ID: eb749e24-762f-4807-828c-a52f772666be <class 'pandasai.helpers.output_types._output_types.DefaultOutputType'> is going to be used. <class 'pandasai.helpers.viz_library_types._viz_library_types.NoVizLibraryType'> is going to be used. Executing Step 0: CacheLookup Executing Step 1: PromptGeneration Using prompt: <dataframe> dfs[0]:891x12 PassengerId,Survived,Pclass,Name,Sex,Age,SibSp,Parch,Ticket,Fare,Cabin,Embarked 2,1,1,"Cumings, Mrs. John Bra...",female,38.0,1,0,PC 17599,71.2833,C85,C 3,1,3,"Heikkinen, Miss. Laina...",female,26.0,0,0,STON/O2. 3101282,7.925,,S 1,0,3,"Braund, Mr. Owen Harri...",male,22.0,1,0,A/5 21171,7.25,,S </dataframe> Update this initial code: python # TODO: import the required dependencies import pandas as pd # Write code here # Declare result var: type (possible values "string", "number", "dataframe", "plot"). Examples: { "type": "string", "value": f"The highest salary is {highest_salary}." } or { "type": "number", "value": 125 } or { "type": "dataframe", "value": pd.DataFrame({...}) } or { "type": "plot", "value": "temp_chart.png" } Q: Generate me 10 new synthetic rows based on provided examples Variable `dfs: list[pd.DataFrame]` is already declared. At the end, declare "result" variable as a dictionary of type and value. Generate python code and return full updated code: Executing Step 2: CodeGenerator Code generated: # TODO: import the required dependencies import pandas as pd from faker import Faker # Write code here fake = Faker() # Generate 10 new synthetic rows based on provided examples new_rows = [] for _ in range(10): new_row = { "PassengerId": fake.random_int(min=4, max=1000), "Survived": fake.random_int(min=0, max=1), "Pclass": fake.random_int(min=1, max=3), "Name": fake.name(), "Sex": fake.random_element(elements=["male", "female"]), "Age": fake.random_int(min=1, max=80), "SibSp": fake.random_int(min=0, max=4), "Parch": fake.random_int(min=0, max=2), "Ticket": fake.random_int(min=10000, max=99999), "Fare": round(fake.random_number(digits=4, fix_len=True), 2), "Cabin": fake.random_element(elements=[None, "A1", "B2", "C3"]), "Embarked": fake.random_element(elements=["S", "C", "Q"]) } new_rows.append(new_row) # Create a new DataFrame with the original data plus the 10 new synthetic rows new_df = pd.concat([dfs[0], pd.DataFrame(new_rows)], ignore_index=True) # Declare result var result = {"type": "dataframe", "value": new_df} Executing Step 3: CachePopulation Executing Step 4: CodeExecution Failed to execute code with a correction framework [retry number: 1] Failed with error: Traceback (most recent call last): File "/home/adminuser/venv/lib/python3.9/site-packages/pandasai/pipelines/smart_datalake_chat/code_execution.py", line 53, in execute result = pipeline_context.query_exec_tracker.execute_func( File "/home/adminuser/venv/lib/python3.9/site-packages/pandasai/helpers/query_exec_tracker.py", line 128, in execute_func result = function(*args, **kwargs) File "/home/adminuser/venv/lib/python3.9/site-packages/pandasai/helpers/code_manager.py", line 186, in execute_code code_to_run = self._clean_code(code, context) File "/home/adminuser/venv/lib/python3.9/site-packages/pandasai/helpers/code_manager.py", line 375, in _clean_code self._check_imports(node) File "/home/adminuser/venv/lib/python3.9/site-packages/pandasai/helpers/code_manager.py", line 456, in _check_imports raise BadImportError(library) pandasai.exceptions.BadImportError: Generated code includes import of faker which is not in whitelist. . Retrying Using prompt: <dataframe> dfs[0]:891x12 PassengerId,Survived,Pclass,Name,Sex,Age,SibSp,Parch,Ticket,Fare,Cabin,Embarked 2,1,1,"Cumings, Mrs. John Bra...",female,38.0,1,0,PC 17599,71.2833,C85,C 3,1,3,"Heikkinen, Miss. Laina...",female,26.0,0,0,STON/O2. 3101282,7.925,,S 1,0,3,"Braund, Mr. Owen Harri...",male,22.0,1,0,A/5 21171,7.25,,S </dataframe> The user asked the following question: Q: Generate me 10 new synthetic rows based on provided examples You generated this python code: # TODO: import the required dependencies import pandas as pd from faker import Faker # Write code here fake = Faker() # Generate 10 new synthetic rows based on provided examples new_rows = [] for _ in range(10): new_row = { "PassengerId": fake.random_int(min=4, max=1000), "Survived": fake.random_int(min=0, max=1), "Pclass": fake.random_int(min=1, max=3), "Name": fake.name(), "Sex": fake.random_element(elements=["male", "female"]), "Age": fake.random_int(min=1, max=80), "SibSp": fake.random_int(min=0, max=4), "Parch": fake.random_int(min=0, max=2), "Ticket": fake.random_int(min=10000, max=99999), "Fare": round(fake.random_number(digits=4, fix_len=True), 2), "Cabin": fake.random_element(elements=[None, "A1", "B2", "C3"]), "Embarked": fake.random_element(elements=["S", "C", "Q"]) } new_rows.append(new_row) # Create a new DataFrame with the original data plus the 10 new synthetic rows new_df = pd.concat([dfs[0], pd.DataFrame(new_rows)], ignore_index=True) # Declare result var result = {"type": "dataframe", "value": new_df} It fails with the following error: Traceback (most recent call last): File "/home/adminuser/venv/lib/python3.9/site-packages/pandasai/pipelines/smart_datalake_chat/code_execution.py", line 53, in execute result = pipeline_context.query_exec_tracker.execute_func( File "/home/adminuser/venv/lib/python3.9/site-packages/pandasai/helpers/query_exec_tracker.py", line 128, in execute_func result = function(*args, **kwargs) File "/home/adminuser/venv/lib/python3.9/site-packages/pandasai/helpers/code_manager.py", line 186, in execute_code code_to_run = self._clean_code(code, context) File "/home/adminuser/venv/lib/python3.9/site-packages/pandasai/helpers/code_manager.py", line 375, in _clean_code self._check_imports(node) File "/home/adminuser/venv/lib/python3.9/site-packages/pandasai/helpers/code_manager.py", line 456, in _check_imports raise BadImportError(library) pandasai.exceptions.BadImportError: Generated code includes import of faker which is not in whitelist. Fix the python code above and return the new python code: Failed to execute code with a correction framework [retry number: 2] Failed with error: Traceback (most recent call last): File "/home/adminuser/venv/lib/python3.9/site-packages/pandasai/pipelines/smart_datalake_chat/code_execution.py", line 53, in execute result = pipeline_context.query_exec_tracker.execute_func( File "/home/adminuser/venv/lib/python3.9/site-packages/pandasai/helpers/query_exec_tracker.py", line 128, in execute_func result = function(*args, **kwargs) File "/home/adminuser/venv/lib/python3.9/site-packages/pandasai/helpers/code_manager.py", line 186, in execute_code code_to_run = self._clean_code(code, context) File "/home/adminuser/venv/lib/python3.9/site-packages/pandasai/helpers/code_manager.py", line 375, in _clean_code self._check_imports(node) File "/home/adminuser/venv/lib/python3.9/site-packages/pandasai/helpers/code_manager.py", line 456, in _check_imports raise BadImportError(library) pandasai.exceptions.BadImportError: Generated code includes import of faker which is not in whitelist. . Retrying Using prompt: <dataframe> dfs[0]:891x12 PassengerId,Survived,Pclass,Name,Sex,Age,SibSp,Parch,Ticket,Fare,Cabin,Embarked 2,1,1,"Cumings, Mrs. John Bra...",female,38.0,1,0,PC 17599,71.2833,C85,C 3,1,3,"Heikkinen, Miss. Laina...",female,26.0,0,0,STON/O2. 3101282,7.925,,S 1,0,3,"Braund, Mr. Owen Harri...",male,22.0,1,0,A/5 21171,7.25,,S </dataframe> The user asked the following question: Q: Generate me 10 new synthetic rows based on provided examples You generated this python code: # TODO: import the required dependencies import pandas as pd from faker import Faker # Write code here fake = Faker() # Generate 10 new synthetic rows based on provided examples new_rows = [] for _ in range(10): new_row = { "PassengerId": fake.random_int(min=4, max=1000), "Survived": fake.random_int(min=0, max=1), "Pclass": fake.random_int(min=1, max=3), "Name": fake.name(), "Sex": fake.random_element(elements=["male", "female"]), "Age": fake.random_int(min=1, max=80), "SibSp": fake.random_int(min=0, max=4), "Parch": fake.random_int(min=0, max=2), "Ticket": fake.random_int(min=10000, max=99999), "Fare": round(fake.random_number(digits=4, fix_len=True), 2), "Cabin": fake.random_element(elements=[None, "A1", "B2", "C3"]), "Embarked": fake.random_element(elements=["S", "C", "Q"]) } new_rows.append(new_row) # Create a new DataFrame with the original data plus the 10 new synthetic rows new_df = pd.concat([dfs[0], pd.DataFrame(new_rows)], ignore_index=True) # Declare result var result = {"type": "dataframe", "value": new_df} It fails with the following error: Traceback (most recent call last): File "/home/adminuser/venv/lib/python3.9/site-packages/pandasai/pipelines/smart_datalake_chat/code_execution.py", line 53, in execute result = pipeline_context.query_exec_tracker.execute_func( File "/home/adminuser/venv/lib/python3.9/site-packages/pandasai/helpers/query_exec_tracker.py", line 128, in execute_func result = function(*args, **kwargs) File "/home/adminuser/venv/lib/python3.9/site-packages/pandasai/helpers/code_manager.py", line 186, in execute_code code_to_run = self._clean_code(code, context) File "/home/adminuser/venv/lib/python3.9/site-packages/pandasai/helpers/code_manager.py", line 375, in _clean_code self._check_imports(node) File "/home/adminuser/venv/lib/python3.9/site-packages/pandasai/helpers/code_manager.py", line 456, in _check_imports raise BadImportError(library) pandasai.exceptions.BadImportError: Generated code includes import of faker which is not in whitelist. Fix the python code above and return the new python code: Pipeline failed on step 4: Generated code includes import of faker which is not in whitelist. ``` ### Alternatives _No response_ ### Additional context _No response_
closed
2024-02-26T19:04:48Z
2024-03-03T13:56:58Z
https://github.com/sinaptik-ai/pandas-ai/issues/961
[]
PavelAgurov
2
ageitgey/face_recognition
python
735
Does Zeropadding requires a memory in neural network?
Hello guys, i want to know does zero padding requires a memory in neural network? I red **VGGNet in detail** section in http://cs231n.github.io/convolutional-networks/ But it doesn't contains zero padding. Any body?
closed
2019-02-04T22:20:24Z
2019-02-04T22:26:46Z
https://github.com/ageitgey/face_recognition/issues/735
[]
flyingduck92
0
Teemu/pytest-sugar
pytest
222
invalid reports when used with `-rA`, repeats 3 times with instafail
pytest-sugar reports strange things when used with `-rA` #### Command used to run pytest ````pytest test_example.py```` #### Test file ````python def test_example(): print(1) pass ```` #### Output ```` Test session starts (platform: linux, Python 3.8.5, pytest 6.2.2, pytest-sugar 0.9.4) rootdir: /home/stas/hf/transformers-stas plugins: forked-1.3.0, xdist-2.2.0, sugar-0.9.4, instafail-0.4.2 collecting ... test_example.py ✓ 100% ██████████ Results (0.02s): 1 passed ```` ### with -rA ``` $ pytest -rA test_example.py Test session starts (platform: linux, Python 3.8.5, pytest 6.2.2, pytest-sugar 0.9.4) rootdir: /home/stas/hf/transformers-stas plugins: forked-1.3.0, xdist-2.2.0, sugar-0.9.4, instafail-0.4.2 collecting ... test_example.py ✓ 100% ██████████ ====================================================================== PASSES ======================================================================= ___________________________________________________________________ test_example ____________________________________________________________________ --------------------------------------------------------------- Captured stdout call ---------------------------------------------------------------- 1 ___________________________________________________________________ test_example ____________________________________________________________________ --------------------------------------------------------------- Captured stdout call ---------------------------------------------------------------- 1 ============================================================== short test summary info ============================================================== PASSED test_example.py::test_example PASSED test_example.py::test_example PASSED test_example.py::test_example Results (0.02s): 1 passed ``` 2 problems: 1. stdout is dumped **twice** 2. PASSED report is printed **trice** ### If combined with `instafail` It now also reports the test 3 times! ✓✓✓ ``` pytest -rA test_example.py --instafail ====================================================================== test session starts ======================================================================= platform linux -- Python 3.8.5, pytest-6.2.2, py-1.10.0, pluggy-0.13.1 rootdir: /home/stas/hf/transformers-stas plugins: forked-1.3.0, xdist-2.2.0, sugar-0.9.4, instafail-0.4.2 collected 1 item test_example.py ✓✓✓ [100%] ============================================================================= PASSES ============================================================================= __________________________________________________________________________ test_example __________________________________________________________________________ ---------------------------------------------------------------------- Captured stdout call ---------------------------------------------------------------------- 1 __________________________________________________________________________ test_example __________________________________________________________________________ ---------------------------------------------------------------------- Captured stdout call ---------------------------------------------------------------------- 1 ==================================================================== short test summary info ===================================================================== PASSED test_example.py::test_example PASSED test_example.py::test_example PASSED test_example.py::test_example ======================================================================= 3 passed in 0.06s ======================================================================== ``` W/o `-rA` ``` pytest test_example.py --instafail ====================================================================== test session starts ======================================================================= platform linux -- Python 3.8.5, pytest-6.2.2, py-1.10.0, pluggy-0.13.1 rootdir: /home/stas/hf/transformers-stas plugins: forked-1.3.0, xdist-2.2.0, sugar-0.9.4, instafail-0.4.2 collected 1 item test_example.py ✓✓✓ [100%] ======================================================================= 3 passed in 0.01s ======================================================================== ``` Thanks.
closed
2021-04-05T01:52:56Z
2022-11-14T16:45:11Z
https://github.com/Teemu/pytest-sugar/issues/222
[]
stas00
4
RomelTorres/alpha_vantage
pandas
89
Date range for intraday data
Hello everyone! I wondered if it is possible to change the date range for intraday data of a stock or currency. I've already used outputsize='full', but I need something larger in order to use machine learning methods. It's for my thesis, in which I'm building a trading algorithm based in neural networks, but I need hundreds of thousands of data for this to work. Thank you for your time. @RomelTorres
closed
2018-10-11T21:33:00Z
2019-02-11T21:59:42Z
https://github.com/RomelTorres/alpha_vantage/issues/89
[ "question" ]
CarlosT93
0
jina-ai/serve
deep-learning
5,916
Streaming for gRPC for Deployment
closed
2023-06-19T13:01:35Z
2023-07-25T10:07:37Z
https://github.com/jina-ai/serve/issues/5916
[]
alaeddine-13
0
Avaiga/taipy
data-visualization
1,982
Add back to top functionality
### Description As the total height of website is long so back to top button is much needed for easy navigation. So assign this issue to be under Hacktoberfest. ### Acceptance Criteria - [ ] Ensure new code is unit tested, and check code coverage is at least 90%. - [ ] Create related issue in taipy-doc for documentation and Release Notes. - [ ] Check if a new demo could be provided based on this, or if legacy demos could be benefit from it. - [ ] Ensure any change is well documented. ### Code of Conduct - [X] I have checked the [existing issues](https://github.com/Avaiga/taipy/issues?q=is%3Aissue+). - [X] I am willing to work on this issue (optional)
closed
2024-10-09T09:16:21Z
2024-10-09T12:24:12Z
https://github.com/Avaiga/taipy/issues/1982
[ "✨New feature" ]
Rajput-xv
1
kaliiiiiiiiii/Selenium-Driverless
web-scraping
292
[Feature request] add request history to network_interceptor
Why this feature is needed: We need it to parsing requests for certain actions without creating crutches and global variables We open the Interceptor together with the history request execute our code and then just get the request history and analyze what happened during the execution of this or that code. You can also make an empty query at the beginning of the aiter to trigger certain actions Which is a good, but not very nice solution ``` PARAM: request_history: bool = False self.request_history = [] if request_history else request_history self.request_changed_history = [] if request_history else request_history in _paused_handler: if isinstance(self.request_history, list): self.request_history.append(request) ```
closed
2024-12-08T12:41:57Z
2024-12-09T07:21:36Z
https://github.com/kaliiiiiiiiii/Selenium-Driverless/issues/292
[ "question", "wontfix" ]
Toxenskiy
5
aiortc/aioquic
asyncio
18
Can server create stream?
Hi, I am using aioquic to develop a software. I want to create a one-way stream from the server to transfer data in the existing session, but I don't seem to find a way to create a stream on the server. Who can give me a solution? Thanks.
closed
2019-07-29T17:38:47Z
2019-09-04T06:14:02Z
https://github.com/aiortc/aioquic/issues/18
[]
lRoccoon
2
fastapi-users/fastapi-users
asyncio
751
Cannot extend the User model to use nested objects with Ormar
`OrmarUserDatabase.create()` will not save declared nested models/relationships. They do still appear in the OpenAPI schema docs, but the relationships cannot be saved or retrieved. Steps to reproduce the behavior: 1. Extend your models with a relational field. I have used roles: ```python class PublicMeta(ormar.ModelMeta): '''For use with the Public Postgres schema''' metadata = metadata database = database class Role(ormar.Model): class Meta(PublicMeta): tablename = 'role' id: int = ormar.Integer(primary_key=True) name: str = ormar.String(max_length=50) description: str = ormar.String(max_length=255, nullable=True) class UserModel(OrmarBaseUserModel): class Meta(PublicMeta): tablename = 'user' roles: Optional[List[Role]] = ormar.ManyToMany(Role) ``` Extend Pydantic models: ```python class User(models.BaseUser): roles: List[Role] (UserCreate etc ommited) ``` 2. Your registration route should look like this: ![image](https://user-images.githubusercontent.com/78952809/135852057-276f9c5a-e8d3-42f2-9c28-3457350efd5d.png) 3. POST to `/registration` 4. In the response, the role value is empty: ```json { "id": "c020a52e-3355-4066-bed2-aa13287305ff", "email": "user@example.com", "is_active": true, "is_superuser": false, "is_verified": false, "roles": [] } ``` ## Expected behavior Nested relationships should be stored. ## Configuration - Python version : 3.8 - FastAPI version : 0.68.1 - FastAPI Users version : 8.1.0 ### FastAPI Users configuration Shown above ## Additional context It looks like this can be solved by using Ormar's `save_related()` and possibly `select_all()` (for reading) methods. I managed to store the relationship by calling `save_related` in `OrmarUserDatabase.create()` as follows: ```python async def create(self, user: UD) -> UD: oauth_accounts = getattr(user, "oauth_accounts", []) model = await self.model(**user.dict(exclude={"oauth_accounts"})).save() await model.save_related() if oauth_accounts and self.oauth_account_model: await self._create_oauth_models(model=model, oauth_accounts=oauth_accounts) user_db = await self._get_user(id=user.id) return cast(UD, user_db) ``` I suspect that the `_get_db_user()` function would need to call Ormar's [select_all()](https://collerek.github.io/ormar/queries/joins-and-subqueries/#select_all) method in order to return the relationship when querying users, but I've not had success with that, as I'm a bit new to Ormar's API. I'm happy to do a pull request but I need some guidance here.
closed
2021-10-04T12:59:46Z
2022-05-05T13:21:24Z
https://github.com/fastapi-users/fastapi-users/issues/751
[ "bug" ]
LonelyVikingMichael
0
ultralytics/ultralytics
pytorch
19,751
How to use my own class name when predict?
### Search before asking - [ ] I have searched the Ultralytics YOLO [issues](https://github.com/ultralytics/ultralytics/issues) and [discussions](https://github.com/orgs/ultralytics/discussions) and found no similar questions. ### Question How to use my own class name when predict? ### Additional _No response_
open
2025-03-18T03:59:20Z
2025-03-18T06:38:03Z
https://github.com/ultralytics/ultralytics/issues/19751
[ "question" ]
ChineseFootball10
3
roboflow/supervision
deep-learning
1,463
Notebook not found: Serialise Detections to a CSV File
### Search before asking - [X] I have searched the Supervision [issues](https://github.com/roboflow/supervision/issues) and found no similar bug report. ### Bug The Colab in this [cookbook](https://supervision.roboflow.com/develop/notebooks/serialise-detections-to-csv/) is not found. <img width="1118" alt="Screenshot 2024-08-19 at 1 19 21 PM" src="https://github.com/user-attachments/assets/07b23e28-0ccc-456d-a496-631e3600bb57"> ``` Notebook not found There was an error loading this notebook. Ensure that the file is accessible and try again. Ensure that you have permission to view this notebook in GitHub and authorize Colab to use the GitHub API. https://github.com/roboflow/supervision/blob/develop/docs/notebooks/detections-to-jsonsink.ipynb Could not find detections-to-jsonsink.ipynb in https://api.github.com/repos/roboflow/supervision/contents/docs/no ``` ### Environment Browser only error: https://supervision.roboflow.com/develop/notebooks/serialise-detections-to-csv/ ### Minimal Reproducible Example Steps: 1. Open the cookbook https://supervision.roboflow.com/develop/notebooks/serialise-detections-to-csv/ 2. Click on "Open in Colab" 3. Get the 404 error ### Additional _No response_ ### Are you willing to submit a PR? - [ ] Yes I'd like to help by submitting a PR!
closed
2024-08-19T20:22:59Z
2024-08-20T14:08:37Z
https://github.com/roboflow/supervision/issues/1463
[ "bug" ]
ediardo
2
yt-dlp/yt-dlp
python
11,766
--keep-fragments doesn't work with livestreams
### DO NOT REMOVE OR SKIP THE ISSUE TEMPLATE - [X] I understand that I will be **blocked** if I *intentionally* remove or skip any mandatory\* field ### Checklist - [X] I'm reporting that yt-dlp is broken on a **supported** site - [X] I've verified that I have **updated yt-dlp to nightly or master** ([update instructions](https://github.com/yt-dlp/yt-dlp#update-channels)) - [X] I've checked that all provided URLs are playable in a browser with the same IP and same login details - [X] I've checked that all URLs and arguments with special characters are [properly quoted or escaped](https://github.com/yt-dlp/yt-dlp/wiki/FAQ#video-url-contains-an-ampersand--and-im-getting-some-strange-output-1-2839-or-v-is-not-recognized-as-an-internal-or-external-command) - [X] I've searched [known issues](https://github.com/yt-dlp/yt-dlp/issues/3766) and the [bugtracker](https://github.com/yt-dlp/yt-dlp/issues?q=) for similar issues **including closed ones**. DO NOT post duplicates - [X] I've read the [guidelines for opening an issue](https://github.com/yt-dlp/yt-dlp/blob/master/CONTRIBUTING.md#opening-an-issue) - [X] I've read about [sharing account credentials](https://github.com/yt-dlp/yt-dlp/blob/master/CONTRIBUTING.md#are-you-willing-to-share-account-details-if-needed) and I'm willing to share it if required ### Provide a description that is worded well enough to be understood I was trying to keep fragments along with the single output file for the live news by below command: yt-dlp --downloader "m3u8:native" --keep-fragments -f 300 -P hls-live/ -v -o "%(title)s.%(ext)s" YDfiTGGPYCk but there were no fragments on the specified folder, while it would produce the single output file as specified. The format 300 was both with video and audio when testing. ### Provide verbose output that clearly demonstrates the problem - [X] Run **your** yt-dlp command with **-vU** flag added (`yt-dlp -vU <your command line>`) - [ ] If using API, add `'verbose': True` to `YoutubeDL` params instead - [X] Copy the WHOLE output (starting with `[debug] Command-line config`) and insert it below ### Complete Verbose Output [debug] Command-line config: ['-vU'] [debug] Encodings: locale UTF-8, fs utf-8, pref UTF-8, out utf-8, error utf-8, screen utf-8 [debug] yt-dlp version stable@2024.12.06 from yt-dlp/yt-dlp [4bd265539] (zip) [debug] Python 3.10.12 (CPython x86_64 64bit) - Linux-5.15.0-125-generic-x86_64-with-glibc2.35 (OpenSSL 3.0.2 15 Mar 2022, glibc 2.35) [debug] exe versions: ffmpeg 4.4.2 (setts), ffprobe 4.4.2 [debug] Optional libraries: certifi-2020.06.20, requests-2.25.1, secretstorage-3.3.1, sqlite3-3.37.2, urllib3-1.26.20 [debug] Proxy map: {} [debug] Request Handlers: urllib [debug] Loaded 1837 extractors [debug] Fetching release info: https://api.github.com/repos/yt-dlp/yt-dlp/releases/latest Latest version: stable@2024.12.06 from yt-dlp/yt-dlp yt-dlp is up to date (stable@2024.12.06 from yt-dlp/yt-dlp) ++++++++++++++++++++++++ Below info were the output when downloading ++++++++++++++++++++ [debug] Command-line config: ['--downloader', 'm3u8:native', '--keep-fragments', '-f', '300', '-P', 'hls-live/', '-v', '-o', '%(title)s.%(ext)s', 'YDfiTGGPYCk'] [debug] Encodings: locale UTF-8, fs utf-8, pref UTF-8, out utf-8, error utf-8, screen utf-8 [debug] yt-dlp version stable@2024.12.06 from yt-dlp/yt-dlp [4bd265539] (zip) [debug] Python 3.10.12 (CPython x86_64 64bit) - Linux-5.15.0-125-generic-x86_64-with-glibc2.35 (OpenSSL 3.0.2 15 Mar 2022, glibc 2.35) [debug] exe versions: ffmpeg 4.4.2 (setts), ffprobe 4.4.2 [debug] Optional libraries: certifi-2020.06.20, requests-2.25.1, secretstorage-3.3.1, sqlite3-3.37.2, urllib3-1.26.20 [debug] Proxy map: {} [debug] Request Handlers: urllib [debug] Loaded 1837 extractors [youtube] Extracting URL: YDfiTGGPYCk [youtube] YDfiTGGPYCk: Downloading webpage [youtube] YDfiTGGPYCk: Downloading ios player API JSON [youtube] YDfiTGGPYCk: Downloading mweb player API JSON [youtube] YDfiTGGPYCk: Downloading m3u8 information [youtube] YDfiTGGPYCk: Downloading m3u8 information [debug] Sort order given by extractor: quality, res, fps, hdr:12, source, vcodec, channels, acodec, lang, proto [debug] Formats sorted by: hasvid, ie_pref, quality, res, fps, hdr:12(7), source, vcodec, channels, acodec, lang, proto, size, br, asr, vext, aext, hasaud, id [info] YDfiTGGPYCk: Downloading 1 format(s): 300 [debug] Invoking ffmpeg downloader on "https://manifest.googlevideo.com/api/manifest/hls_playlist/expire/1733687906/ei/AqZVZ9jeHvzVmLAPpb_viA0/ip/211.21.22.118/id/YDfiTGGPYCk.47/itag/300/source/yt_live_broadcast/requiressl/yes/ratebypass/yes/live/1/sgoap/gir%3Dyes%3Bitag%3D140/sgovp/gir%3Dyes%3Bitag%3D298/rqh/1/hdlc/1/hls_chunk_host/rr7---sn-ipoxu-un56.googlevideo.com/xpc/EgVo2aDSNQ%3D%3D/playlist_duration/30/manifest_duration/30/vprv/1/playlist_type/DVR/initcwndbps/802500/met/1733666316,/mh/4y/mm/44/mn/sn-ipoxu-un56/ms/lva/mv/m/mvi/7/pl/24/rms/lva,lva/dover/11/pacing/0/keepalive/yes/fexp/51326932,51331020,51335594,51347746/mt/1733665944/sparams/expire,ei,ip,id,itag,source,requiressl,ratebypass,live,sgoap,sgovp,rqh,hdlc,xpc,playlist_duration,manifest_duration,vprv,playlist_type/sig/AJfQdSswRgIhAPyShYm4xwg8o_0KoGLx0duKkm1kdBH7D5AaH1tKsvkHAiEAlZoD45Ffe9jZmybNkGKQB9TaZqeJafDIOIQIP1s0_As%3D/lsparams/hls_chunk_host,initcwndbps,met,mh,mm,mn,ms,mv,mvi,pl,rms/lsig/AGluJ3MwRQIgAJm5XMlGSveDGl1BD6gwVbjBIXoAXzk1eikOeMPRsi4CIQCwORNk8gI_IsK19mhtyt50AS33O5vr2cMpeGmJKue4Fg%3D%3D/playlist/index.m3u8" [download] Destination: hls-live/LIVE NEWS: LiveNOW FOX 24⧸7 LIVE STREAM 2024-12-08 21_58.mp4 [debug] ffmpeg command line: ffmpeg -y -loglevel verbose -headers 'User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/94.0.4606.41 Safari/537.36 Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8 Accept-Language: en-us,en;q=0.5 Sec-Fetch-Mode: navigate ' -i https://manifest.googlevideo.com/api/manifest/hls_playlist/expire/1733687906/ei/AqZVZ9jeHvzVmLAPpb_viA0/ip/211.21.22.118/id/YDfiTGGPYCk.47/itag/300/source/yt_live_broadcast/requiressl/yes/ratebypass/yes/live/1/sgoap/gir%3Dyes%3Bitag%3D140/sgovp/gir%3Dyes%3Bitag%3D298/rqh/1/hdlc/1/hls_chunk_host/rr7---sn-ipoxu-un56.googlevideo.com/xpc/EgVo2aDSNQ%3D%3D/playlist_duration/30/manifest_duration/30/vprv/1/playlist_type/DVR/initcwndbps/802500/met/1733666316,/mh/4y/mm/44/mn/sn-ipoxu-un56/ms/lva/mv/m/mvi/7/pl/24/rms/lva,lva/dover/11/pacing/0/keepalive/yes/fexp/51326932,51331020,51335594,51347746/mt/1733665944/sparams/expire,ei,ip,id,itag,source,requiressl,ratebypass,live,sgoap,sgovp,rqh,hdlc,xpc,playlist_duration,manifest_duration,vprv,playlist_type/sig/AJfQdSswRgIhAPyShYm4xwg8o_0KoGLx0duKkm1kdBH7D5AaH1tKsvkHAiEAlZoD45Ffe9jZmybNkGKQB9TaZqeJafDIOIQIP1s0_As%3D/lsparams/hls_chunk_host,initcwndbps,met,mh,mm,mn,ms,mv,mvi,pl,rms/lsig/AGluJ3MwRQIgAJm5XMlGSveDGl1BD6gwVbjBIXoAXzk1eikOeMPRsi4CIQCwORNk8gI_IsK19mhtyt50AS33O5vr2cMpeGmJKue4Fg%3D%3D/playlist/index.m3u8 -c copy -f mpegts 'file:hls-live/LIVE NEWS: LiveNOW FOX 24⧸7 LIVE STREAM 2024-12-08 21_58.mp4.part' ffmpeg version 4.4.2-0ubuntu0.22.04.1 Copyright (c) 2000-2021 the FFmpeg developers built with gcc 11 (Ubuntu 11.2.0-19ubuntu1) configuration: --prefix=/usr --extra-version=0ubuntu0.22.04.1 --toolchain=hardened --libdir=/usr/lib/x86_64-linux-gnu --incdir=/usr/include/x86_64-linux-gnu --arch=amd64 --enable-gpl --disable-stripping --enable-gnutls --enable-ladspa --enable-libaom --enable-libass --enable-libbluray --enable-libbs2b --enable-libcaca --enable-libcdio --enable-libcodec2 --enable-libdav1d --enable-libflite --enable-libfontconfig --enable-libfreetype --enable-libfribidi --enable-libgme --enable-libgsm --enable-libjack --enable-libmp3lame --enable-libmysofa --enable-libopenjpeg --enable-libopenmpt --enable-libopus --enable-libpulse --enable-librabbitmq --enable-librubberband --enable-libshine --enable-libsnappy --enable-libsoxr --enable-libspeex --enable-libsrt --enable-libssh --enable-libtheora --enable-libtwolame --enable-libvidstab --enable-libvorbis --enable-libvpx --enable-libwebp --enable-libx265 --enable-libxml2 --enable-libxvid --enable-libzimg --enable-libzmq --enable-libzvbi --enable-lv2 --enable-omx --enable-openal --enable-opencl --enable-opengl --enable-sdl2 --enable-pocketsphinx --enable-librsvg --enable-libmfx --enable-libdc1394 --enable-libdrm --enable-libiec61883 --enable-chromaprint --enable-frei0r --enable-libx264 --enable-shared libavutil 56. 70.100 / 56. 70.100 libavcodec 58.134.100 / 58.134.100 libavformat 58. 76.100 / 58. 76.100 libavdevice 58. 13.100 / 58. 13.100 libavfilter 7.110.100 / 7.110.100 libswscale 5. 9.100 / 5. 9.100 libswresample 3. 9.100 / 3. 9.100 libpostproc 55. 9.100 / 55. 9.100 [tcp @ 0x558771f1bac0] Starting connection attempt to 172.217.19.238 port 443 [tcp @ 0x558771f1bac0] Starting connection attempt to 2a00:1450:4006:80b::200e port 443 [tcp @ 0x558771f1bac0] Connected attempt failed: Network is unreachable [tcp @ 0x558771f1bac0] Successfully connected to 172.217.19.238 port 443 [hls @ 0x558771f16c80] Skip ('#EXT-X-VERSION:3') [hls @ 0x558771f16c80] Skip ('#EXT-X-DISCONTINUITY-SEQUENCE:2') [hls @ 0x558771f16c80] Skip ('#EXT-X-PROGRAM-DATE-TIME:2024-12-08T13:58:00.008+00:00') [hls @ 0x558771f16c80] HLS request for url 'https://rr7---sn-ipoxu-un56.googlevideo.com/videoplayback/id/YDfiTGGPYCk.47/itag/300/source/yt_live_broadcast/expire/1733687906/ei/AqZVZ9jeHvzVmLAPpb_viA0/ip/211.21.22.118/requiressl/yes/ratebypass/yes/live/1/sgoap/gir%3Dyes%3Bitag%3D140/sgovp/gir%3Dyes%3Bitag%3D298/rqh/1/hdlc/1/hls_chunk_host/rr7---sn-ipoxu-un56.googlevideo.com/xpc/EgVo2aDSNQ%3D%3D/playlist_duration/30/manifest_duration/30/vprv/1/playlist_type/DVR/initcwndbps/802500/met/1733666316,/mh/4y/mm/44/mn/sn-ipoxu-un56/ms/lva/mv/m/mvi/7/pl/24/rms/lva,lva/keepalive/yes/fexp/51326932,51331020,51335594,51347746/mt/1733665944/sparams/expire,ei,ip,id,itag,source,requiressl,ratebypass,live,sgoap,sgovp,rqh,hdlc,xpc,playlist_duration,manifest_duration,vprv,playlist_type/sig/AJfQdSswRgIhAPyShYm4xwg8o_0KoGLx0duKkm1kdBH7D5AaH1tKsvkHAiEAlZoD45Ffe9jZmybNkGKQB9TaZqeJafDIOIQIP1s0_As%3D/lsparams/hls_chunk_host,initcwndbps,met,mh,mm,mn,ms,mv,mvi,pl,rms/lsig/AGluJ3MwRQIgAJm5XMlGSveDGl1BD6gwVbjBIXoAXzk1eikOeMPRsi4CIQCwORNk8gI_IsK19mhtyt50AS33O5vr2cMpeGmJKue4Fg%3D%3D/playlist/index.m3u8/sq/32920/goap/lmt%3D18/govp/lmt%3D18/dur/5.005/file/seg.ts', offset 0, playlist 0 [hls @ 0x558771f16c80] Opening 'https://rr7---sn-ipoxu-un56.googlevideo.com/videoplayback/id/YDfiTGGPYCk.47/itag/300/source/yt_live_broadcast/expire/1733687906/ei/AqZVZ9jeHvzVmLAPpb_viA0/ip/211.21.22.118/requiressl/yes/ratebypass/yes/live/1/sgoap/gir%3Dyes%3Bitag%3D140/sgovp/gir%3Dyes%3Bitag%3D298/rqh/1/hdlc/1/hls_chunk_host/rr7---sn-ipoxu-un56.googlevideo.com/xpc/EgVo2aDSNQ%3D%3D/playlist_duration/30/manifest_duration/30/vprv/1/playlist_type/DVR/initcwndbps/802500/met/1733666316,/mh/4y/mm/44/mn/sn-ipoxu-un56/ms/lva/mv/m/mvi/7/pl/24/rms/lva,lva/keepalive/yes/fexp/51326932,51331020,51335594,51347746/mt/1733665944/sparams/expire,ei,ip,id,itag,source,requiressl,ratebypass,live,sgoap,sgovp,rqh,hdlc,xpc,playlist_duration,manifest_duration,vprv,playlist_type/sig/AJfQdSswRgIhAPyShYm4xwg8o_0KoGLx0duKkm1kdBH7D5AaH1tKsvkHAiEAlZoD45Ffe9jZmybNkGKQB9TaZqeJafDIOIQIP1s0_As%3D/lsparams/hls_chunk_host,initcwndbps,met,mh,mm,mn,ms,mv,mvi,pl,rms/lsig/AGluJ3MwRQIgAJm5XMlGSveDGl1BD6gwVbjBIXoAXzk1eikOeMPRsi4CIQCwORNk8gI_IsK19mhtyt50AS33O5vr2cMpeGmJKue4Fg%3D%3D/playlist/index.m3u8/sq/32920/goap/lmt%3D18/govp/lmt%3D18/dur/5.005/file/seg.ts' for reading [tcp @ 0x558772246200] Starting connection attempt to 203.66.182.18 port 443 [tcp @ 0x558772246200] Successfully connected to 203.66.182.18 port 443 [hls @ 0x558771f16c80] HLS request for url 'https://rr7---sn-ipoxu-un56.googlevideo.com/videoplayback/id/YDfiTGGPYCk.47/itag/300/source/yt_live_broadcast/expire/1733687906/ei/AqZVZ9jeHvzVmLAPpb_viA0/ip/211.21.22.118/requiressl/yes/ratebypass/yes/live/1/sgoap/gir%3Dyes%3Bitag%3D140/sgovp/gir%3Dyes%3Bitag%3D298/rqh/1/hdlc/1/hls_chunk_host/rr7---sn-ipoxu-un56.googlevideo.com/xpc/EgVo2aDSNQ%3D%3D/playlist_duration/30/manifest_duration/30/vprv/1/playlist_type/DVR/initcwndbps/802500/met/1733666316,/mh/4y/mm/44/mn/sn-ipoxu-un56/ms/lva/mv/m/mvi/7/pl/24/rms/lva,lva/keepalive/yes/fexp/51326932,51331020,51335594,51347746/mt/1733665944/sparams/expire,ei,ip,id,itag,source,requiressl,ratebypass,live,sgoap,sgovp,rqh,hdlc,xpc,playlist_duration,manifest_duration,vprv,playlist_type/sig/AJfQdSswRgIhAPyShYm4xwg8o_0KoGLx0duKkm1kdBH7D5AaH1tKsvkHAiEAlZoD45Ffe9jZmybNkGKQB9TaZqeJafDIOIQIP1s0_As%3D/lsparams/hls_chunk_host,initcwndbps,met,mh,mm,mn,ms,mv,mvi,pl,rms/lsig/AGluJ3MwRQIgAJm5XMlGSveDGl1BD6gwVbjBIXoAXzk1eikOeMPRsi4CIQCwORNk8gI_IsK19mhtyt50AS33O5vr2cMpeGmJKue4Fg%3D%3D/playlist/index.m3u8/sq/32921/goap/lmt%3D18/govp/lmt%3D18/dur/5.005/file/seg.ts', offset 0, playlist 0 [hls @ 0x558771f16c80] Opening 'https://rr7---sn-ipoxu-un56.googlevideo.com/videoplayback/id/YDfiTGGPYCk.47/itag/300/source/yt_live_broadcast/expire/1733687906/ei/AqZVZ9jeHvzVmLAPpb_viA0/ip/211.21.22.118/requiressl/yes/ratebypass/yes/live/1/sgoap/gir%3Dyes%3Bitag%3D140/sgovp/gir%3Dyes%3Bitag%3D298/rqh/1/hdlc/1/hls_chunk_host/rr7---sn-ipoxu-un56.googlevideo.com/xpc/EgVo2aDSNQ%3D%3D/playlist_duration/30/manifest_duration/30/vprv/1/playlist_type/DVR/initcwndbps/802500/met/1733666316,/mh/4y/mm/44/mn/sn-ipoxu-un56/ms/lva/mv/m/mvi/7/pl/24/rms/lva,lva/keepalive/yes/fexp/51326932,51331020,51335594,51347746/mt/1733665944/sparams/expire,ei,ip,id,itag,source,requiressl,ratebypass,live,sgoap,sgovp,rqh,hdlc,xpc,playlist_duration,manifest_duration,vprv,playlist_type/sig/AJfQdSswRgIhAPyShYm4xwg8o_0KoGLx0duKkm1kdBH7D5AaH1tKsvkHAiEAlZoD45Ffe9jZmybNkGKQB9TaZqeJafDIOIQIP1s0_As%3D/lsparams/hls_chunk_host,initcwndbps,met,mh,mm,mn,ms,mv,mvi,pl,rms/lsig/AGluJ3MwRQIgAJm5XMlGSveDGl1BD6gwVbjBIXoAXzk1eikOeMPRsi4CIQCwORNk8gI_IsK19mhtyt50AS33O5vr2cMpeGmJKue4Fg%3D%3D/playlist/index.m3u8/sq/32921/goap/lmt%3D18/govp/lmt%3D18/dur/5.005/file/seg.ts' for reading [tcp @ 0x558772286100] Starting connection attempt to 203.66.182.18 port 443 [tcp @ 0x558772286100] Successfully connected to 203.66.182.18 port 443 [h264 @ 0x5587725afdc0] Reinit context to 1280x720, pix_fmt: yuv420p Input #0, hls, from 'https://manifest.googlevideo.com/api/manifest/hls_playlist/expire/1733687906/ei/AqZVZ9jeHvzVmLAPpb_viA0/ip/211.21.22.118/id/YDfiTGGPYCk.47/itag/300/source/yt_live_broadcast/requiressl/yes/ratebypass/yes/live/1/sgoap/gir%3Dyes%3Bitag%3D140/sgovp/gir%3Dyes%3Bitag%3D298/rqh/1/hdlc/1/hls_chunk_host/rr7---sn-ipoxu-un56.googlevideo.com/xpc/EgVo2aDSNQ%3D%3D/playlist_duration/30/manifest_duration/30/vprv/1/playlist_type/DVR/initcwndbps/802500/met/1733666316,/mh/4y/mm/44/mn/sn-ipoxu-un56/ms/lva/mv/m/mvi/7/pl/24/rms/lva,lva/dover/11/pacing/0/keepalive/yes/fexp/51326932,51331020,51335594,51347746/mt/1733665944/sparams/expire,ei,ip,id,itag,source,requiressl,ratebypass,live,sgoap,sgovp,rqh,hdlc,xpc,playlist_duration,manifest_duration,vprv,playlist_type/sig/AJfQdSswRgIhAPyShYm4xwg8o_0KoGLx0duKkm1kdBH7D5AaH1tKsvkHAiEAlZoD45Ffe9jZmybNkGKQB9TaZqeJafDIOIQIP1s0_As%3D/lsparams/hls_chunk_host,initcwndbps,met,mh,mm,mn,ms,mv,mvi,pl,rms/lsig/AGluJ3MwRQIgAJm5XMlGSveDGl1BD6gwVbjBIXoAXzk1eikOeMPRsi4CIQCwORNk8gI_IsK19mhtyt50AS33O5vr2cMpeGmJKue4Fg%3D%3D/playlist/index.m3u8': Duration: N/A, start: 69155.644478, bitrate: N/A Program 0 Metadata: variant_bitrate : 0 Stream #0:0: Audio: aac (LC) ([15][0][0][0] / 0x000F), 44100 Hz, stereo, fltp Metadata: variant_bitrate : 0 Stream #0:1: Video: h264 (Main), 1 reference frame ([27][0][0][0] / 0x001B), yuv420p(tv, bt709, left), 1280x720 [SAR 1:1 DAR 16:9], 59.94 fps, 59.94 tbr, 90k tbn, 119.88 tbc Metadata: variant_bitrate : 0 [mpegts @ 0x5587725d8a40] service 1 using PCR in pid=256, pcr_period=83ms [mpegts @ 0x5587725d8a40] muxrate VBR, sdt every 500 ms, pat/pmt every 100 ms Output #0, mpegts, to 'file:hls-live/LIVE NEWS: LiveNOW FOX 24⧸7 LIVE STREAM 2024-12-08 21_58.mp4.part': Metadata: encoder : Lavf58.76.100 Stream #0:0: Video: h264 (Main), 1 reference frame ([27][0][0][0] / 0x001B), yuv420p(tv, bt709, left), 1280x720 (0x0) [SAR 1:1 DAR 16:9], q=2-31, 59.94 fps, 59.94 tbr, 90k tbn, 90k tbc Metadata: variant_bitrate : 0 Stream #0:1: Audio: aac (LC) ([15][0][0][0] / 0x000F), 44100 Hz, stereo, fltp Metadata: variant_bitrate : 0 Stream mapping: Stream #0:1 -> #0:0 (copy) Stream #0:0 -> #0:1 (copy) Press [q] to stop, [?] for help [hls @ 0x558771f16c80] HLS request for url 'https://rr7---sn-ipoxu-un56.googlevideo.com/videoplayback/id/YDfiTGGPYCk.47/itag/300/source/yt_live_broadcast/expire/1733687906/ei/AqZVZ9jeHvzVmLAPpb_viA0/ip/211.21.22.118/requiressl/yes/ratebypass/yes/live/1/sgoap/gir%3Dyes%3Bitag%3D140/sgovp/gir%3Dyes%3Bitag%3D298/rqh/1/hdlc/1/hls_chunk_host/rr7---sn-ipoxu-un56.googlevideo.com/xpc/EgVo2aDSNQ%3D%3D/playlist_duration/30/manifest_duration/30/vprv/1/playlist_type/DVR/initcwndbps/802500/met/1733666316,/mh/4y/mm/44/mn/sn-ipoxu-un56/ms/lva/mv/m/mvi/7/pl/24/rms/lva,lva/keepalive/yes/fexp/51326932,51331020,51335594,51347746/mt/1733665944/sparams/expire,ei,ip,id,itag,source,requiressl,ratebypass,live,sgoap,sgovp,rqh,hdlc,xpc,playlist_duration,manifest_duration,vprv,playlist_type/sig/AJfQdSswRgIhAPyShYm4xwg8o_0KoGLx0duKkm1kdBH7D5AaH1tKsvkHAiEAlZoD45Ffe9jZmybNkGKQB9TaZqeJafDIOIQIP1s0_As%3D/lsparams/hls_chunk_host,initcwndbps,met,mh,mm,mn,ms,mv,mvi,pl,rms/lsig/AGluJ3MwRQIgAJm5XMlGSveDGl1BD6gwVbjBIXoAXzk1eikOeMPRsi4CIQCwORNk8gI_IsK19mhtyt50AS33O5vr2cMpeGmJKue4Fg%3D%3D/playlist/index.m3u8/sq/32922/goap/lmt%3D18/govp/lmt%3D18/dur/5.005/file/seg.ts', offset 0, playlist 0 [https @ 0x558772243040] Opening 'https://rr7---sn-ipoxu-un56.googlevideo.com/videoplayback/id/YDfiTGGPYCk.47/itag/300/source/yt_live_broadcast/expire/1733687906/ei/AqZVZ9jeHvzVmLAPpb_viA0/ip/211.21.22.118/requiressl/yes/ratebypass/yes/live/1/sgoap/gir%3Dyes%3Bitag%3D140/sgovp/gir%3Dyes%3Bitag%3D298/rqh/1/hdlc/1/hls_chunk_host/rr7---sn-ipoxu-un56.googlevideo.com/xpc/EgVo2aDSNQ%3D%3D/playlist_duration/30/manifest_duration/30/vprv/1/playlist_type/DVR/initcwndbps/802500/met/1733666316,/mh/4y/mm/44/mn/sn-ipoxu-un56/ms/lva/mv/m/mvi/7/pl/24/rms/lva,lva/keepalive/yes/fexp/51326932,51331020,51335594,51347746/mt/1733665944/sparams/expire,ei,ip,id,itag,source,requiressl,ratebypass,live,sgoap,sgovp,rqh,hdlc,xpc,playlist_duration,manifest_duration,vprv,playlist_type/sig/AJfQdSswRgIhAPyShYm4xwg8o_0KoGLx0duKkm1kdBH7D5AaH1tKsvkHAiEAlZoD45Ffe9jZmybNkGKQB9TaZqeJafDIOIQIP1s0_As%3D/lsparams/hls_chunk_host,initcwndbps,met,mh,mm,mn,ms,mv,mvi,pl,rms/lsig/AGluJ3MwRQIgAJm5XMlGSveDGl1BD6gwVbjBIXoAXzk1eikOeMPRsi4CIQCwORNk8gI_IsK19mhtyt50AS33O5vr2cMpeGmJKue4Fg%3D%3D/playlist/index.m3u8/sq/32922/goap/lmt%3D18/govp/lmt%3D18/dur/5.005/file/seg.ts' for reading [tcp @ 0x558772c030c0] Starting connection attempt to 172.217.19.238 port 443ts/s speed=2.43x [tcp @ 0x558772c030c0] Starting connection attempt to 2a00:1450:4006:80b::200e port 443 [tcp @ 0x558772c030c0] Connected attempt failed: Network is unreachable [tcp @ 0x558772c030c0] Successfully connected to 172.217.19.238 port 443 [hls @ 0x558771f16c80] Skip ('#EXT-X-VERSION:3') [hls @ 0x558771f16c80] Skip ('#EXT-X-DISCONTINUITY-SEQUENCE:2') [hls @ 0x558771f16c80] Skip ('#EXT-X-PROGRAM-DATE-TIME:2024-12-08T13:58:10.018+00:00') [hls @ 0x558771f16c80] HLS request for url 'https://rr7---sn-ipoxu-un56.googlevideo.com/videoplayback/id/YDfiTGGPYCk.47/itag/300/source/yt_live_broadcast/expire/1733687906/ei/AqZVZ9jeHvzVmLAPpb_viA0/ip/211.21.22.118/requiressl/yes/ratebypass/yes/live/1/sgoap/gir%3Dyes%3Bitag%3D140/sgovp/gir%3Dyes%3Bitag%3D298/rqh/1/hdlc/1/hls_chunk_host/rr7---sn-ipoxu-un56.googlevideo.com/xpc/EgVo2aDSNQ%3D%3D/playlist_duration/30/manifest_duration/30/vprv/1/playlist_type/DVR/initcwndbps/802500/met/1733666316,/mh/4y/mm/44/mn/sn-ipoxu-un56/ms/lva/mv/m/mvi/7/pl/24/rms/lva,lva/keepalive/yes/fexp/51326932,51331020,51335594,51347746/mt/1733665944/sparams/expire,ei,ip,id,itag,source,requiressl,ratebypass,live,sgoap,sgovp,rqh,hdlc,xpc,playlist_duration,manifest_duration,vprv,playlist_type/sig/AJfQdSswRgIhAPyShYm4xwg8o_0KoGLx0duKkm1kdBH7D5AaH1tKsvkHAiEAlZoD45Ffe9jZmybNkGKQB9TaZqeJafDIOIQIP1s0_As%3D/lsparams/hls_chunk_host,initcwndbps,met,mh,mm,mn,ms,mv,mvi,pl,rms/lsig/AGluJ3MwRQIgAJm5XMlGSveDGl1BD6gwVbjBIXoAXzk1eikOeMPRsi4CIQCwORNk8gI_IsK19mhtyt50AS33O5vr2cMpeGmJKue4Fg%3D%3D/playlist/index.m3u8/sq/32923/goap/lmt%3D18/govp/lmt%3D18/dur/5.005/file/seg.ts', offset 0, playlist 0 [https @ 0x55877227ab80] Opening 'https://rr7---sn-ipoxu-un56.googlevideo.com/videoplayback/id/YDfiTGGPYCk.47/itag/300/source/yt_live_broadcast/expire/1733687906/ei/AqZVZ9jeHvzVmLAPpb_viA0/ip/211.21.22.118/requiressl/yes/ratebypass/yes/live/1/sgoap/gir%3Dyes%3Bitag%3D140/sgovp/gir%3Dyes%3Bitag%3D298/rqh/1/hdlc/1/hls_chunk_host/rr7---sn-ipoxu-un56.googlevideo.com/xpc/EgVo2aDSNQ%3D%3D/playlist_duration/30/manifest_duration/30/vprv/1/playlist_type/DVR/initcwndbps/802500/met/1733666316,/mh/4y/mm/44/mn/sn-ipoxu-un56/ms/lva/mv/m/mvi/7/pl/24/rms/lva,lva/keepalive/yes/fexp/51326932,51331020,51335594,51347746/mt/1733665944/sparams/expire,ei,ip,id,itag,source,requiressl,ratebypass,live,sgoap,sgovp,rqh,hdlc,xpc,playlist_duration,manifest_duration,vprv,playlist_type/sig/AJfQdSswRgIhAPyShYm4xwg8o_0KoGLx0duKkm1kdBH7D5AaH1tKsvkHAiEAlZoD45Ffe9jZmybNkGKQB9TaZqeJafDIOIQIP1s0_As%3D/lsparams/hls_chunk_host,initcwndbps,met,mh,mm,mn,ms,mv,mvi,pl,rms/lsig/AGluJ3MwRQIgAJm5XMlGSveDGl1BD6gwVbjBIXoAXzk1eikOeMPRsi4CIQCwORNk8gI_IsK19mhtyt50AS33O5vr2cMpeGmJKue4Fg%3D%3D/playlist/index.m3u8/sq/32923/goap/lmt%3D18/govp/lmt%3D18/dur/5.005/file/seg.ts' for reading [hls @ 0x558771f16c80] HLS request for url 'https://rr7---sn-ipoxu-un56.googlevideo.com/videoplayback/id/YDfiTGGPYCk.47/itag/300/source/yt_live_broadcast/expire/1733687906/ei/AqZVZ9jeHvzVmLAPpb_viA0/ip/211.21.22.118/requiressl/yes/ratebypass/yes/live/1/sgoap/gir%3Dyes%3Bitag%3D140/sgovp/gir%3Dyes%3Bitag%3D298/rqh/1/hdlc/1/hls_chunk_host/rr7---sn-ipoxu-un56.googlevideo.com/xpc/EgVo2aDSNQ%3D%3D/playlist_duration/30/manifest_duration/30/vprv/1/playlist_type/DVR/initcwndbps/802500/met/1733666316,/mh/4y/mm/44/mn/sn-ipoxu-un56/ms/lva/mv/m/mvi/7/pl/24/rms/lva,lva/keepalive/yes/fexp/51326932,51331020,51335594,51347746/mt/1733665944/sparams/expire,ei,ip,id,itag,source,requiressl,ratebypass,live,sgoap,sgovp,rqh,hdlc,xpc,playlist_duration,manifest_duration,vprv,playlist_type/sig/AJfQdSswRgIhAPyShYm4xwg8o_0KoGLx0duKkm1kdBH7D5AaH1tKsvkHAiEAlZoD45Ffe9jZmybNkGKQB9TaZqeJafDIOIQIP1s0_As%3D/lsparams/hls_chunk_host,initcwndbps,met,mh,mm,mn,ms,mv,mvi,pl,rms/lsig/AGluJ3MwRQIgAJm5XMlGSveDGl1BD6gwVbjBIXoAXzk1eikOeMPRsi4CIQCwORNk8gI_IsK19mhtyt50AS33O5vr2cMpeGmJKue4Fg%3D%3D/playlist/index.m3u8/sq/32924/goap/lmt%3D18/govp/lmt%3D18/dur/5.005/file/seg.ts', offset 0, playlist 0 [https @ 0x558772243040] Opening 'https://rr7---sn-ipoxu-un56.googlevideo.com/videoplayback/id/YDfiTGGPYCk.47/itag/300/source/yt_live_broadcast/expire/1733687906/ei/AqZVZ9jeHvzVmLAPpb_viA0/ip/211.21.22.118/requiressl/yes/ratebypass/yes/live/1/sgoap/gir%3Dyes%3Bitag%3D140/sgovp/gir%3Dyes%3Bitag%3D298/rqh/1/hdlc/1/hls_chunk_host/rr7---sn-ipoxu-un56.googlevideo.com/xpc/EgVo2aDSNQ%3D%3D/playlist_duration/30/manifest_duration/30/vprv/1/playlist_type/DVR/initcwndbps/802500/met/1733666316,/mh/4y/mm/44/mn/sn-ipoxu-un56/ms/lva/mv/m/mvi/7/pl/24/rms/lva,lva/keepalive/yes/fexp/51326932,51331020,51335594,51347746/mt/1733665944/sparams/expire,ei,ip,id,itag,source,requiressl,ratebypass,live,sgoap,sgovp,rqh,hdlc,xpc,playlist_duration,manifest_duration,vprv,playlist_type/sig/AJfQdSswRgIhAPyShYm4xwg8o_0KoGLx0duKkm1kdBH7D5AaH1tKsvkHAiEAlZoD45Ffe9jZmybNkGKQB9TaZqeJafDIOIQIP1s0_As%3D/lsparams/hls_chunk_host,initcwndbps,met,mh,mm,mn,ms,mv,mvi,pl,rms/lsig/AGluJ3MwRQIgAJm5XMlGSveDGl1BD6gwVbjBIXoAXzk1eikOeMPRsi4CIQCwORNk8gI_IsK19mhtyt50AS33O5vr2cMpeGmJKue4Fg%3D%3D/playlist/index.m3u8/sq/32924/goap/lmt%3D18/govp/lmt%3D18/dur/5.005/file/seg.ts' for reading [https @ 0x558772b7c240] Opening 'https://manifest.googlevideo.com/api/manifest/hls_playlist/expire/1733687906/ei/AqZVZ9jeHvzVmLAPpb_viA0/ip/211.21.22.118/id/YDfiTGGPYCk.47/itag/300/source/yt_live_broadcast/requiressl/yes/ratebypass/yes/live/1/sgoap/gir%3Dyes%3Bitag%3D140/sgovp/gir%3Dyes%3Bitag%3D298/rqh/1/hdlc/1/hls_chunk_host/rr7---sn-ipoxu-un56.googlevideo.com/xpc/EgVo2aDSNQ%3D%3D/playlist_duration/30/manifest_duration/30/vprv/1/playlist_type/DVR/initcwndbps/802500/met/1733666316,/mh/4y/mm/44/mn/sn-ipoxu-un56/ms/lva/mv/m/mvi/7/pl/24/rms/lva,lva/dover/11/pacing/0/keepalive/yes/fexp/51326932,51331020,51335594,51347746/mt/1733665944/sparams/expire,ei,ip,id,itag,source,requiressl,ratebypass,live,sgoap,sgovp,rqh,hdlc,xpc,playlist_duration,manifest_duration,vprv,playlist_type/sig/AJfQdSswRgIhAPyShYm4xwg8o_0KoGLx0duKkm1kdBH7D5AaH1tKsvkHAiEAlZoD45Ffe9jZmybNkGKQB9TaZqeJafDIOIQIP1s0_As%3D/lsparams/hls_chunk_host,initcwndbps,met,mh,mm,mn,ms,mv,mvi,pl,rms/lsig/AGluJ3MwRQIgAJm5XMlGSveDGl1BD6gwVbjBIXoAXzk1eikOeMPRsi4CIQCwORNk8gI_IsK19mhtyt50AS33O5vr2cMpeGmJKue4Fg%3D%3D/playlist/index.m3u8' for reading [hls @ 0x558771f16c80] Skip ('#EXT-X-VERSION:3') [hls @ 0x558771f16c80] Skip ('#EXT-X-DISCONTINUITY-SEQUENCE:2') [hls @ 0x558771f16c80] Skip ('#EXT-X-PROGRAM-DATE-TIME:2024-12-08T13:58:20.028+00:00') [hls @ 0x558771f16c80] HLS request for url 'https://rr7---sn-ipoxu-un56.googlevideo.com/videoplayback/id/YDfiTGGPYCk.47/itag/300/source/yt_live_broadcast/expire/1733687906/ei/AqZVZ9jeHvzVmLAPpb_viA0/ip/211.21.22.118/requiressl/yes/ratebypass/yes/live/1/sgoap/gir%3Dyes%3Bitag%3D140/sgovp/gir%3Dyes%3Bitag%3D298/rqh/1/hdlc/1/hls_chunk_host/rr7---sn-ipoxu-un56.googlevideo.com/xpc/EgVo2aDSNQ%3D%3D/playlist_duration/30/manifest_duration/30/vprv/1/playlist_type/DVR/initcwndbps/802500/met/1733666316,/mh/4y/mm/44/mn/sn-ipoxu-un56/ms/lva/mv/m/mvi/7/pl/24/rms/lva,lva/keepalive/yes/fexp/51326932,51331020,51335594,51347746/mt/1733665944/sparams/expire,ei,ip,id,itag,source,requiressl,ratebypass,live,sgoap,sgovp,rqh,hdlc,xpc,playlist_duration,manifest_duration,vprv,playlist_type/sig/AJfQdSswRgIhAPyShYm4xwg8o_0KoGLx0duKkm1kdBH7D5AaH1tKsvkHAiEAlZoD45Ffe9jZmybNkGKQB9TaZqeJafDIOIQIP1s0_As%3D/lsparams/hls_chunk_host,initcwndbps,met,mh,mm,mn,ms,mv,mvi,pl,rms/lsig/AGluJ3MwRQIgAJm5XMlGSveDGl1BD6gwVbjBIXoAXzk1eikOeMPRsi4CIQCwORNk8gI_IsK19mhtyt50AS33O5vr2cMpeGmJKue4Fg%3D%3D/playlist/index.m3u8/sq/32925/goap/lmt%3D18/govp/lmt%3D18/dur/5.005/file/seg.ts', offset 0, playlist 0 [https @ 0x558772243040] Opening 'https://rr7---sn-ipoxu-un56.googlevideo.com/videoplayback/id/YDfiTGGPYCk.47/itag/300/source/yt_live_broadcast/expire/1733687906/ei/AqZVZ9jeHvzVmLAPpb_viA0/ip/211.21.22.118/requiressl/yes/ratebypass/yes/live/1/sgoap/gir%3Dyes%3Bitag%3D140/sgovp/gir%3Dyes%3Bitag%3D298/rqh/1/hdlc/1/hls_chunk_host/rr7---sn-ipoxu-un56.googlevideo.com/xpc/EgVo2aDSNQ%3D%3D/playlist_duration/30/manifest_duration/30/vprv/1/playlist_type/DVR/initcwndbps/802500/met/1733666316,/mh/4y/mm/44/mn/sn-ipoxu-un56/ms/lva/mv/m/mvi/7/pl/24/rms/lva,lva/keepalive/yes/fexp/51326932,51331020,51335594,51347746/mt/1733665944/sparams/expire,ei,ip,id,itag,source,requiressl,ratebypass,live,sgoap,sgovp,rqh,hdlc,xpc,playlist_duration,manifest_duration,vprv,playlist_type/sig/AJfQdSswRgIhAPyShYm4xwg8o_0KoGLx0duKkm1kdBH7D5AaH1tKsvkHAiEAlZoD45Ffe9jZmybNkGKQB9TaZqeJafDIOIQIP1s0_As%3D/lsparams/hls_chunk_host,initcwndbps,met,mh,mm,mn,ms,mv,mvi,pl,rms/lsig/AGluJ3MwRQIgAJm5XMlGSveDGl1BD6gwVbjBIXoAXzk1eikOeMPRsi4CIQCwORNk8gI_IsK19mhtyt50AS33O5vr2cMpeGmJKue4Fg%3D%3D/playlist/index.m3u8/sq/32925/goap/lmt%3D18/govp/lmt%3D18/dur/5.005/file/seg.ts' for reading [hls @ 0x558771f16c80] HLS request for url 'https://rr7---sn-ipoxu-un56.googlevideo.com/videoplayback/id/YDfiTGGPYCk.47/itag/300/source/yt_live_broadcast/expire/1733687906/ei/AqZVZ9jeHvzVmLAPpb_viA0/ip/211.21.22.118/requiressl/yes/ratebypass/yes/live/1/sgoap/gir%3Dyes%3Bitag%3D140/sgovp/gir%3Dyes%3Bitag%3D298/rqh/1/hdlc/1/hls_chunk_host/rr7---sn-ipoxu-un56.googlevideo.com/xpc/EgVo2aDSNQ%3D%3D/playlist_duration/30/manifest_duration/30/vprv/1/playlist_type/DVR/initcwndbps/802500/met/1733666316,/mh/4y/mm/44/mn/sn-ipoxu-un56/ms/lva/mv/m/mvi/7/pl/24/rms/lva,lva/keepalive/yes/fexp/51326932,51331020,51335594,51347746/mt/1733665944/sparams/expire,ei,ip,id,itag,source,requiressl,ratebypass,live,sgoap,sgovp,rqh,hdlc,xpc,playlist_duration,manifest_duration,vprv,playlist_type/sig/AJfQdSswRgIhAPyShYm4xwg8o_0KoGLx0duKkm1kdBH7D5AaH1tKsvkHAiEAlZoD45Ffe9jZmybNkGKQB9TaZqeJafDIOIQIP1s0_As%3D/lsparams/hls_chunk_host,initcwndbps,met,mh,mm,mn,ms,mv,mvi,pl,rms/lsig/AGluJ3MwRQIgAJm5XMlGSveDGl1BD6gwVbjBIXoAXzk1eikOeMPRsi4CIQCwORNk8gI_IsK19mhtyt50AS33O5vr2cMpeGmJKue4Fg%3D%3D/playlist/index.m3u8/sq/32926/goap/lmt%3D18/govp/lmt%3D18/dur/5.005/file/seg.ts', offset 0, playlist 0 [https @ 0x55877227ab80] Opening 'https://rr7---sn-ipoxu-un56.googlevideo.com/videoplayback/id/YDfiTGGPYCk.47/itag/300/source/yt_live_broadcast/expire/1733687906/ei/AqZVZ9jeHvzVmLAPpb_viA0/ip/211.21.22.118/requiressl/yes/ratebypass/yes/live/1/sgoap/gir%3Dyes%3Bitag%3D140/sgovp/gir%3Dyes%3Bitag%3D298/rqh/1/hdlc/1/hls_chunk_host/rr7---sn-ipoxu-un56.googlevideo.com/xpc/EgVo2aDSNQ%3D%3D/playlist_duration/30/manifest_duration/30/vprv/1/playlist_type/DVR/initcwndbps/802500/met/1733666316,/mh/4y/mm/44/mn/sn-ipoxu-un56/ms/lva/mv/m/mvi/7/pl/24/rms/lva,lva/keepalive/yes/fexp/51326932,51331020,51335594,51347746/mt/1733665944/sparams/expire,ei,ip,id,itag,source,requiressl,ratebypass,live,sgoap,sgovp,rqh,hdlc,xpc,playlist_duration,manifest_duration,vprv,playlist_type/sig/AJfQdSswRgIhAPyShYm4xwg8o_0KoGLx0duKkm1kdBH7D5AaH1tKsvkHAiEAlZoD45Ffe9jZmybNkGKQB9TaZqeJafDIOIQIP1s0_As%3D/lsparams/hls_chunk_host,initcwndbps,met,mh,mm,mn,ms,mv,mvi,pl,rms/lsig/AGluJ3MwRQIgAJm5XMlGSveDGl1BD6gwVbjBIXoAXzk1eikOeMPRsi4CIQCwORNk8gI_IsK19mhtyt50AS33O5vr2cMpeGmJKue4Fg%3D%3D/playlist/index.m3u8/sq/32926/goap/lmt%3D18/govp/lmt%3D18/dur/5.005/file/seg.ts' for reading [https @ 0x558772b7c240] Opening 'https://manifest.googlevideo.com/api/manifest/hls_playlist/expire/1733687906/ei/AqZVZ9jeHvzVmLAPpb_viA0/ip/211.21.22.118/id/YDfiTGGPYCk.47/itag/300/source/yt_live_broadcast/requiressl/yes/ratebypass/yes/live/1/sgoap/gir%3Dyes%3Bitag%3D140/sgovp/gir%3Dyes%3Bitag%3D298/rqh/1/hdlc/1/hls_chunk_host/rr7---sn-ipoxu-un56.googlevideo.com/xpc/EgVo2aDSNQ%3D%3D/playlist_duration/30/manifest_duration/30/vprv/1/playlist_type/DVR/initcwndbps/802500/met/1733666316,/mh/4y/mm/44/mn/sn-ipoxu-un56/ms/lva/mv/m/mvi/7/pl/24/rms/lva,lva/dover/11/pacing/0/keepalive/yes/fexp/51326932,51331020,51335594,51347746/mt/1733665944/sparams/expire,ei,ip,id,itag,source,requiressl,ratebypass,live,sgoap,sgovp,rqh,hdlc,xpc,playlist_duration,manifest_duration,vprv,playlist_type/sig/AJfQdSswRgIhAPyShYm4xwg8o_0KoGLx0duKkm1kdBH7D5AaH1tKsvkHAiEAlZoD45Ffe9jZmybNkGKQB9TaZqeJafDIOIQIP1s0_As%3D/lsparams/hls_chunk_host,initcwndbps,met,mh,mm,mn,ms,mv,mvi,pl,rms/lsig/AGluJ3MwRQIgAJm5XMlGSveDGl1BD6gwVbjBIXoAXzk1eikOeMPRsi4CIQCwORNk8gI_IsK19mhtyt50AS33O5vr2cMpeGmJKue4Fg%3D%3D/playlist/index.m3u8' for reading [hls @ 0x558771f16c80] Skip ('#EXT-X-VERSION:3') [hls @ 0x558771f16c80] Skip ('#EXT-X-DISCONTINUITY-SEQUENCE:2') [hls @ 0x558771f16c80] Skip ('#EXT-X-PROGRAM-DATE-TIME:2024-12-08T13:58:25.033+00:00') [hls @ 0x558771f16c80] HLS request for url 'https://rr7---sn-ipoxu-un56.googlevideo.com/videoplayback/id/YDfiTGGPYCk.47/itag/300/source/yt_live_broadcast/expire/1733687906/ei/AqZVZ9jeHvzVmLAPpb_viA0/ip/211.21.22.118/requiressl/yes/ratebypass/yes/live/1/sgoap/gir%3Dyes%3Bitag%3D140/sgovp/gir%3Dyes%3Bitag%3D298/rqh/1/hdlc/1/hls_chunk_host/rr7---sn-ipoxu-un56.googlevideo.com/xpc/EgVo2aDSNQ%3D%3D/playlist_duration/30/manifest_duration/30/vprv/1/playlist_type/DVR/initcwndbps/802500/met/1733666316,/mh/4y/mm/44/mn/sn-ipoxu-un56/ms/lva/mv/m/mvi/7/pl/24/rms/lva,lva/keepalive/yes/fexp/51326932,51331020,51335594,51347746/mt/1733665944/sparams/expire,ei,ip,id,itag,source,requiressl,ratebypass,live,sgoap,sgovp,rqh,hdlc,xpc,playlist_duration,manifest_duration,vprv,playlist_type/sig/AJfQdSswRgIhAPyShYm4xwg8o_0KoGLx0duKkm1kdBH7D5AaH1tKsvkHAiEAlZoD45Ffe9jZmybNkGKQB9TaZqeJafDIOIQIP1s0_As%3D/lsparams/hls_chunk_host,initcwndbps,met,mh,mm,mn,ms,mv,mvi,pl,rms/lsig/AGluJ3MwRQIgAJm5XMlGSveDGl1BD6gwVbjBIXoAXzk1eikOeMPRsi4CIQCwORNk8gI_IsK19mhtyt50AS33O5vr2cMpeGmJKue4Fg%3D%3D/playlist/index.m3u8/sq/32927/goap/lmt%3D18/govp/lmt%3D18/dur/5.005/file/seg.ts', offset 0, playlist 0 [https @ 0x558772243040] Opening 'https://rr7---sn-ipoxu-un56.googlevideo.com/videoplayback/id/YDfiTGGPYCk.47/itag/300/source/yt_live_broadcast/expire/1733687906/ei/AqZVZ9jeHvzVmLAPpb_viA0/ip/211.21.22.118/requiressl/yes/ratebypass/yes/live/1/sgoap/gir%3Dyes%3Bitag%3D140/sgovp/gir%3Dyes%3Bitag%3D298/rqh/1/hdlc/1/hls_chunk_host/rr7---sn-ipoxu-un56.googlevideo.com/xpc/EgVo2aDSNQ%3D%3D/playlist_duration/30/manifest_duration/30/vprv/1/playlist_type/DVR/initcwndbps/802500/met/1733666316,/mh/4y/mm/44/mn/sn-ipoxu-un56/ms/lva/mv/m/mvi/7/pl/24/rms/lva,lva/keepalive/yes/fexp/51326932,51331020,51335594,51347746/mt/1733665944/sparams/expire,ei,ip,id,itag,source,requiressl,ratebypass,live,sgoap,sgovp,rqh,hdlc,xpc,playlist_duration,manifest_duration,vprv,playlist_type/sig/AJfQdSswRgIhAPyShYm4xwg8o_0KoGLx0duKkm1kdBH7D5AaH1tKsvkHAiEAlZoD45Ffe9jZmybNkGKQB9TaZqeJafDIOIQIP1s0_As%3D/lsparams/hls_chunk_host,initcwndbps,met,mh,mm,mn,ms,mv,mvi,pl,rms/lsig/AGluJ3MwRQIgAJm5XMlGSveDGl1BD6gwVbjBIXoAXzk1eikOeMPRsi4CIQCwORNk8gI_IsK19mhtyt50AS33O5vr2cMpeGmJKue4Fg%3D%3D/playlist/index.m3u8/sq/32927/goap/lmt%3D18/govp/lmt%3D18/dur/5.005/file/seg.ts' for reading [https @ 0x558772b7c240] Opening 'https://manifest.googlevideo.com/api/manifest/hls_playlist/expire/1733687906/ei/AqZVZ9jeHvzVmLAPpb_viA0/ip/211.21.22.118/id/YDfiTGGPYCk.47/itag/300/source/yt_live_broadcast/requiressl/yes/ratebypass/yes/live/1/sgoap/gir%3Dyes%3Bitag%3D140/sgovp/gir%3Dyes%3Bitag%3D298/rqh/1/hdlc/1/hls_chunk_host/rr7---sn-ipoxu-un56.googlevideo.com/xpc/EgVo2aDSNQ%3D%3D/playlist_duration/30/manifest_duration/30/vprv/1/playlist_type/DVR/initcwndbps/802500/met/1733666316,/mh/4y/mm/44/mn/sn-ipoxu-un56/ms/lva/mv/m/mvi/7/pl/24/rms/lva,lva/dover/11/pacing/0/keepalive/yes/fexp/51326932,51331020,51335594,51347746/mt/1733665944/sparams/expire,ei,ip,id,itag,source,requiressl,ratebypass,live,sgoap,sgovp,rqh,hdlc,xpc,playlist_duration,manifest_duration,vprv,playlist_type/sig/AJfQdSswRgIhAPyShYm4xwg8o_0KoGLx0duKkm1kdBH7D5AaH1tKsvkHAiEAlZoD45Ffe9jZmybNkGKQB9TaZqeJafDIOIQIP1s0_As%3D/lsparams/hls_chunk_host,initcwndbps,met,mh,mm,mn,ms,mv,mvi,pl,rms/lsig/AGluJ3MwRQIgAJm5XMlGSveDGl1BD6gwVbjBIXoAXzk1eikOeMPRsi4CIQCwORNk8gI_IsK19mhtyt50AS33O5vr2cMpeGmJKue4Fg%3D%3D/playlist/index.m3u8' for reading [hls @ 0x558771f16c80] Skip ('#EXT-X-VERSION:3') [hls @ 0x558771f16c80] Skip ('#EXT-X-DISCONTINUITY-SEQUENCE:2') [hls @ 0x558771f16c80] Skip ('#EXT-X-PROGRAM-DATE-TIME:2024-12-08T13:58:30.038+00:00') [hls @ 0x558771f16c80] HLS request for url 'https://rr7---sn-ipoxu-un56.googlevideo.com/videoplayback/id/YDfiTGGPYCk.47/itag/300/source/yt_live_broadcast/expire/1733687906/ei/AqZVZ9jeHvzVmLAPpb_viA0/ip/211.21.22.118/requiressl/yes/ratebypass/yes/live/1/sgoap/gir%3Dyes%3Bitag%3D140/sgovp/gir%3Dyes%3Bitag%3D298/rqh/1/hdlc/1/hls_chunk_host/rr7---sn-ipoxu-un56.googlevideo.com/xpc/EgVo2aDSNQ%3D%3D/playlist_duration/30/manifest_duration/30/vprv/1/playlist_type/DVR/initcwndbps/802500/met/1733666316,/mh/4y/mm/44/mn/sn-ipoxu-un56/ms/lva/mv/m/mvi/7/pl/24/rms/lva,lva/keepalive/yes/fexp/51326932,51331020,51335594,51347746/mt/1733665944/sparams/expire,ei,ip,id,itag,source,requiressl,ratebypass,live,sgoap,sgovp,rqh,hdlc,xpc,playlist_duration,manifest_duration,vprv,playlist_type/sig/AJfQdSswRgIhAPyShYm4xwg8o_0KoGLx0duKkm1kdBH7D5AaH1tKsvkHAiEAlZoD45Ffe9jZmybNkGKQB9TaZqeJafDIOIQIP1s0_As%3D/lsparams/hls_chunk_host,initcwndbps,met,mh,mm,mn,ms,mv,mvi,pl,rms/lsig/AGluJ3MwRQIgAJm5XMlGSveDGl1BD6gwVbjBIXoAXzk1eikOeMPRsi4CIQCwORNk8gI_IsK19mhtyt50AS33O5vr2cMpeGmJKue4Fg%3D%3D/playlist/index.m3u8/sq/32928/goap/lmt%3D18/govp/lmt%3D18/dur/4.938/file/seg.ts', offset 0, playlist 0 [https @ 0x558772243040] Opening 'https://rr7---sn-ipoxu-un56.googlevideo.com/videoplayback/id/YDfiTGGPYCk.47/itag/300/source/yt_live_broadcast/expire/1733687906/ei/AqZVZ9jeHvzVmLAPpb_viA0/ip/211.21.22.118/requiressl/yes/ratebypass/yes/live/1/sgoap/gir%3Dyes%3Bitag%3D140/sgovp/gir%3Dyes%3Bitag%3D298/rqh/1/hdlc/1/hls_chunk_host/rr7---sn-ipoxu-un56.googlevideo.com/xpc/EgVo2aDSNQ%3D%3D/playlist_duration/30/manifest_duration/30/vprv/1/playlist_type/DVR/initcwndbps/802500/met/1733666316,/mh/4y/mm/44/mn/sn-ipoxu-un56/ms/lva/mv/m/mvi/7/pl/24/rms/lva,lva/keepalive/yes/fexp/51326932,51331020,51335594,51347746/mt/1733665944/sparams/expire,ei,ip,id,itag,source,requiressl,ratebypass,live,sgoap,sgovp,rqh,hdlc,xpc,playlist_duration,manifest_duration,vprv,playlist_type/sig/AJfQdSswRgIhAPyShYm4xwg8o_0KoGLx0duKkm1kdBH7D5AaH1tKsvkHAiEAlZoD45Ffe9jZmybNkGKQB9TaZqeJafDIOIQIP1s0_As%3D/lsparams/hls_chunk_host,initcwndbps,met,mh,mm,mn,ms,mv,mvi,pl,rms/lsig/AGluJ3MwRQIgAJm5XMlGSveDGl1BD6gwVbjBIXoAXzk1eikOeMPRsi4CIQCwORNk8gI_IsK19mhtyt50AS33O5vr2cMpeGmJKue4Fg%3D%3D/playlist/index.m3u8/sq/32928/goap/lmt%3D18/govp/lmt%3D18/dur/4.938/file/seg.ts' for reading [hls @ 0x558771f16c80] HLS request for url 'https://rr7---sn-ipoxu-un56.googlevideo.com/videoplayback/id/YDfiTGGPYCk.47/itag/300/source/yt_live_broadcast/expire/1733687906/ei/AqZVZ9jeHvzVmLAPpb_viA0/ip/211.21.22.118/requiressl/yes/ratebypass/yes/live/1/sgoap/gir%3Dyes%3Bitag%3D140/sgovp/gir%3Dyes%3Bitag%3D298/rqh/1/hdlc/1/hls_chunk_host/rr7---sn-ipoxu-un56.googlevideo.com/xpc/EgVo2aDSNQ%3D%3D/playlist_duration/30/manifest_duration/30/vprv/1/playlist_type/DVR/initcwndbps/802500/met/1733666316,/mh/4y/mm/44/mn/sn-ipoxu-un56/ms/lva/mv/m/mvi/7/pl/24/rms/lva,lva/keepalive/yes/fexp/51326932,51331020,51335594,51347746/mt/1733665944/sparams/expire,ei,ip,id,itag,source,requiressl,ratebypass,live,sgoap,sgovp,rqh,hdlc,xpc,playlist_duration,manifest_duration,vprv,playlist_type/sig/AJfQdSswRgIhAPyShYm4xwg8o_0KoGLx0duKkm1kdBH7D5AaH1tKsvkHAiEAlZoD45Ffe9jZmybNkGKQB9TaZqeJafDIOIQIP1s0_As%3D/lsparams/hls_chunk_host,initcwndbps,met,mh,mm,mn,ms,mv,mvi,pl,rms/lsig/AGluJ3MwRQIgAJm5XMlGSveDGl1BD6gwVbjBIXoAXzk1eikOeMPRsi4CIQCwORNk8gI_IsK19mhtyt50AS33O5vr2cMpeGmJKue4Fg%3D%3D/playlist/index.m3u8/sq/32929/goap/lmt%3D18/govp/lmt%3D18/dur/5.005/file/seg.ts', offset 0, playlist 0 [https @ 0x55877227ab80] Opening 'https://rr7---sn-ipoxu-un56.googlevideo.com/videoplayback/id/YDfiTGGPYCk.47/itag/300/source/yt_live_broadcast/expire/1733687906/ei/AqZVZ9jeHvzVmLAPpb_viA0/ip/211.21.22.118/requiressl/yes/ratebypass/yes/live/1/sgoap/gir%3Dyes%3Bitag%3D140/sgovp/gir%3Dyes%3Bitag%3D298/rqh/1/hdlc/1/hls_chunk_host/rr7---sn-ipoxu-un56.googlevideo.com/xpc/EgVo2aDSNQ%3D%3D/playlist_duration/30/manifest_duration/30/vprv/1/playlist_type/DVR/initcwndbps/802500/met/1733666316,/mh/4y/mm/44/mn/sn-ipoxu-un56/ms/lva/mv/m/mvi/7/pl/24/rms/lva,lva/keepalive/yes/fexp/51326932,51331020,51335594,51347746/mt/1733665944/sparams/expire,ei,ip,id,itag,source,requiressl,ratebypass,live,sgoap,sgovp,rqh,hdlc,xpc,playlist_duration,manifest_duration,vprv,playlist_type/sig/AJfQdSswRgIhAPyShYm4xwg8o_0KoGLx0duKkm1kdBH7D5AaH1tKsvkHAiEAlZoD45Ffe9jZmybNkGKQB9TaZqeJafDIOIQIP1s0_As%3D/lsparams/hls_chunk_host,initcwndbps,met,mh,mm,mn,ms,mv,mvi,pl,rms/lsig/AGluJ3MwRQIgAJm5XMlGSveDGl1BD6gwVbjBIXoAXzk1eikOeMPRsi4CIQCwORNk8gI_IsK19mhtyt50AS33O5vr2cMpeGmJKue4Fg%3D%3D/playlist/index.m3u8/sq/32929/goap/lmt%3D18/govp/lmt%3D18/dur/5.005/file/seg.ts' for reading ^Cframe= 2544 fps= 74 q=-1.0 Lsize= 7181kB time=00:00:42.44 bitrate=1385.9kbits/s speed=1.24x video:5895kB audio:676kB subtitle:0kB other streams:0kB global headers:0kB muxing overhead: 9.275200% Input file #0 (https://manifest.googlevideo.com/api/manifest/hls_playlist/expire/1733687906/ei/AqZVZ9jeHvzVmLAPpb_viA0/ip/211.21.22.118/id/YDfiTGGPYCk.47/itag/300/source/yt_live_broadcast/requiressl/yes/ratebypass/yes/live/1/sgoap/gir%3Dyes%3Bitag%3D140/sgovp/gir%3Dyes%3Bitag%3D298/rqh/1/hdlc/1/hls_chunk_host/rr7---sn-ipoxu-un56.googlevideo.com/xpc/EgVo2aDSNQ%3D%3D/playlist_duration/30/manifest_duration/30/vprv/1/playlist_type/DVR/initcwndbps/802500/met/1733666316,/mh/4y/mm/44/mn/sn-ipoxu-un56/ms/lva/mv/m/mvi/7/pl/24/rms/lva,lva/dover/11/pacing/0/keepalive/yes/fexp/51326932,51331020,51335594,51347746/mt/1733665944/sparams/expire,ei,ip,id,itag,source,requiressl,ratebypass,live,sgoap,sgovp,rqh,hdlc,xpc,playlist_duration,manifest_duration,vprv,playlist_type/sig/AJfQdSswRgIhAPyShYm4xwg8o_0KoGLx0duKkm1kdBH7D5AaH1tKsvkHAiEAlZoD45Ffe9jZmybNkGKQB9TaZqeJafDIOIQIP1s0_As%3D/lsparams/hls_chunk_host,initcwndbps,met,mh,mm,mn,ms,mv,mvi,pl,rms/lsig/AGluJ3MwRQIgAJm5XMlGSveDGl1BD6gwVbjBIXoAXzk1eikOeMPRsi4CIQCwORNk8gI_IsK19mhtyt50AS33O5vr2cMpeGmJKue4Fg%3D%3D/playlist/index.m3u8): Input stream #0:0 (audio): 1829 packets read (692344 bytes); Input stream #0:1 (video): 2544 packets read (6036934 bytes); Total: 4373 packets (6729278 bytes) demuxed Output file #0 (file:hls-live/LIVE NEWS: LiveNOW FOX 24⧸7 LIVE STREAM 2024-12-08 21_58.mp4.part): Output stream #0:0 (video): 2544 packets muxed (6036934 bytes); Output stream #0:1 (audio): 1829 packets muxed (692344 bytes); Total: 4373 packets (6729278 bytes) muxed [AVIOContext @ 0x558772c00900] Statistics: 0 seeks, 29 writeouts [AVIOContext @ 0x558772288fc0] Statistics: 4942332 bytes read, 0 seeks [AVIOContext @ 0x5587728d3780] Statistics: 2506792 bytes read, 0 seeks [AVIOContext @ 0x558772a21b80] Statistics: 28559 bytes read, 0 seeks [AVIOContext @ 0x558772257200] Statistics: 6860 bytes read, 0 seeks Exiting normally, received signal 2. [ffmpeg] Interrupted by user [download] 100% of 7.01MiB in 00:00:39 at 183.07KiB/s [debug] ffprobe command line: ffprobe -hide_banner -show_format -show_streams -print_format json 'file:hls-live/LIVE NEWS: LiveNOW FOX 24⧸7 LIVE STREAM 2024-12-08 21_58.mp4' [debug] ffmpeg command line: ffprobe -show_streams 'file:hls-live/LIVE NEWS: LiveNOW FOX 24⧸7 LIVE STREAM 2024-12-08 21_58.mp4' [FixupM3u8] Fixing MPEG-TS in MP4 container of "hls-live/LIVE NEWS: LiveNOW FOX 24⧸7 LIVE STREAM 2024-12-08 21_58.mp4" [debug] ffmpeg command line: ffmpeg -y -loglevel repeat+info -i 'file:hls-live/LIVE NEWS: LiveNOW FOX 24⧸7 LIVE STREAM 2024-12-08 21_58.mp4' -map 0 -dn -ignore_unknown -c copy -f mp4 -bsf:a aac_adtstoasc -movflags +faststart 'file:hls-live/LIVE NEWS: LiveNOW FOX 24⧸7 LIVE STREAM 2024-12-08 21_58.temp.mp4' ```
closed
2024-12-08T14:00:32Z
2024-12-09T14:05:18Z
https://github.com/yt-dlp/yt-dlp/issues/11766
[ "question" ]
billsenxu
4
tensorflow/tensor2tensor
machine-learning
1,506
t2t_decoder hangs when dot_product_relative_v2 is used
Hello, I am trying to train a custom Transformer model that has a decoder only (with a custom bottom['targets']), for sequence generation. I was able to train and generate from the model when I had not specified any other special params. However, the generated sequences frequently had a failure mode where certain tokens repeated too often. I then added the two following params and am training a new model. hparams.self_attention_type = "dot_product_relative_v2" hparams.max_relative_position = 256 However, now when I run t2t_decoder, it hangs and does not generate any output (and it's hard to kill it with ^C, and I have to do a kill -9). I run the decoder in interactive mode, and simply press the return at the '>' prompt. t2t_decoder --data_dir="${DATA_DIR}" --decode_hparams="${DECODE_HPARAMS}" --decode_interactive --hparams="sampling_method=random" --hparams_set=${HPARAMS_SET} --model=${MODEL} --problem=${PROBLEM} --output_dir=${TRAIN_DIR} where: DECODE_HPARAMS="alpha=0,beam_size=1,extra_length=2048" MODEL=transformer OS: macOS, High Sierra $ pip freeze | grep tensor Error [Errno 20] Not a directory: '/Users/vida_vakil/miniconda3/lib/python3.6/site-packages/magenta-1.0.2-py3.6.egg' while executing command git rev-parse Exception: .... NotADirectoryError: [Errno 20] Not a directory: '/Users/vida_vakil/miniconda3/lib/python3.6/site-packages/magenta-1.0.2-py3.6.egg' The model I am using is based on Score2Perf (https://github.com/tensorflow/magenta/tree/master/magenta/models/score2perf), and I have installed it using instructions from their page, and here: https://github.com/tensorflow/magenta Looks like the error has to do with the egg thing. $ python -V Python 3.6.6 :: Anaconda, Inc. tensorflow 1.12.0 tensor2tensor 1.13.0 Thanks in advance
closed
2019-03-20T18:20:27Z
2019-03-22T03:03:26Z
https://github.com/tensorflow/tensor2tensor/issues/1506
[]
vidavakil
2
youfou/wxpy
api
63
AttributeError: 'Bot' object has no attribute 'enable_puid'
现在是没有enable_puid这个方法了? ``` raceback (most recent call last): File "C:/Users/Administrator/PycharmProjects/example/weixin/1.py", line 7, in <module> bot.enable_puid('wxpy_puid.pkl') AttributeError: 'Bot' object has no attribute 'enable_puid' ``` 我的代码是 ``` # -*- coding:utf-8 -*- from wxpy import * # 初始化机器人,扫码登陆 bot = Bot(cache_path=True) # 启用 puid 属性,并指定 puid 所需的映射数据保存/载入路径 bot.enable_puid('wxpy_puid.pkl') ```
closed
2017-05-25T02:09:50Z
2017-05-27T07:55:54Z
https://github.com/youfou/wxpy/issues/63
[]
seozed
1
comfyanonymous/ComfyUI
pytorch
6,314
ComfyUI seems to ignore the --reserve-vram and/or --disable-smart-memory ? Is there anything going wrong ?
### Your question So I am using everything to reduce the vram usage amount. `ComfyUI_windows_portable>.\python_embeded\python.exe -s ComfyUI\main.py --windows-standalone-build --lowvram --force-fp16 --reserve-vram 2.4 --disable-smart-memory` However I keep seeing that the memory usage of the loaded model is increased -> ![image](https://github.com/user-attachments/assets/229049c3-6695-4df4-9545-2bf92340ef41) and then I am getting memory errors in later generations as shown in the logs and the generation slows down significantly. Sometimes I get an OOM error and the generation dies. I am basically using a XY generation of pictures with different guidance values and base_shifts. I am using the flux-q4-ks.gguf model (with clip models t5_v1.1_q8 and vit-l-text-detail ) and this [lora](https://civitai.com/models/730373/hyper-realism-lora-by-aidma-flux). I can provide the workflow if needed for reproduction. Seems like the issue is very close to #5958 , #5385 and #4318. However I am using an SamplerCustomAdvanced and a nvidia card. So just wondering if this is a different problem. Or I am doing something wrong. ### Logs ```powershell [2025-01-01 20:36:33.946] Requested to load Flux [2025-01-01 20:36:34.009] 0 models unloaded. [2025-01-01 20:36:34.118] loaded partially 6320.525634765625 6320.427978515625 0 [2025-01-01 20:36:34.123] Attempting to release mmap (44) [2025-01-01 20:36:34.259] [2025-01-01 20:36:34.260]  [2025-01-01 20:36:34.261] ERROR lora diffusion_model.single_blocks.0.linear2.weight Allocation on device [2025-01-01 20:38:46.045] [2025-01-01 20:38:46.045]  [2025-01-01 20:40:26.966]  [2025-01-01 20:42:00.008]  [2025-01-01 20:43:26.563]  [2025-01-01 20:45:06.902]  [2025-01-01 20:46:33.755]  [2025-01-01 20:48:04.298]  [2025-01-01 20:49:35.220]  [2025-01-01 20:52:40.229]  [2025-01-01 20:55:56.443]  [2025-01-01 20:58:42.092]  [2025-01-01 21:01:50.056]  [2025-01-01 21:02:17.609]  bosh3: 100%|█████████████████████████████████████████████████████████████████| 1/1 [25:43<00:00, 1543.35s/it] bosh3: 100%|█████████████████████████████████████████████████████████████████| 1/1 [25:43<00:00, 1543.35s/it] [2025-01-01 21:02:17.612] [2025-01-01 21:02:17.613] Requested to load Flux [2025-01-01 21:02:17.679] 0 models unloaded. [2025-01-01 21:02:17.759] loaded partially 6384.427978515625 6383.381103515625 0 [2025-01-01 21:02:17.765] Attempting to release mmap (40) [2025-01-01 21:02:17.869] [2025-01-01 21:02:17.869]  [2025-01-01 21:02:17.870] ERROR lora diffusion_model.single_blocks.0.linear2.weight Allocation on device [2025-01-01 21:04:24.271] ``` ### Other Total VRAM 8192 MB, total RAM 40352 MB pytorch version: 2.5.1+cu124 Forcing FP16. Set vram state to: LOW_VRAM Disabling smart memory management Device: cuda:0 NVIDIA GeForce RTX 3070 Laptop GPU : cudaMallocAsync Using pytorch cross attention ### Loading: ComfyUI-Manager (V2.55.5) ### ComfyUI Version: v0.3.7-13-g44db978 | Released on '2024-12-10'
open
2025-01-02T03:20:01Z
2025-03-17T22:56:43Z
https://github.com/comfyanonymous/ComfyUI/issues/6314
[ "User Support" ]
SagnikDe2024
5
OWASP/Nettacker
automation
702
x_powered_by_vuln module to log/show the header value
we now have the ability to log response results - need to update the module to log/display the x-powered-by header value
closed
2023-07-04T17:17:51Z
2023-07-04T17:41:23Z
https://github.com/OWASP/Nettacker/issues/702
[]
securestep9
0
gradio-app/gradio
deep-learning
9,972
Issue with Gradio assets not loading through Nginx reverse proxy
### Describe the bug When accessing a Gradio application through Nginx reverse proxy, the main page loads but static assets (JS/CSS) fail to load with 404 errors when the page attempts to fetch them automatically. ### Have you searched existing issues? 🔎 - [X] I have searched and found no existing issues ### Reproduction ### gradio code ```python import gradio as gr import time def test(x): time.sleep(4) return x gr.Interface(test, "textbox", "textbox").queue().launch( root_path="/webui", # add i also try to use nginx+http://0.0.0.0:7861/ with no root_path="/webui" server_name="0.0.0.0", server_port=7861 ) ``` ### Current Behavior - `localhost:9999/webui` loads successfully and returns the Gradio web interface - When the page tries to fetch its assets, the following requests return 404: - `localhost:9999/assets/index-Dj1xzGVg.js` - `localhost:9999/assets/index-Bmd1Nf3q.css` I manually tried accessing with the /webui prefix, but still got 404: - `localhost:9999/webui/assets/index-Dj1xzGVg.js` - `localhost:9999/webui/assets/index-Bmd1Nf3q.css` However, accessing directly through port 7861 works: - `localhost:7861/webui/assets/index-Dj1xzGVg.js` - `localhost:7861/webui/assets/index-Bmd1Nf3q.css` ### Expected Behavior Static assets should load correctly when accessing the application through the Nginx reverse proxy at `localhost:9999/webui`. ### Question Is there something wrong with my configuration? How can I properly serve Gradio's static assets through the Nginx reverse proxy? ### Additional Notes - The main application interface loads correctly - Static assets (JS/CSS) fail to load when the page tries to fetch them automatically - Direct access to the Gradio server works as expected ### Nginx Configuration ``` server { listen 9999; server_name _; root /root; index index.php index.html index.htm; location / { try_files $uri $uri/ /index.php?$query_string; } location ~ [^/]\.php(/|$) { try_files $uri =404; fastcgi_pass unix:/run/php/php8.1-fpm.sock; fastcgi_index index.php; set $path_info $fastcgi_path_info; set $real_script_name $fastcgi_script_name; if ($fastcgi_script_name ~ "^(.+?\.php)(/.+)$") { set $real_script_name $1; set $path_info $2; } fastcgi_param SCRIPT_FILENAME $document_root$real_script_name; fastcgi_param SCRIPT_NAME $real_script_name; fastcgi_param PATH_INFO $path_info; include fastcgi_params; } location ~ /\.ht { deny all; } location = /favicon.ico { log_not_found off; access_log off; } location = /robots.txt { allow all; log_not_found off; access_log off; } location ~* \.(js|css|png|jpg|jpeg|gif|ico)$ { expires max; log_not_found off; } location /webui { proxy_pass http://0.0.0.0:7861/webui/; # and i also try to use http://0.0.0.0:7861/ with no root_path="/webui" proxy_buffering off; proxy_redirect off; proxy_http_version 1.1; proxy_set_header Upgrade $http_upgrade; proxy_set_header Connection "upgrade"; proxy_set_header Host $host; proxy_set_header X-Forwarded-Host $host; proxy_set_header X-Forwarded-Proto $scheme; } } ``` ### Screenshot Gradio is running normally on port 7861, and 7861/webui can also be accessed. The following is the situation on localhost:9999: The webpage opens up as a blank page. However, the returned HTML contains Gradio content. ![image](https://github.com/user-attachments/assets/f37b63a3-9ad7-48b4-9a23-95e87e3b4dcd) ### Logs ```shell None ``` ### System Info ```shell Gradio Environment Information: ------------------------------ Operating System: Linux gradio version: 5.6.0 gradio_client version: 1.4.3 ------------------------------------------------ gradio dependencies in your environment: aiofiles: 23.2.1 anyio: 4.3.0 audioop-lts is not installed. fastapi: 0.115.5 ffmpy: 0.4.0 gradio-client==1.4.3 is not installed. httpx: 0.27.0 huggingface-hub: 0.26.2 jinja2: 3.1.3 markupsafe: 2.1.5 numpy: 2.1.3 orjson: 3.10.11 packaging: 24.0 pandas: 2.2.3 pillow: 11.0.0 pydantic: 2.9.2 pydub: 0.25.1 python-multipart==0.0.12 is not installed. pyyaml: 6.0.1 ruff: 0.7.4 safehttpx: 0.1.1 semantic-version: 2.10.0 starlette: 0.41.2 tomlkit==0.12.0 is not installed. typer: 0.13.0 typing-extensions: 4.11.0 urllib3: 2.2.1 uvicorn: 0.32.0 authlib; extra == 'oauth' is not installed. itsdangerous; extra == 'oauth' is not installed. gradio_client dependencies in your environment: fsspec: 2024.10.0 httpx: 0.27.0 huggingface-hub: 0.26.2 packaging: 24.0 typing-extensions: 4.11.0 websockets: 12.0 ``` ### Severity Blocking usage of gradio
open
2024-11-16T18:34:18Z
2025-02-28T17:53:19Z
https://github.com/gradio-app/gradio/issues/9972
[ "bug", "cloud" ]
shiertier
3
airtai/faststream
asyncio
1,713
docs: add How-To section placeholder to all brokers pages
I think, we should add such placeholder to all specific broker sections: RabbitMQ, NATS, Redis. Also we should edit the current Kafka placeholder and add detail information, how user should add the section to navigation exactly
open
2024-08-21T19:27:06Z
2024-08-21T19:27:06Z
https://github.com/airtai/faststream/issues/1713
[ "documentation" ]
Lancetnik
0
ray-project/ray
tensorflow
50,939
Release test long_running_many_tasks.aws failed
Release test **long_running_many_tasks.aws** failed. See https://buildkite.com/ray-project/release/builds/34295#01954657-cbe0-487c-b8a5-d54e567f3856 for more details. Managed by OSS Test Policy
closed
2025-02-27T08:15:02Z
2025-02-28T06:09:26Z
https://github.com/ray-project/ray/issues/50939
[ "bug", "P0", "triage", "core", "release-test", "ray-test-bot", "weekly-release-blocker", "stability" ]
can-anyscale
1
postmanlabs/httpbin
api
376
Difficult response after request from an TLS client which not supporting TLS SNI
We did some tests with `openssl s_client -connect 23.23.115.5:443` to simulate our embedded client. We can't get an connection successfully with this method and got always "Internal_error" . After digging deeper we found `openssl s_client -connect 23.23.115.5:443 -servername www.httpbin.org` is working fine. The https://tools.ietf.org/html/rfc6066 states: > If the server understood the ClientHello extension but does not recognize the server name, the server SHOULD take one of two actions: either abort the handshake by sending a fatal-level unrecognized_name(112) alert or continue the handshake. It would be very nice to change the response to "unrecognized_name" instead of "Internal_error" This will help others to find the root cause much faster ;-)
open
2017-08-17T11:54:01Z
2018-08-05T07:35:44Z
https://github.com/postmanlabs/httpbin/issues/376
[]
wodo
4
home-assistant/core
python
140,883
Emulated Hue error since 2025.3.x
### The problem Emulated hue devices are offline in Harmony HUB, repair or refresh doesn't fix it. Accessing http://haip:8300/api/v2/lights throws a 500 Internal Server Error. ### What version of Home Assistant Core has the issue? core-2025.3.3 ### What was the last working version of Home Assistant Core? core-2024.x.x ### What type of installation are you running? Home Assistant Container ### Integration causing the issue Emulated Hue ### Link to integration documentation on our website https://www.home-assistant.io/integrations/emulated_hue/ ### Diagnostics information _No response_ ### Example YAML snippet ```yaml ``` ### Anything in the logs that might be useful for us? ```txt Logger: aiohttp.server Source: /usr/local/lib/python3.13/site-packages/aiohttp/web_protocol.py:451 First occurred: 6:56:39 PM (3 occurrences) Last logged: 6:56:57 PM Error handling request from 192.168.0.54 Error handling request from 192.168.0.20 Traceback (most recent call last): File "/usr/local/lib/python3.13/site-packages/aiohttp/web_protocol.py", line 480, in _handle_request resp = await request_handler(request) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.13/site-packages/aiohttp/web_app.py", line 569, in _handle return await handler(request) ^^^^^^^^^^^^^^^^^^^^^^ File "/usr/src/homeassistant/homeassistant/helpers/http.py", line 75, in handle result = handler(request, **request.match_info) File "/usr/src/homeassistant/homeassistant/components/emulated_hue/hue_api.py", line 247, in get return self.json(create_list_of_entities(self.config, request)) ~~~~~~~~~~~~~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^ File "/usr/src/homeassistant/homeassistant/components/emulated_hue/hue_api.py", line 899, in create_list_of_entities config.entity_id_to_number(entity_id): state_to_json(config, state) ~~~~~~~~~~~~~^^^^^^^^^^^^^^^ File "/usr/src/homeassistant/homeassistant/components/emulated_hue/hue_api.py", line 775, in state_to_json state_dict = get_entity_state_dict(config, state) File "/usr/src/homeassistant/homeassistant/components/emulated_hue/hue_api.py", line 666, in get_entity_state_dict return _build_entity_state_dict(entity) File "/usr/src/homeassistant/homeassistant/components/emulated_hue/hue_api.py", line 740, in _build_entity_state_dict data[STATE_BRIGHTNESS] = round(percentage * HUE_API_STATE_BRI_MAX / 100) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~ TypeError: unsupported operand type(s) for /: 'str' and 'int' ``` ### Additional information _No response_
open
2025-03-18T17:06:05Z
2025-03-18T17:06:12Z
https://github.com/home-assistant/core/issues/140883
[ "integration: emulated_hue" ]
aurelmarius
1
SYSTRAN/faster-whisper
deep-learning
1,179
BatchedInferencePipeline degrades transcription quality heavily
At first the new `BatchedInferencePipeline` seems great. It produces around 2X speed improvement compared to the normal pipeline. But after some more testing I discovered for some audio files the transcription quality is highly degraded. Whole segments are missing compared to the normal pipeline. Some segments switch language mid way for long periods. Example: Segment A has 30 seconds audio, fully in Dutch. It does contains a few English words. Half way the transcription segment the text becomes English, translating the Dutch audio. And at the end of the segment the `initial_prompt` is displayed. This happens at multiple places. So this makes the `BatchedInferencePipeline` not suited for a production application.
open
2024-11-28T11:22:07Z
2024-12-10T15:54:30Z
https://github.com/SYSTRAN/faster-whisper/issues/1179
[]
Appfinity-development
11
neuml/txtai
nlp
749
Support `<pre>` blocks with Textractor
Update the Textractor pipeline to handle `<pre>` blocks. These blocks should be converted to Markdown code blocks.
closed
2024-07-21T16:18:16Z
2024-07-21T16:22:53Z
https://github.com/neuml/txtai/issues/749
[]
davidmezzetti
0
feature-engine/feature_engine
scikit-learn
295
add functionality to detect introduction of NAN in transform method of discretizers
For the arbitrary, equal width and equal frequency, we should include in the transform method a check to see if NaN are being introduced accidentally. This can happen if a value is outside the boundaries entered by the user in the arbitrary, or of the variable is too skewed for the other transformers. The catch should be as a warning to begin with, not to break backwards compatibility perhaps, and should inform the user exactly in which variables the NaN were introduced. We should also expand the tests of all the transformers to make sure this functionality works. As it is the same functionality for all transformers, and also for the categorical encoders as well as per issue #294, I wonder if we should make a master function from this? I think it depends in the amount of code, if it is a one liner probably not.
closed
2021-07-18T09:08:10Z
2022-01-04T13:29:39Z
https://github.com/feature-engine/feature_engine/issues/295
[ "priority" ]
solegalli
7