fix: adjust processors to share more code
Browse files- processors/days_on_market.ipynb +13 -15
- processors/days_on_market.py +11 -13
- processors/for_sale_listings.ipynb +8 -11
- processors/for_sale_listings.py +8 -11
- processors/helpers.py +13 -6
- processors/home_values.ipynb +8 -9
- processors/home_values.py +11 -12
- processors/home_values_forecasts.ipynb +8 -10
- processors/home_values_forecasts.py +9 -11
- processors/new_construction.ipynb +8 -9
- processors/new_construction.py +8 -9
- processors/rentals.ipynb +11 -328
- processors/rentals.py +12 -13
- processors/sales.ipynb +8 -9
- processors/sales.py +14 -15
processors/days_on_market.ipynb
CHANGED
@@ -2,7 +2,7 @@
|
|
2 |
"cells": [
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
-
"execution_count":
|
6 |
"metadata": {},
|
7 |
"outputs": [],
|
8 |
"source": [
|
@@ -10,6 +10,7 @@
|
|
10 |
"import os\n",
|
11 |
"\n",
|
12 |
"from helpers import (\n",
|
|
|
13 |
" get_combined_df,\n",
|
14 |
" save_final_df_as_jsonl,\n",
|
15 |
" handle_slug_column_mappings,\n",
|
@@ -19,20 +20,16 @@
|
|
19 |
},
|
20 |
{
|
21 |
"cell_type": "code",
|
22 |
-
"execution_count":
|
23 |
"metadata": {},
|
24 |
"outputs": [],
|
25 |
"source": [
|
26 |
-
"
|
27 |
-
"PROCESSED_DIR = \"../processed/\"\n",
|
28 |
-
"FACET_DIR = \"days_on_market/\"\n",
|
29 |
-
"FULL_DATA_DIR_PATH = os.path.join(DATA_DIR, FACET_DIR)\n",
|
30 |
-
"FULL_PROCESSED_DIR_PATH = os.path.join(PROCESSED_DIR, FACET_DIR)"
|
31 |
]
|
32 |
},
|
33 |
{
|
34 |
"cell_type": "code",
|
35 |
-
"execution_count":
|
36 |
"metadata": {},
|
37 |
"outputs": [
|
38 |
{
|
@@ -379,7 +376,7 @@
|
|
379 |
"[586714 rows x 13 columns]"
|
380 |
]
|
381 |
},
|
382 |
-
"execution_count":
|
383 |
"metadata": {},
|
384 |
"output_type": "execute_result"
|
385 |
}
|
@@ -403,15 +400,16 @@
|
|
403 |
" \"_perc_listings_price_cut_\": \"Percent Listings Price Cut\",\n",
|
404 |
"}\n",
|
405 |
"\n",
|
|
|
406 |
"\n",
|
407 |
-
"for filename in os.listdir(
|
408 |
" if filename.endswith(\".csv\"):\n",
|
409 |
" print(\"processing \" + filename)\n",
|
410 |
" # skip month files for now since they are redundant\n",
|
411 |
" if \"month\" in filename:\n",
|
412 |
" continue\n",
|
413 |
"\n",
|
414 |
-
" cur_df = pd.read_csv(os.path.join(
|
415 |
"\n",
|
416 |
" cur_df[\"RegionName\"] = cur_df[\"RegionName\"].astype(str)\n",
|
417 |
" cur_df = set_home_type(cur_df, filename)\n",
|
@@ -439,7 +437,7 @@
|
|
439 |
},
|
440 |
{
|
441 |
"cell_type": "code",
|
442 |
-
"execution_count":
|
443 |
"metadata": {},
|
444 |
"outputs": [
|
445 |
{
|
@@ -729,7 +727,7 @@
|
|
729 |
"[586714 rows x 13 columns]"
|
730 |
]
|
731 |
},
|
732 |
-
"execution_count":
|
733 |
"metadata": {},
|
734 |
"output_type": "execute_result"
|
735 |
}
|
@@ -753,11 +751,11 @@
|
|
753 |
},
|
754 |
{
|
755 |
"cell_type": "code",
|
756 |
-
"execution_count":
|
757 |
"metadata": {},
|
758 |
"outputs": [],
|
759 |
"source": [
|
760 |
-
"save_final_df_as_jsonl(
|
761 |
]
|
762 |
}
|
763 |
],
|
|
|
2 |
"cells": [
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
+
"execution_count": 4,
|
6 |
"metadata": {},
|
7 |
"outputs": [],
|
8 |
"source": [
|
|
|
10 |
"import os\n",
|
11 |
"\n",
|
12 |
"from helpers import (\n",
|
13 |
+
" get_data_path_for_config,\n",
|
14 |
" get_combined_df,\n",
|
15 |
" save_final_df_as_jsonl,\n",
|
16 |
" handle_slug_column_mappings,\n",
|
|
|
20 |
},
|
21 |
{
|
22 |
"cell_type": "code",
|
23 |
+
"execution_count": 5,
|
24 |
"metadata": {},
|
25 |
"outputs": [],
|
26 |
"source": [
|
27 |
+
"CONFIG_NAME = \"days_on_market\""
|
|
|
|
|
|
|
|
|
28 |
]
|
29 |
},
|
30 |
{
|
31 |
"cell_type": "code",
|
32 |
+
"execution_count": 6,
|
33 |
"metadata": {},
|
34 |
"outputs": [
|
35 |
{
|
|
|
376 |
"[586714 rows x 13 columns]"
|
377 |
]
|
378 |
},
|
379 |
+
"execution_count": 6,
|
380 |
"metadata": {},
|
381 |
"output_type": "execute_result"
|
382 |
}
|
|
|
400 |
" \"_perc_listings_price_cut_\": \"Percent Listings Price Cut\",\n",
|
401 |
"}\n",
|
402 |
"\n",
|
403 |
+
"data_dir_path = get_data_path_for_config(CONFIG_NAME)\n",
|
404 |
"\n",
|
405 |
+
"for filename in os.listdir(data_dir_path):\n",
|
406 |
" if filename.endswith(\".csv\"):\n",
|
407 |
" print(\"processing \" + filename)\n",
|
408 |
" # skip month files for now since they are redundant\n",
|
409 |
" if \"month\" in filename:\n",
|
410 |
" continue\n",
|
411 |
"\n",
|
412 |
+
" cur_df = pd.read_csv(os.path.join(data_dir_path, filename))\n",
|
413 |
"\n",
|
414 |
" cur_df[\"RegionName\"] = cur_df[\"RegionName\"].astype(str)\n",
|
415 |
" cur_df = set_home_type(cur_df, filename)\n",
|
|
|
437 |
},
|
438 |
{
|
439 |
"cell_type": "code",
|
440 |
+
"execution_count": 7,
|
441 |
"metadata": {},
|
442 |
"outputs": [
|
443 |
{
|
|
|
727 |
"[586714 rows x 13 columns]"
|
728 |
]
|
729 |
},
|
730 |
+
"execution_count": 7,
|
731 |
"metadata": {},
|
732 |
"output_type": "execute_result"
|
733 |
}
|
|
|
751 |
},
|
752 |
{
|
753 |
"cell_type": "code",
|
754 |
+
"execution_count": 8,
|
755 |
"metadata": {},
|
756 |
"outputs": [],
|
757 |
"source": [
|
758 |
+
"save_final_df_as_jsonl(CONFIG_NAME, final_df)"
|
759 |
]
|
760 |
}
|
761 |
],
|
processors/days_on_market.py
CHANGED
@@ -1,13 +1,14 @@
|
|
1 |
#!/usr/bin/env python
|
2 |
# coding: utf-8
|
3 |
|
4 |
-
# In[
|
5 |
|
6 |
|
7 |
import pandas as pd
|
8 |
import os
|
9 |
|
10 |
from helpers import (
|
|
|
11 |
get_combined_df,
|
12 |
save_final_df_as_jsonl,
|
13 |
handle_slug_column_mappings,
|
@@ -15,17 +16,13 @@ from helpers import (
|
|
15 |
)
|
16 |
|
17 |
|
18 |
-
# In[
|
19 |
|
20 |
|
21 |
-
|
22 |
-
PROCESSED_DIR = "../processed/"
|
23 |
-
FACET_DIR = "days_on_market/"
|
24 |
-
FULL_DATA_DIR_PATH = os.path.join(DATA_DIR, FACET_DIR)
|
25 |
-
FULL_PROCESSED_DIR_PATH = os.path.join(PROCESSED_DIR, FACET_DIR)
|
26 |
|
27 |
|
28 |
-
# In[
|
29 |
|
30 |
|
31 |
data_frames = []
|
@@ -46,15 +43,16 @@ slug_column_mappings = {
|
|
46 |
"_perc_listings_price_cut_": "Percent Listings Price Cut",
|
47 |
}
|
48 |
|
|
|
49 |
|
50 |
-
for filename in os.listdir(
|
51 |
if filename.endswith(".csv"):
|
52 |
print("processing " + filename)
|
53 |
# skip month files for now since they are redundant
|
54 |
if "month" in filename:
|
55 |
continue
|
56 |
|
57 |
-
cur_df = pd.read_csv(os.path.join(
|
58 |
|
59 |
cur_df["RegionName"] = cur_df["RegionName"].astype(str)
|
60 |
cur_df = set_home_type(cur_df, filename)
|
@@ -80,7 +78,7 @@ combined_df = get_combined_df(
|
|
80 |
combined_df
|
81 |
|
82 |
|
83 |
-
# In[
|
84 |
|
85 |
|
86 |
# Adjust column names
|
@@ -99,8 +97,8 @@ final_df["Date"] = pd.to_datetime(final_df["Date"], format="%Y-%m-%d")
|
|
99 |
final_df
|
100 |
|
101 |
|
102 |
-
# In[
|
103 |
|
104 |
|
105 |
-
save_final_df_as_jsonl(
|
106 |
|
|
|
1 |
#!/usr/bin/env python
|
2 |
# coding: utf-8
|
3 |
|
4 |
+
# In[4]:
|
5 |
|
6 |
|
7 |
import pandas as pd
|
8 |
import os
|
9 |
|
10 |
from helpers import (
|
11 |
+
get_data_path_for_config,
|
12 |
get_combined_df,
|
13 |
save_final_df_as_jsonl,
|
14 |
handle_slug_column_mappings,
|
|
|
16 |
)
|
17 |
|
18 |
|
19 |
+
# In[5]:
|
20 |
|
21 |
|
22 |
+
CONFIG_NAME = "days_on_market"
|
|
|
|
|
|
|
|
|
23 |
|
24 |
|
25 |
+
# In[6]:
|
26 |
|
27 |
|
28 |
data_frames = []
|
|
|
43 |
"_perc_listings_price_cut_": "Percent Listings Price Cut",
|
44 |
}
|
45 |
|
46 |
+
data_dir_path = get_data_path_for_config(CONFIG_NAME)
|
47 |
|
48 |
+
for filename in os.listdir(data_dir_path):
|
49 |
if filename.endswith(".csv"):
|
50 |
print("processing " + filename)
|
51 |
# skip month files for now since they are redundant
|
52 |
if "month" in filename:
|
53 |
continue
|
54 |
|
55 |
+
cur_df = pd.read_csv(os.path.join(data_dir_path, filename))
|
56 |
|
57 |
cur_df["RegionName"] = cur_df["RegionName"].astype(str)
|
58 |
cur_df = set_home_type(cur_df, filename)
|
|
|
78 |
combined_df
|
79 |
|
80 |
|
81 |
+
# In[7]:
|
82 |
|
83 |
|
84 |
# Adjust column names
|
|
|
97 |
final_df
|
98 |
|
99 |
|
100 |
+
# In[8]:
|
101 |
|
102 |
|
103 |
+
save_final_df_as_jsonl(CONFIG_NAME, final_df)
|
104 |
|
processors/for_sale_listings.ipynb
CHANGED
@@ -10,6 +10,7 @@
|
|
10 |
"import os\n",
|
11 |
"\n",
|
12 |
"from helpers import (\n",
|
|
|
13 |
" get_combined_df,\n",
|
14 |
" save_final_df_as_jsonl,\n",
|
15 |
" handle_slug_column_mappings,\n",
|
@@ -23,11 +24,7 @@
|
|
23 |
"metadata": {},
|
24 |
"outputs": [],
|
25 |
"source": [
|
26 |
-
"
|
27 |
-
"PROCESSED_DIR = \"../processed/\"\n",
|
28 |
-
"FACET_DIR = \"for_sale_listings/\"\n",
|
29 |
-
"FULL_DATA_DIR_PATH = os.path.join(DATA_DIR, FACET_DIR)\n",
|
30 |
-
"FULL_PROCESSED_DIR_PATH = os.path.join(PROCESSED_DIR, FACET_DIR)"
|
31 |
]
|
32 |
},
|
33 |
{
|
@@ -345,6 +342,8 @@
|
|
345 |
}
|
346 |
],
|
347 |
"source": [
|
|
|
|
|
348 |
"exclude_columns = [\n",
|
349 |
" \"RegionID\",\n",
|
350 |
" \"SizeRank\",\n",
|
@@ -360,13 +359,12 @@
|
|
360 |
" \"new_pending\": \"New Pending\",\n",
|
361 |
"}\n",
|
362 |
"\n",
|
|
|
363 |
"\n",
|
364 |
-
"
|
365 |
-
"\n",
|
366 |
-
"for filename in os.listdir(FULL_DATA_DIR_PATH):\n",
|
367 |
" if filename.endswith(\".csv\"):\n",
|
368 |
" print(\"processing \" + filename)\n",
|
369 |
-
" cur_df = pd.read_csv(os.path.join(
|
370 |
"\n",
|
371 |
" # ignore monthly data for now since it is redundant\n",
|
372 |
" if \"month\" in filename:\n",
|
@@ -378,7 +376,6 @@
|
|
378 |
" data_frames, slug_column_mappings, exclude_columns, filename, cur_df\n",
|
379 |
" )\n",
|
380 |
"\n",
|
381 |
-
"\n",
|
382 |
"combined_df = get_combined_df(\n",
|
383 |
" data_frames,\n",
|
384 |
" [\n",
|
@@ -702,7 +699,7 @@
|
|
702 |
"metadata": {},
|
703 |
"outputs": [],
|
704 |
"source": [
|
705 |
-
"save_final_df_as_jsonl(
|
706 |
]
|
707 |
}
|
708 |
],
|
|
|
10 |
"import os\n",
|
11 |
"\n",
|
12 |
"from helpers import (\n",
|
13 |
+
" get_data_path_for_config,\n",
|
14 |
" get_combined_df,\n",
|
15 |
" save_final_df_as_jsonl,\n",
|
16 |
" handle_slug_column_mappings,\n",
|
|
|
24 |
"metadata": {},
|
25 |
"outputs": [],
|
26 |
"source": [
|
27 |
+
"CONFIG_NAME = \"for_sale_listings\""
|
|
|
|
|
|
|
|
|
28 |
]
|
29 |
},
|
30 |
{
|
|
|
342 |
}
|
343 |
],
|
344 |
"source": [
|
345 |
+
"data_frames = []\n",
|
346 |
+
"\n",
|
347 |
"exclude_columns = [\n",
|
348 |
" \"RegionID\",\n",
|
349 |
" \"SizeRank\",\n",
|
|
|
359 |
" \"new_pending\": \"New Pending\",\n",
|
360 |
"}\n",
|
361 |
"\n",
|
362 |
+
"data_dir_path = get_data_path_for_config(CONFIG_NAME)\n",
|
363 |
"\n",
|
364 |
+
"for filename in os.listdir(data_dir_path):\n",
|
|
|
|
|
365 |
" if filename.endswith(\".csv\"):\n",
|
366 |
" print(\"processing \" + filename)\n",
|
367 |
+
" cur_df = pd.read_csv(os.path.join(data_dir_path, filename))\n",
|
368 |
"\n",
|
369 |
" # ignore monthly data for now since it is redundant\n",
|
370 |
" if \"month\" in filename:\n",
|
|
|
376 |
" data_frames, slug_column_mappings, exclude_columns, filename, cur_df\n",
|
377 |
" )\n",
|
378 |
"\n",
|
|
|
379 |
"combined_df = get_combined_df(\n",
|
380 |
" data_frames,\n",
|
381 |
" [\n",
|
|
|
699 |
"metadata": {},
|
700 |
"outputs": [],
|
701 |
"source": [
|
702 |
+
"save_final_df_as_jsonl(CONFIG_NAME, final_df)"
|
703 |
]
|
704 |
}
|
705 |
],
|
processors/for_sale_listings.py
CHANGED
@@ -8,6 +8,7 @@ import pandas as pd
|
|
8 |
import os
|
9 |
|
10 |
from helpers import (
|
|
|
11 |
get_combined_df,
|
12 |
save_final_df_as_jsonl,
|
13 |
handle_slug_column_mappings,
|
@@ -18,16 +19,14 @@ from helpers import (
|
|
18 |
# In[2]:
|
19 |
|
20 |
|
21 |
-
|
22 |
-
PROCESSED_DIR = "../processed/"
|
23 |
-
FACET_DIR = "for_sale_listings/"
|
24 |
-
FULL_DATA_DIR_PATH = os.path.join(DATA_DIR, FACET_DIR)
|
25 |
-
FULL_PROCESSED_DIR_PATH = os.path.join(PROCESSED_DIR, FACET_DIR)
|
26 |
|
27 |
|
28 |
# In[3]:
|
29 |
|
30 |
|
|
|
|
|
31 |
exclude_columns = [
|
32 |
"RegionID",
|
33 |
"SizeRank",
|
@@ -43,13 +42,12 @@ slug_column_mappings = {
|
|
43 |
"new_pending": "New Pending",
|
44 |
}
|
45 |
|
|
|
46 |
|
47 |
-
|
48 |
-
|
49 |
-
for filename in os.listdir(FULL_DATA_DIR_PATH):
|
50 |
if filename.endswith(".csv"):
|
51 |
print("processing " + filename)
|
52 |
-
cur_df = pd.read_csv(os.path.join(
|
53 |
|
54 |
# ignore monthly data for now since it is redundant
|
55 |
if "month" in filename:
|
@@ -61,7 +59,6 @@ for filename in os.listdir(FULL_DATA_DIR_PATH):
|
|
61 |
data_frames, slug_column_mappings, exclude_columns, filename, cur_df
|
62 |
)
|
63 |
|
64 |
-
|
65 |
combined_df = get_combined_df(
|
66 |
data_frames,
|
67 |
[
|
@@ -100,5 +97,5 @@ final_df
|
|
100 |
# In[5]:
|
101 |
|
102 |
|
103 |
-
save_final_df_as_jsonl(
|
104 |
|
|
|
8 |
import os
|
9 |
|
10 |
from helpers import (
|
11 |
+
get_data_path_for_config,
|
12 |
get_combined_df,
|
13 |
save_final_df_as_jsonl,
|
14 |
handle_slug_column_mappings,
|
|
|
19 |
# In[2]:
|
20 |
|
21 |
|
22 |
+
CONFIG_NAME = "for_sale_listings"
|
|
|
|
|
|
|
|
|
23 |
|
24 |
|
25 |
# In[3]:
|
26 |
|
27 |
|
28 |
+
data_frames = []
|
29 |
+
|
30 |
exclude_columns = [
|
31 |
"RegionID",
|
32 |
"SizeRank",
|
|
|
42 |
"new_pending": "New Pending",
|
43 |
}
|
44 |
|
45 |
+
data_dir_path = get_data_path_for_config(CONFIG_NAME)
|
46 |
|
47 |
+
for filename in os.listdir(data_dir_path):
|
|
|
|
|
48 |
if filename.endswith(".csv"):
|
49 |
print("processing " + filename)
|
50 |
+
cur_df = pd.read_csv(os.path.join(data_dir_path, filename))
|
51 |
|
52 |
# ignore monthly data for now since it is redundant
|
53 |
if "month" in filename:
|
|
|
59 |
data_frames, slug_column_mappings, exclude_columns, filename, cur_df
|
60 |
)
|
61 |
|
|
|
62 |
combined_df = get_combined_df(
|
63 |
data_frames,
|
64 |
[
|
|
|
97 |
# In[5]:
|
98 |
|
99 |
|
100 |
+
save_final_df_as_jsonl(CONFIG_NAME, final_df)
|
101 |
|
processors/helpers.py
CHANGED
@@ -2,6 +2,11 @@ import pandas as pd
|
|
2 |
import os
|
3 |
|
4 |
|
|
|
|
|
|
|
|
|
|
|
5 |
def coalesce_columns(
|
6 |
df,
|
7 |
):
|
@@ -82,13 +87,15 @@ def get_melted_df(
|
|
82 |
return df
|
83 |
|
84 |
|
85 |
-
def save_final_df_as_jsonl(
|
86 |
-
|
87 |
-
os.makedirs(FULL_PROCESSED_DIR_PATH)
|
88 |
|
89 |
-
|
90 |
-
|
91 |
-
|
|
|
|
|
|
|
92 |
|
93 |
|
94 |
def handle_slug_column_mappings(
|
|
|
2 |
import os
|
3 |
|
4 |
|
5 |
+
def get_data_path_for_config(config_name):
|
6 |
+
data_dir = "../data"
|
7 |
+
return os.path.join(data_dir, config_name)
|
8 |
+
|
9 |
+
|
10 |
def coalesce_columns(
|
11 |
df,
|
12 |
):
|
|
|
87 |
return df
|
88 |
|
89 |
|
90 |
+
def save_final_df_as_jsonl(config_name, df):
|
91 |
+
processed_dir = "../processed/"
|
|
|
92 |
|
93 |
+
if not os.path.exists(processed_dir):
|
94 |
+
os.makedirs(processed_dir)
|
95 |
+
|
96 |
+
full_path = os.path.join(processed_dir, config_name + ".jsonl")
|
97 |
+
|
98 |
+
df.to_json(full_path, orient="records", lines=True)
|
99 |
|
100 |
|
101 |
def handle_slug_column_mappings(
|
processors/home_values.ipynb
CHANGED
@@ -10,6 +10,7 @@
|
|
10 |
"import os\n",
|
11 |
"\n",
|
12 |
"from helpers import (\n",
|
|
|
13 |
" get_combined_df,\n",
|
14 |
" save_final_df_as_jsonl,\n",
|
15 |
" handle_slug_column_mappings,\n",
|
@@ -23,11 +24,7 @@
|
|
23 |
"metadata": {},
|
24 |
"outputs": [],
|
25 |
"source": [
|
26 |
-
"
|
27 |
-
"PROCESSED_DIR = \"../processed/\"\n",
|
28 |
-
"FACET_DIR = \"home_values/\"\n",
|
29 |
-
"FULL_DATA_DIR_PATH = os.path.join(DATA_DIR, FACET_DIR)\n",
|
30 |
-
"FULL_PROCESSED_DIR_PATH = os.path.join(PROCESSED_DIR, FACET_DIR)"
|
31 |
]
|
32 |
},
|
33 |
{
|
@@ -375,10 +372,12 @@
|
|
375 |
" \"\": \"ZHVI\",\n",
|
376 |
"}\n",
|
377 |
"\n",
|
378 |
-
"
|
|
|
|
|
379 |
" if filename.endswith(\".csv\"):\n",
|
380 |
" print(\"processing \" + filename)\n",
|
381 |
-
" cur_df = pd.read_csv(os.path.join(
|
382 |
" exclude_columns = [\n",
|
383 |
" \"RegionID\",\n",
|
384 |
" \"SizeRank\",\n",
|
@@ -1054,11 +1053,11 @@
|
|
1054 |
},
|
1055 |
{
|
1056 |
"cell_type": "code",
|
1057 |
-
"execution_count":
|
1058 |
"metadata": {},
|
1059 |
"outputs": [],
|
1060 |
"source": [
|
1061 |
-
"save_final_df_as_jsonl(
|
1062 |
]
|
1063 |
}
|
1064 |
],
|
|
|
10 |
"import os\n",
|
11 |
"\n",
|
12 |
"from helpers import (\n",
|
13 |
+
" get_data_path_for_config,\n",
|
14 |
" get_combined_df,\n",
|
15 |
" save_final_df_as_jsonl,\n",
|
16 |
" handle_slug_column_mappings,\n",
|
|
|
24 |
"metadata": {},
|
25 |
"outputs": [],
|
26 |
"source": [
|
27 |
+
"CONFIG_NAME = \"home_values\""
|
|
|
|
|
|
|
|
|
28 |
]
|
29 |
},
|
30 |
{
|
|
|
372 |
" \"\": \"ZHVI\",\n",
|
373 |
"}\n",
|
374 |
"\n",
|
375 |
+
"data_dir_path = get_data_path_for_config(CONFIG_NAME)\n",
|
376 |
+
"\n",
|
377 |
+
"for filename in os.listdir(data_dir_path):\n",
|
378 |
" if filename.endswith(\".csv\"):\n",
|
379 |
" print(\"processing \" + filename)\n",
|
380 |
+
" cur_df = pd.read_csv(os.path.join(data_dir_path, filename))\n",
|
381 |
" exclude_columns = [\n",
|
382 |
" \"RegionID\",\n",
|
383 |
" \"SizeRank\",\n",
|
|
|
1053 |
},
|
1054 |
{
|
1055 |
"cell_type": "code",
|
1056 |
+
"execution_count": 6,
|
1057 |
"metadata": {},
|
1058 |
"outputs": [],
|
1059 |
"source": [
|
1060 |
+
"save_final_df_as_jsonl(CONFIG_NAME, final_df)"
|
1061 |
]
|
1062 |
}
|
1063 |
],
|
processors/home_values.py
CHANGED
@@ -8,6 +8,7 @@ import pandas as pd
|
|
8 |
import os
|
9 |
|
10 |
from helpers import (
|
|
|
11 |
get_combined_df,
|
12 |
save_final_df_as_jsonl,
|
13 |
handle_slug_column_mappings,
|
@@ -18,14 +19,10 @@ from helpers import (
|
|
18 |
# In[2]:
|
19 |
|
20 |
|
21 |
-
|
22 |
-
PROCESSED_DIR = "../processed/"
|
23 |
-
FACET_DIR = "home_values/"
|
24 |
-
FULL_DATA_DIR_PATH = os.path.join(DATA_DIR, FACET_DIR)
|
25 |
-
FULL_PROCESSED_DIR_PATH = os.path.join(PROCESSED_DIR, FACET_DIR)
|
26 |
|
27 |
|
28 |
-
# In[
|
29 |
|
30 |
|
31 |
data_frames = []
|
@@ -37,10 +34,12 @@ slug_column_mappings = {
|
|
37 |
"": "ZHVI",
|
38 |
}
|
39 |
|
40 |
-
|
|
|
|
|
41 |
if filename.endswith(".csv"):
|
42 |
print("processing " + filename)
|
43 |
-
cur_df = pd.read_csv(os.path.join(
|
44 |
exclude_columns = [
|
45 |
"RegionID",
|
46 |
"SizeRank",
|
@@ -126,7 +125,7 @@ combined_df = get_combined_df(
|
|
126 |
combined_df
|
127 |
|
128 |
|
129 |
-
# In[
|
130 |
|
131 |
|
132 |
final_df = combined_df
|
@@ -152,7 +151,7 @@ for index, row in final_df.iterrows():
|
|
152 |
final_df
|
153 |
|
154 |
|
155 |
-
# In[
|
156 |
|
157 |
|
158 |
final_df = final_df.rename(
|
@@ -172,8 +171,8 @@ final_df["Date"] = pd.to_datetime(final_df["Date"], format="%Y-%m-%d")
|
|
172 |
final_df
|
173 |
|
174 |
|
175 |
-
# In[
|
176 |
|
177 |
|
178 |
-
save_final_df_as_jsonl(
|
179 |
|
|
|
8 |
import os
|
9 |
|
10 |
from helpers import (
|
11 |
+
get_data_path_for_config,
|
12 |
get_combined_df,
|
13 |
save_final_df_as_jsonl,
|
14 |
handle_slug_column_mappings,
|
|
|
19 |
# In[2]:
|
20 |
|
21 |
|
22 |
+
CONFIG_NAME = "home_values"
|
|
|
|
|
|
|
|
|
23 |
|
24 |
|
25 |
+
# In[3]:
|
26 |
|
27 |
|
28 |
data_frames = []
|
|
|
34 |
"": "ZHVI",
|
35 |
}
|
36 |
|
37 |
+
data_dir_path = get_data_path_for_config(CONFIG_NAME)
|
38 |
+
|
39 |
+
for filename in os.listdir(data_dir_path):
|
40 |
if filename.endswith(".csv"):
|
41 |
print("processing " + filename)
|
42 |
+
cur_df = pd.read_csv(os.path.join(data_dir_path, filename))
|
43 |
exclude_columns = [
|
44 |
"RegionID",
|
45 |
"SizeRank",
|
|
|
125 |
combined_df
|
126 |
|
127 |
|
128 |
+
# In[4]:
|
129 |
|
130 |
|
131 |
final_df = combined_df
|
|
|
151 |
final_df
|
152 |
|
153 |
|
154 |
+
# In[5]:
|
155 |
|
156 |
|
157 |
final_df = final_df.rename(
|
|
|
171 |
final_df
|
172 |
|
173 |
|
174 |
+
# In[6]:
|
175 |
|
176 |
|
177 |
+
save_final_df_as_jsonl(CONFIG_NAME, final_df)
|
178 |
|
processors/home_values_forecasts.ipynb
CHANGED
@@ -9,7 +9,7 @@
|
|
9 |
"import pandas as pd\n",
|
10 |
"import os\n",
|
11 |
"\n",
|
12 |
-
"from helpers import get_combined_df, save_final_df_as_jsonl"
|
13 |
]
|
14 |
},
|
15 |
{
|
@@ -18,11 +18,7 @@
|
|
18 |
"metadata": {},
|
19 |
"outputs": [],
|
20 |
"source": [
|
21 |
-
"
|
22 |
-
"PROCESSED_DIR = \"../processed/\"\n",
|
23 |
-
"FACET_DIR = \"home_values_forecasts/\"\n",
|
24 |
-
"FULL_DATA_DIR_PATH = os.path.join(DATA_DIR, FACET_DIR)\n",
|
25 |
-
"FULL_PROCESSED_DIR_PATH = os.path.join(PROCESSED_DIR, FACET_DIR)"
|
26 |
]
|
27 |
},
|
28 |
{
|
@@ -384,10 +380,12 @@
|
|
384 |
"source": [
|
385 |
"data_frames = []\n",
|
386 |
"\n",
|
387 |
-
"
|
|
|
|
|
388 |
" if filename.endswith(\".csv\"):\n",
|
389 |
" print(\"processing \" + filename)\n",
|
390 |
-
" cur_df = pd.read_csv(os.path.join(
|
391 |
"\n",
|
392 |
" cols = [\"Month Over Month %\", \"Quarter Over Quarter %\", \"Year Over Year %\"]\n",
|
393 |
" if filename.endswith(\"sm_sa_month.csv\"):\n",
|
@@ -786,11 +784,11 @@
|
|
786 |
},
|
787 |
{
|
788 |
"cell_type": "code",
|
789 |
-
"execution_count":
|
790 |
"metadata": {},
|
791 |
"outputs": [],
|
792 |
"source": [
|
793 |
-
"save_final_df_as_jsonl(
|
794 |
]
|
795 |
}
|
796 |
],
|
|
|
9 |
"import pandas as pd\n",
|
10 |
"import os\n",
|
11 |
"\n",
|
12 |
+
"from helpers import get_data_path_for_config, get_combined_df, save_final_df_as_jsonl"
|
13 |
]
|
14 |
},
|
15 |
{
|
|
|
18 |
"metadata": {},
|
19 |
"outputs": [],
|
20 |
"source": [
|
21 |
+
"CONFIG_NAME = \"home_values_forecasts\""
|
|
|
|
|
|
|
|
|
22 |
]
|
23 |
},
|
24 |
{
|
|
|
380 |
"source": [
|
381 |
"data_frames = []\n",
|
382 |
"\n",
|
383 |
+
"data_dir_path = get_data_path_for_config(CONFIG_NAME)\n",
|
384 |
+
"\n",
|
385 |
+
"for filename in os.listdir(data_dir_path):\n",
|
386 |
" if filename.endswith(\".csv\"):\n",
|
387 |
" print(\"processing \" + filename)\n",
|
388 |
+
" cur_df = pd.read_csv(os.path.join(data_dir_path, filename))\n",
|
389 |
"\n",
|
390 |
" cols = [\"Month Over Month %\", \"Quarter Over Quarter %\", \"Year Over Year %\"]\n",
|
391 |
" if filename.endswith(\"sm_sa_month.csv\"):\n",
|
|
|
784 |
},
|
785 |
{
|
786 |
"cell_type": "code",
|
787 |
+
"execution_count": 5,
|
788 |
"metadata": {},
|
789 |
"outputs": [],
|
790 |
"source": [
|
791 |
+
"save_final_df_as_jsonl(CONFIG_NAME, final_df)"
|
792 |
]
|
793 |
}
|
794 |
],
|
processors/home_values_forecasts.py
CHANGED
@@ -7,17 +7,13 @@
|
|
7 |
import pandas as pd
|
8 |
import os
|
9 |
|
10 |
-
from helpers import get_combined_df, save_final_df_as_jsonl
|
11 |
|
12 |
|
13 |
# In[2]:
|
14 |
|
15 |
|
16 |
-
|
17 |
-
PROCESSED_DIR = "../processed/"
|
18 |
-
FACET_DIR = "home_values_forecasts/"
|
19 |
-
FULL_DATA_DIR_PATH = os.path.join(DATA_DIR, FACET_DIR)
|
20 |
-
FULL_PROCESSED_DIR_PATH = os.path.join(PROCESSED_DIR, FACET_DIR)
|
21 |
|
22 |
|
23 |
# In[3]:
|
@@ -25,10 +21,12 @@ FULL_PROCESSED_DIR_PATH = os.path.join(PROCESSED_DIR, FACET_DIR)
|
|
25 |
|
26 |
data_frames = []
|
27 |
|
28 |
-
|
|
|
|
|
29 |
if filename.endswith(".csv"):
|
30 |
print("processing " + filename)
|
31 |
-
cur_df = pd.read_csv(os.path.join(
|
32 |
|
33 |
cols = ["Month Over Month %", "Quarter Over Quarter %", "Year Over Year %"]
|
34 |
if filename.endswith("sm_sa_month.csv"):
|
@@ -59,7 +57,7 @@ combined_df = get_combined_df(
|
|
59 |
combined_df
|
60 |
|
61 |
|
62 |
-
# In[
|
63 |
|
64 |
|
65 |
# Adjust columns
|
@@ -93,8 +91,8 @@ final_df["Date"] = pd.to_datetime(final_df["Date"], format="%Y-%m-%d")
|
|
93 |
final_df
|
94 |
|
95 |
|
96 |
-
# In[
|
97 |
|
98 |
|
99 |
-
save_final_df_as_jsonl(
|
100 |
|
|
|
7 |
import pandas as pd
|
8 |
import os
|
9 |
|
10 |
+
from helpers import get_data_path_for_config, get_combined_df, save_final_df_as_jsonl
|
11 |
|
12 |
|
13 |
# In[2]:
|
14 |
|
15 |
|
16 |
+
CONFIG_NAME = "home_values_forecasts"
|
|
|
|
|
|
|
|
|
17 |
|
18 |
|
19 |
# In[3]:
|
|
|
21 |
|
22 |
data_frames = []
|
23 |
|
24 |
+
data_dir_path = get_data_path_for_config(CONFIG_NAME)
|
25 |
+
|
26 |
+
for filename in os.listdir(data_dir_path):
|
27 |
if filename.endswith(".csv"):
|
28 |
print("processing " + filename)
|
29 |
+
cur_df = pd.read_csv(os.path.join(data_dir_path, filename))
|
30 |
|
31 |
cols = ["Month Over Month %", "Quarter Over Quarter %", "Year Over Year %"]
|
32 |
if filename.endswith("sm_sa_month.csv"):
|
|
|
57 |
combined_df
|
58 |
|
59 |
|
60 |
+
# In[4]:
|
61 |
|
62 |
|
63 |
# Adjust columns
|
|
|
91 |
final_df
|
92 |
|
93 |
|
94 |
+
# In[5]:
|
95 |
|
96 |
|
97 |
+
save_final_df_as_jsonl(CONFIG_NAME, final_df)
|
98 |
|
processors/new_construction.ipynb
CHANGED
@@ -10,6 +10,7 @@
|
|
10 |
"import os\n",
|
11 |
"\n",
|
12 |
"from helpers import (\n",
|
|
|
13 |
" get_combined_df,\n",
|
14 |
" save_final_df_as_jsonl,\n",
|
15 |
" handle_slug_column_mappings,\n",
|
@@ -23,11 +24,7 @@
|
|
23 |
"metadata": {},
|
24 |
"outputs": [],
|
25 |
"source": [
|
26 |
-
"
|
27 |
-
"PROCESSED_DIR = \"../processed/\"\n",
|
28 |
-
"FACET_DIR = \"new_construction/\"\n",
|
29 |
-
"FULL_DATA_DIR_PATH = os.path.join(DATA_DIR, FACET_DIR)\n",
|
30 |
-
"FULL_PROCESSED_DIR_PATH = os.path.join(PROCESSED_DIR, FACET_DIR)"
|
31 |
]
|
32 |
},
|
33 |
{
|
@@ -268,6 +265,8 @@
|
|
268 |
}
|
269 |
],
|
270 |
"source": [
|
|
|
|
|
271 |
"exclude_columns = [\n",
|
272 |
" \"RegionID\",\n",
|
273 |
" \"SizeRank\",\n",
|
@@ -283,12 +282,12 @@
|
|
283 |
" \"sales_count\": \"Sales Count\",\n",
|
284 |
"}\n",
|
285 |
"\n",
|
286 |
-
"
|
287 |
"\n",
|
288 |
-
"for filename in os.listdir(
|
289 |
" if filename.endswith(\".csv\"):\n",
|
290 |
" print(\"processing \" + filename)\n",
|
291 |
-
" cur_df = pd.read_csv(os.path.join(
|
292 |
"\n",
|
293 |
" cur_df = set_home_type(cur_df, filename)\n",
|
294 |
"\n",
|
@@ -558,7 +557,7 @@
|
|
558 |
"metadata": {},
|
559 |
"outputs": [],
|
560 |
"source": [
|
561 |
-
"save_final_df_as_jsonl(
|
562 |
]
|
563 |
}
|
564 |
],
|
|
|
10 |
"import os\n",
|
11 |
"\n",
|
12 |
"from helpers import (\n",
|
13 |
+
" get_data_path_for_config,\n",
|
14 |
" get_combined_df,\n",
|
15 |
" save_final_df_as_jsonl,\n",
|
16 |
" handle_slug_column_mappings,\n",
|
|
|
24 |
"metadata": {},
|
25 |
"outputs": [],
|
26 |
"source": [
|
27 |
+
"CONFIG_NAME = \"new_construction\""
|
|
|
|
|
|
|
|
|
28 |
]
|
29 |
},
|
30 |
{
|
|
|
265 |
}
|
266 |
],
|
267 |
"source": [
|
268 |
+
"data_frames = []\n",
|
269 |
+
"\n",
|
270 |
"exclude_columns = [\n",
|
271 |
" \"RegionID\",\n",
|
272 |
" \"SizeRank\",\n",
|
|
|
282 |
" \"sales_count\": \"Sales Count\",\n",
|
283 |
"}\n",
|
284 |
"\n",
|
285 |
+
"data_dir_path = get_data_path_for_config(CONFIG_NAME)\n",
|
286 |
"\n",
|
287 |
+
"for filename in os.listdir(data_dir_path):\n",
|
288 |
" if filename.endswith(\".csv\"):\n",
|
289 |
" print(\"processing \" + filename)\n",
|
290 |
+
" cur_df = pd.read_csv(os.path.join(data_dir_path, filename))\n",
|
291 |
"\n",
|
292 |
" cur_df = set_home_type(cur_df, filename)\n",
|
293 |
"\n",
|
|
|
557 |
"metadata": {},
|
558 |
"outputs": [],
|
559 |
"source": [
|
560 |
+
"save_final_df_as_jsonl(CONFIG_NAME, final_df)"
|
561 |
]
|
562 |
}
|
563 |
],
|
processors/new_construction.py
CHANGED
@@ -8,6 +8,7 @@ import pandas as pd
|
|
8 |
import os
|
9 |
|
10 |
from helpers import (
|
|
|
11 |
get_combined_df,
|
12 |
save_final_df_as_jsonl,
|
13 |
handle_slug_column_mappings,
|
@@ -18,16 +19,14 @@ from helpers import (
|
|
18 |
# In[2]:
|
19 |
|
20 |
|
21 |
-
|
22 |
-
PROCESSED_DIR = "../processed/"
|
23 |
-
FACET_DIR = "new_construction/"
|
24 |
-
FULL_DATA_DIR_PATH = os.path.join(DATA_DIR, FACET_DIR)
|
25 |
-
FULL_PROCESSED_DIR_PATH = os.path.join(PROCESSED_DIR, FACET_DIR)
|
26 |
|
27 |
|
28 |
# In[3]:
|
29 |
|
30 |
|
|
|
|
|
31 |
exclude_columns = [
|
32 |
"RegionID",
|
33 |
"SizeRank",
|
@@ -43,12 +42,12 @@ slug_column_mappings = {
|
|
43 |
"sales_count": "Sales Count",
|
44 |
}
|
45 |
|
46 |
-
|
47 |
|
48 |
-
for filename in os.listdir(
|
49 |
if filename.endswith(".csv"):
|
50 |
print("processing " + filename)
|
51 |
-
cur_df = pd.read_csv(os.path.join(
|
52 |
|
53 |
cur_df = set_home_type(cur_df, filename)
|
54 |
|
@@ -95,5 +94,5 @@ final_df.sort_values(by=["Region ID", "Home Type", "Date"])
|
|
95 |
# In[5]:
|
96 |
|
97 |
|
98 |
-
save_final_df_as_jsonl(
|
99 |
|
|
|
8 |
import os
|
9 |
|
10 |
from helpers import (
|
11 |
+
get_data_path_for_config,
|
12 |
get_combined_df,
|
13 |
save_final_df_as_jsonl,
|
14 |
handle_slug_column_mappings,
|
|
|
19 |
# In[2]:
|
20 |
|
21 |
|
22 |
+
CONFIG_NAME = "new_construction"
|
|
|
|
|
|
|
|
|
23 |
|
24 |
|
25 |
# In[3]:
|
26 |
|
27 |
|
28 |
+
data_frames = []
|
29 |
+
|
30 |
exclude_columns = [
|
31 |
"RegionID",
|
32 |
"SizeRank",
|
|
|
42 |
"sales_count": "Sales Count",
|
43 |
}
|
44 |
|
45 |
+
data_dir_path = get_data_path_for_config(CONFIG_NAME)
|
46 |
|
47 |
+
for filename in os.listdir(data_dir_path):
|
48 |
if filename.endswith(".csv"):
|
49 |
print("processing " + filename)
|
50 |
+
cur_df = pd.read_csv(os.path.join(data_dir_path, filename))
|
51 |
|
52 |
cur_df = set_home_type(cur_df, filename)
|
53 |
|
|
|
94 |
# In[5]:
|
95 |
|
96 |
|
97 |
+
save_final_df_as_jsonl(CONFIG_NAME, final_df)
|
98 |
|
processors/rentals.ipynb
CHANGED
@@ -2,7 +2,7 @@
|
|
2 |
"cells": [
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
-
"execution_count":
|
6 |
"metadata": {},
|
7 |
"outputs": [],
|
8 |
"source": [
|
@@ -10,6 +10,7 @@
|
|
10 |
"import os\n",
|
11 |
"\n",
|
12 |
"from helpers import (\n",
|
|
|
13 |
" get_combined_df,\n",
|
14 |
" save_final_df_as_jsonl,\n",
|
15 |
" handle_slug_column_mappings,\n",
|
@@ -19,347 +20,29 @@
|
|
19 |
},
|
20 |
{
|
21 |
"cell_type": "code",
|
22 |
-
"execution_count":
|
23 |
"metadata": {},
|
24 |
"outputs": [],
|
25 |
"source": [
|
26 |
-
"
|
27 |
-
"PROCESSED_DIR = \"../processed/\"\n",
|
28 |
-
"FACET_DIR = \"rentals/\"\n",
|
29 |
-
"FULL_DATA_DIR_PATH = os.path.join(DATA_DIR, FACET_DIR)\n",
|
30 |
-
"FULL_PROCESSED_DIR_PATH = os.path.join(PROCESSED_DIR, FACET_DIR)"
|
31 |
]
|
32 |
},
|
33 |
{
|
34 |
"cell_type": "code",
|
35 |
"execution_count": 3,
|
36 |
"metadata": {},
|
37 |
-
"outputs": [
|
38 |
-
{
|
39 |
-
"data": {
|
40 |
-
"text/html": [
|
41 |
-
"<div>\n",
|
42 |
-
"<style scoped>\n",
|
43 |
-
" .dataframe tbody tr th:only-of-type {\n",
|
44 |
-
" vertical-align: middle;\n",
|
45 |
-
" }\n",
|
46 |
-
"\n",
|
47 |
-
" .dataframe tbody tr th {\n",
|
48 |
-
" vertical-align: top;\n",
|
49 |
-
" }\n",
|
50 |
-
"\n",
|
51 |
-
" .dataframe thead th {\n",
|
52 |
-
" text-align: right;\n",
|
53 |
-
" }\n",
|
54 |
-
"</style>\n",
|
55 |
-
"<table border=\"1\" class=\"dataframe\">\n",
|
56 |
-
" <thead>\n",
|
57 |
-
" <tr style=\"text-align: right;\">\n",
|
58 |
-
" <th></th>\n",
|
59 |
-
" <th>RegionID</th>\n",
|
60 |
-
" <th>SizeRank</th>\n",
|
61 |
-
" <th>RegionName</th>\n",
|
62 |
-
" <th>RegionType</th>\n",
|
63 |
-
" <th>StateName</th>\n",
|
64 |
-
" <th>Home Type</th>\n",
|
65 |
-
" <th>State</th>\n",
|
66 |
-
" <th>Metro</th>\n",
|
67 |
-
" <th>StateCodeFIPS</th>\n",
|
68 |
-
" <th>MunicipalCodeFIPS</th>\n",
|
69 |
-
" <th>Date</th>\n",
|
70 |
-
" <th>Rent (Smoothed)</th>\n",
|
71 |
-
" <th>CountyName</th>\n",
|
72 |
-
" <th>Rent (Smoothed) (Seasonally Adjusted)</th>\n",
|
73 |
-
" <th>City</th>\n",
|
74 |
-
" </tr>\n",
|
75 |
-
" </thead>\n",
|
76 |
-
" <tbody>\n",
|
77 |
-
" <tr>\n",
|
78 |
-
" <th>0</th>\n",
|
79 |
-
" <td>66</td>\n",
|
80 |
-
" <td>146</td>\n",
|
81 |
-
" <td>Ada County</td>\n",
|
82 |
-
" <td>county</td>\n",
|
83 |
-
" <td>ID</td>\n",
|
84 |
-
" <td>all homes plus multifamily</td>\n",
|
85 |
-
" <td>16.0</td>\n",
|
86 |
-
" <td>Boise City, ID</td>\n",
|
87 |
-
" <td>16.0</td>\n",
|
88 |
-
" <td>1.0</td>\n",
|
89 |
-
" <td>2015-01-31</td>\n",
|
90 |
-
" <td>927.493763</td>\n",
|
91 |
-
" <td>NaN</td>\n",
|
92 |
-
" <td>927.493763</td>\n",
|
93 |
-
" <td>NaN</td>\n",
|
94 |
-
" </tr>\n",
|
95 |
-
" <tr>\n",
|
96 |
-
" <th>1</th>\n",
|
97 |
-
" <td>66</td>\n",
|
98 |
-
" <td>146</td>\n",
|
99 |
-
" <td>Ada County</td>\n",
|
100 |
-
" <td>county</td>\n",
|
101 |
-
" <td>ID</td>\n",
|
102 |
-
" <td>all homes plus multifamily</td>\n",
|
103 |
-
" <td>16.0</td>\n",
|
104 |
-
" <td>Boise City, ID</td>\n",
|
105 |
-
" <td>16.0</td>\n",
|
106 |
-
" <td>1.0</td>\n",
|
107 |
-
" <td>2015-02-28</td>\n",
|
108 |
-
" <td>931.690623</td>\n",
|
109 |
-
" <td>NaN</td>\n",
|
110 |
-
" <td>931.690623</td>\n",
|
111 |
-
" <td>NaN</td>\n",
|
112 |
-
" </tr>\n",
|
113 |
-
" <tr>\n",
|
114 |
-
" <th>2</th>\n",
|
115 |
-
" <td>66</td>\n",
|
116 |
-
" <td>146</td>\n",
|
117 |
-
" <td>Ada County</td>\n",
|
118 |
-
" <td>county</td>\n",
|
119 |
-
" <td>ID</td>\n",
|
120 |
-
" <td>all homes plus multifamily</td>\n",
|
121 |
-
" <td>16.0</td>\n",
|
122 |
-
" <td>Boise City, ID</td>\n",
|
123 |
-
" <td>16.0</td>\n",
|
124 |
-
" <td>1.0</td>\n",
|
125 |
-
" <td>2015-03-31</td>\n",
|
126 |
-
" <td>932.568601</td>\n",
|
127 |
-
" <td>NaN</td>\n",
|
128 |
-
" <td>932.568601</td>\n",
|
129 |
-
" <td>NaN</td>\n",
|
130 |
-
" </tr>\n",
|
131 |
-
" <tr>\n",
|
132 |
-
" <th>3</th>\n",
|
133 |
-
" <td>66</td>\n",
|
134 |
-
" <td>146</td>\n",
|
135 |
-
" <td>Ada County</td>\n",
|
136 |
-
" <td>county</td>\n",
|
137 |
-
" <td>ID</td>\n",
|
138 |
-
" <td>all homes plus multifamily</td>\n",
|
139 |
-
" <td>16.0</td>\n",
|
140 |
-
" <td>Boise City, ID</td>\n",
|
141 |
-
" <td>16.0</td>\n",
|
142 |
-
" <td>1.0</td>\n",
|
143 |
-
" <td>2015-04-30</td>\n",
|
144 |
-
" <td>933.148134</td>\n",
|
145 |
-
" <td>NaN</td>\n",
|
146 |
-
" <td>933.148134</td>\n",
|
147 |
-
" <td>NaN</td>\n",
|
148 |
-
" </tr>\n",
|
149 |
-
" <tr>\n",
|
150 |
-
" <th>4</th>\n",
|
151 |
-
" <td>66</td>\n",
|
152 |
-
" <td>146</td>\n",
|
153 |
-
" <td>Ada County</td>\n",
|
154 |
-
" <td>county</td>\n",
|
155 |
-
" <td>ID</td>\n",
|
156 |
-
" <td>all homes plus multifamily</td>\n",
|
157 |
-
" <td>16.0</td>\n",
|
158 |
-
" <td>Boise City, ID</td>\n",
|
159 |
-
" <td>16.0</td>\n",
|
160 |
-
" <td>1.0</td>\n",
|
161 |
-
" <td>2015-05-31</td>\n",
|
162 |
-
" <td>941.045724</td>\n",
|
163 |
-
" <td>NaN</td>\n",
|
164 |
-
" <td>941.045724</td>\n",
|
165 |
-
" <td>NaN</td>\n",
|
166 |
-
" </tr>\n",
|
167 |
-
" <tr>\n",
|
168 |
-
" <th>...</th>\n",
|
169 |
-
" <td>...</td>\n",
|
170 |
-
" <td>...</td>\n",
|
171 |
-
" <td>...</td>\n",
|
172 |
-
" <td>...</td>\n",
|
173 |
-
" <td>...</td>\n",
|
174 |
-
" <td>...</td>\n",
|
175 |
-
" <td>...</td>\n",
|
176 |
-
" <td>...</td>\n",
|
177 |
-
" <td>...</td>\n",
|
178 |
-
" <td>...</td>\n",
|
179 |
-
" <td>...</td>\n",
|
180 |
-
" <td>...</td>\n",
|
181 |
-
" <td>...</td>\n",
|
182 |
-
" <td>...</td>\n",
|
183 |
-
" <td>...</td>\n",
|
184 |
-
" </tr>\n",
|
185 |
-
" <tr>\n",
|
186 |
-
" <th>1258735</th>\n",
|
187 |
-
" <td>857850</td>\n",
|
188 |
-
" <td>713</td>\n",
|
189 |
-
" <td>Cherry Hill</td>\n",
|
190 |
-
" <td>city</td>\n",
|
191 |
-
" <td>NJ</td>\n",
|
192 |
-
" <td>all homes plus multifamily</td>\n",
|
193 |
-
" <td>NJ</td>\n",
|
194 |
-
" <td>Philadelphia-Camden-Wilmington, PA-NJ-DE-MD</td>\n",
|
195 |
-
" <td>NaN</td>\n",
|
196 |
-
" <td>NaN</td>\n",
|
197 |
-
" <td>2023-08-31</td>\n",
|
198 |
-
" <td>2291.604800</td>\n",
|
199 |
-
" <td>Camden County</td>\n",
|
200 |
-
" <td>2244.961006</td>\n",
|
201 |
-
" <td>NaN</td>\n",
|
202 |
-
" </tr>\n",
|
203 |
-
" <tr>\n",
|
204 |
-
" <th>1258736</th>\n",
|
205 |
-
" <td>857850</td>\n",
|
206 |
-
" <td>713</td>\n",
|
207 |
-
" <td>Cherry Hill</td>\n",
|
208 |
-
" <td>city</td>\n",
|
209 |
-
" <td>NJ</td>\n",
|
210 |
-
" <td>all homes plus multifamily</td>\n",
|
211 |
-
" <td>NJ</td>\n",
|
212 |
-
" <td>Philadelphia-Camden-Wilmington, PA-NJ-DE-MD</td>\n",
|
213 |
-
" <td>NaN</td>\n",
|
214 |
-
" <td>NaN</td>\n",
|
215 |
-
" <td>2023-09-30</td>\n",
|
216 |
-
" <td>2296.188906</td>\n",
|
217 |
-
" <td>Camden County</td>\n",
|
218 |
-
" <td>2254.213172</td>\n",
|
219 |
-
" <td>NaN</td>\n",
|
220 |
-
" </tr>\n",
|
221 |
-
" <tr>\n",
|
222 |
-
" <th>1258737</th>\n",
|
223 |
-
" <td>857850</td>\n",
|
224 |
-
" <td>713</td>\n",
|
225 |
-
" <td>Cherry Hill</td>\n",
|
226 |
-
" <td>city</td>\n",
|
227 |
-
" <td>NJ</td>\n",
|
228 |
-
" <td>all homes plus multifamily</td>\n",
|
229 |
-
" <td>NJ</td>\n",
|
230 |
-
" <td>Philadelphia-Camden-Wilmington, PA-NJ-DE-MD</td>\n",
|
231 |
-
" <td>NaN</td>\n",
|
232 |
-
" <td>NaN</td>\n",
|
233 |
-
" <td>2023-10-31</td>\n",
|
234 |
-
" <td>2292.270938</td>\n",
|
235 |
-
" <td>Camden County</td>\n",
|
236 |
-
" <td>2261.540446</td>\n",
|
237 |
-
" <td>NaN</td>\n",
|
238 |
-
" </tr>\n",
|
239 |
-
" <tr>\n",
|
240 |
-
" <th>1258738</th>\n",
|
241 |
-
" <td>857850</td>\n",
|
242 |
-
" <td>713</td>\n",
|
243 |
-
" <td>Cherry Hill</td>\n",
|
244 |
-
" <td>city</td>\n",
|
245 |
-
" <td>NJ</td>\n",
|
246 |
-
" <td>all homes plus multifamily</td>\n",
|
247 |
-
" <td>NJ</td>\n",
|
248 |
-
" <td>Philadelphia-Camden-Wilmington, PA-NJ-DE-MD</td>\n",
|
249 |
-
" <td>NaN</td>\n",
|
250 |
-
" <td>NaN</td>\n",
|
251 |
-
" <td>2023-11-30</td>\n",
|
252 |
-
" <td>2253.417140</td>\n",
|
253 |
-
" <td>Camden County</td>\n",
|
254 |
-
" <td>2257.956024</td>\n",
|
255 |
-
" <td>NaN</td>\n",
|
256 |
-
" </tr>\n",
|
257 |
-
" <tr>\n",
|
258 |
-
" <th>1258739</th>\n",
|
259 |
-
" <td>857850</td>\n",
|
260 |
-
" <td>713</td>\n",
|
261 |
-
" <td>Cherry Hill</td>\n",
|
262 |
-
" <td>city</td>\n",
|
263 |
-
" <td>NJ</td>\n",
|
264 |
-
" <td>all homes plus multifamily</td>\n",
|
265 |
-
" <td>NJ</td>\n",
|
266 |
-
" <td>Philadelphia-Camden-Wilmington, PA-NJ-DE-MD</td>\n",
|
267 |
-
" <td>NaN</td>\n",
|
268 |
-
" <td>NaN</td>\n",
|
269 |
-
" <td>2023-12-31</td>\n",
|
270 |
-
" <td>2280.830303</td>\n",
|
271 |
-
" <td>Camden County</td>\n",
|
272 |
-
" <td>2280.830303</td>\n",
|
273 |
-
" <td>NaN</td>\n",
|
274 |
-
" </tr>\n",
|
275 |
-
" </tbody>\n",
|
276 |
-
"</table>\n",
|
277 |
-
"<p>1258740 rows × 15 columns</p>\n",
|
278 |
-
"</div>"
|
279 |
-
],
|
280 |
-
"text/plain": [
|
281 |
-
" RegionID SizeRank RegionName RegionType StateName \\\n",
|
282 |
-
"0 66 146 Ada County county ID \n",
|
283 |
-
"1 66 146 Ada County county ID \n",
|
284 |
-
"2 66 146 Ada County county ID \n",
|
285 |
-
"3 66 146 Ada County county ID \n",
|
286 |
-
"4 66 146 Ada County county ID \n",
|
287 |
-
"... ... ... ... ... ... \n",
|
288 |
-
"1258735 857850 713 Cherry Hill city NJ \n",
|
289 |
-
"1258736 857850 713 Cherry Hill city NJ \n",
|
290 |
-
"1258737 857850 713 Cherry Hill city NJ \n",
|
291 |
-
"1258738 857850 713 Cherry Hill city NJ \n",
|
292 |
-
"1258739 857850 713 Cherry Hill city NJ \n",
|
293 |
-
"\n",
|
294 |
-
" Home Type State \\\n",
|
295 |
-
"0 all homes plus multifamily 16.0 \n",
|
296 |
-
"1 all homes plus multifamily 16.0 \n",
|
297 |
-
"2 all homes plus multifamily 16.0 \n",
|
298 |
-
"3 all homes plus multifamily 16.0 \n",
|
299 |
-
"4 all homes plus multifamily 16.0 \n",
|
300 |
-
"... ... ... \n",
|
301 |
-
"1258735 all homes plus multifamily NJ \n",
|
302 |
-
"1258736 all homes plus multifamily NJ \n",
|
303 |
-
"1258737 all homes plus multifamily NJ \n",
|
304 |
-
"1258738 all homes plus multifamily NJ \n",
|
305 |
-
"1258739 all homes plus multifamily NJ \n",
|
306 |
-
"\n",
|
307 |
-
" Metro StateCodeFIPS \\\n",
|
308 |
-
"0 Boise City, ID 16.0 \n",
|
309 |
-
"1 Boise City, ID 16.0 \n",
|
310 |
-
"2 Boise City, ID 16.0 \n",
|
311 |
-
"3 Boise City, ID 16.0 \n",
|
312 |
-
"4 Boise City, ID 16.0 \n",
|
313 |
-
"... ... ... \n",
|
314 |
-
"1258735 Philadelphia-Camden-Wilmington, PA-NJ-DE-MD NaN \n",
|
315 |
-
"1258736 Philadelphia-Camden-Wilmington, PA-NJ-DE-MD NaN \n",
|
316 |
-
"1258737 Philadelphia-Camden-Wilmington, PA-NJ-DE-MD NaN \n",
|
317 |
-
"1258738 Philadelphia-Camden-Wilmington, PA-NJ-DE-MD NaN \n",
|
318 |
-
"1258739 Philadelphia-Camden-Wilmington, PA-NJ-DE-MD NaN \n",
|
319 |
-
"\n",
|
320 |
-
" MunicipalCodeFIPS Date Rent (Smoothed) CountyName \\\n",
|
321 |
-
"0 1.0 2015-01-31 927.493763 NaN \n",
|
322 |
-
"1 1.0 2015-02-28 931.690623 NaN \n",
|
323 |
-
"2 1.0 2015-03-31 932.568601 NaN \n",
|
324 |
-
"3 1.0 2015-04-30 933.148134 NaN \n",
|
325 |
-
"4 1.0 2015-05-31 941.045724 NaN \n",
|
326 |
-
"... ... ... ... ... \n",
|
327 |
-
"1258735 NaN 2023-08-31 2291.604800 Camden County \n",
|
328 |
-
"1258736 NaN 2023-09-30 2296.188906 Camden County \n",
|
329 |
-
"1258737 NaN 2023-10-31 2292.270938 Camden County \n",
|
330 |
-
"1258738 NaN 2023-11-30 2253.417140 Camden County \n",
|
331 |
-
"1258739 NaN 2023-12-31 2280.830303 Camden County \n",
|
332 |
-
"\n",
|
333 |
-
" Rent (Smoothed) (Seasonally Adjusted) City \n",
|
334 |
-
"0 927.493763 NaN \n",
|
335 |
-
"1 931.690623 NaN \n",
|
336 |
-
"2 932.568601 NaN \n",
|
337 |
-
"3 933.148134 NaN \n",
|
338 |
-
"4 941.045724 NaN \n",
|
339 |
-
"... ... ... \n",
|
340 |
-
"1258735 2244.961006 NaN \n",
|
341 |
-
"1258736 2254.213172 NaN \n",
|
342 |
-
"1258737 2261.540446 NaN \n",
|
343 |
-
"1258738 2257.956024 NaN \n",
|
344 |
-
"1258739 2280.830303 NaN \n",
|
345 |
-
"\n",
|
346 |
-
"[1258740 rows x 15 columns]"
|
347 |
-
]
|
348 |
-
},
|
349 |
-
"execution_count": 3,
|
350 |
-
"metadata": {},
|
351 |
-
"output_type": "execute_result"
|
352 |
-
}
|
353 |
-
],
|
354 |
"source": [
|
355 |
"data_frames = []\n",
|
356 |
"\n",
|
357 |
"slug_column_mappings = {\"\": \"Rent\"}\n",
|
358 |
"\n",
|
359 |
-
"
|
|
|
|
|
360 |
" if filename.endswith(\".csv\"):\n",
|
361 |
-
"
|
362 |
-
" cur_df = pd.read_csv(os.path.join(
|
363 |
" exclude_columns = [\n",
|
364 |
" \"RegionID\",\n",
|
365 |
" \"SizeRank\",\n",
|
@@ -1095,7 +778,7 @@
|
|
1095 |
"metadata": {},
|
1096 |
"outputs": [],
|
1097 |
"source": [
|
1098 |
-
"save_final_df_as_jsonl(
|
1099 |
]
|
1100 |
}
|
1101 |
],
|
|
|
2 |
"cells": [
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
+
"execution_count": 2,
|
6 |
"metadata": {},
|
7 |
"outputs": [],
|
8 |
"source": [
|
|
|
10 |
"import os\n",
|
11 |
"\n",
|
12 |
"from helpers import (\n",
|
13 |
+
" get_data_path_for_config,\n",
|
14 |
" get_combined_df,\n",
|
15 |
" save_final_df_as_jsonl,\n",
|
16 |
" handle_slug_column_mappings,\n",
|
|
|
20 |
},
|
21 |
{
|
22 |
"cell_type": "code",
|
23 |
+
"execution_count": 1,
|
24 |
"metadata": {},
|
25 |
"outputs": [],
|
26 |
"source": [
|
27 |
+
"CONFIG_NAME = \"rentals\""
|
|
|
|
|
|
|
|
|
28 |
]
|
29 |
},
|
30 |
{
|
31 |
"cell_type": "code",
|
32 |
"execution_count": 3,
|
33 |
"metadata": {},
|
34 |
+
"outputs": [],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
"source": [
|
36 |
"data_frames = []\n",
|
37 |
"\n",
|
38 |
"slug_column_mappings = {\"\": \"Rent\"}\n",
|
39 |
"\n",
|
40 |
+
"data_dir_path = get_data_path_for_config(CONFIG_NAME)\n",
|
41 |
+
"\n",
|
42 |
+
"for filename in os.listdir(data_dir_path):\n",
|
43 |
" if filename.endswith(\".csv\"):\n",
|
44 |
+
" print(\"processing \" + filename)\n",
|
45 |
+
" cur_df = pd.read_csv(os.path.join(data_dir_path, filename))\n",
|
46 |
" exclude_columns = [\n",
|
47 |
" \"RegionID\",\n",
|
48 |
" \"SizeRank\",\n",
|
|
|
778 |
"metadata": {},
|
779 |
"outputs": [],
|
780 |
"source": [
|
781 |
+
"save_final_df_as_jsonl(CONFIG_NAME, final_df)"
|
782 |
]
|
783 |
}
|
784 |
],
|
processors/rentals.py
CHANGED
@@ -8,6 +8,7 @@ import pandas as pd
|
|
8 |
import os
|
9 |
|
10 |
from helpers import (
|
|
|
11 |
get_combined_df,
|
12 |
save_final_df_as_jsonl,
|
13 |
handle_slug_column_mappings,
|
@@ -15,27 +16,25 @@ from helpers import (
|
|
15 |
)
|
16 |
|
17 |
|
18 |
-
# In[
|
19 |
|
20 |
|
21 |
-
|
22 |
-
PROCESSED_DIR = "../processed/"
|
23 |
-
FACET_DIR = "rentals/"
|
24 |
-
FULL_DATA_DIR_PATH = os.path.join(DATA_DIR, FACET_DIR)
|
25 |
-
FULL_PROCESSED_DIR_PATH = os.path.join(PROCESSED_DIR, FACET_DIR)
|
26 |
|
27 |
|
28 |
-
# In[
|
29 |
|
30 |
|
31 |
data_frames = []
|
32 |
|
33 |
slug_column_mappings = {"": "Rent"}
|
34 |
|
35 |
-
|
|
|
|
|
36 |
if filename.endswith(".csv"):
|
37 |
-
|
38 |
-
cur_df = pd.read_csv(os.path.join(
|
39 |
exclude_columns = [
|
40 |
"RegionID",
|
41 |
"SizeRank",
|
@@ -112,7 +111,7 @@ combined_df = get_combined_df(
|
|
112 |
combined_df
|
113 |
|
114 |
|
115 |
-
# In[
|
116 |
|
117 |
|
118 |
final_df = combined_df
|
@@ -131,7 +130,7 @@ final_df = final_df.drop(columns=["StateName", "CountyName"])
|
|
131 |
final_df
|
132 |
|
133 |
|
134 |
-
# In[
|
135 |
|
136 |
|
137 |
# Adjust column names
|
@@ -154,5 +153,5 @@ final_df
|
|
154 |
# In[7]:
|
155 |
|
156 |
|
157 |
-
save_final_df_as_jsonl(
|
158 |
|
|
|
8 |
import os
|
9 |
|
10 |
from helpers import (
|
11 |
+
get_data_path_for_config,
|
12 |
get_combined_df,
|
13 |
save_final_df_as_jsonl,
|
14 |
handle_slug_column_mappings,
|
|
|
16 |
)
|
17 |
|
18 |
|
19 |
+
# In[1]:
|
20 |
|
21 |
|
22 |
+
CONFIG_NAME = "rentals"
|
|
|
|
|
|
|
|
|
23 |
|
24 |
|
25 |
+
# In[3]:
|
26 |
|
27 |
|
28 |
data_frames = []
|
29 |
|
30 |
slug_column_mappings = {"": "Rent"}
|
31 |
|
32 |
+
data_dir_path = get_data_path_for_config(CONFIG_NAME)
|
33 |
+
|
34 |
+
for filename in os.listdir(data_dir_path):
|
35 |
if filename.endswith(".csv"):
|
36 |
+
print("processing " + filename)
|
37 |
+
cur_df = pd.read_csv(os.path.join(data_dir_path, filename))
|
38 |
exclude_columns = [
|
39 |
"RegionID",
|
40 |
"SizeRank",
|
|
|
111 |
combined_df
|
112 |
|
113 |
|
114 |
+
# In[4]:
|
115 |
|
116 |
|
117 |
final_df = combined_df
|
|
|
130 |
final_df
|
131 |
|
132 |
|
133 |
+
# In[5]:
|
134 |
|
135 |
|
136 |
# Adjust column names
|
|
|
153 |
# In[7]:
|
154 |
|
155 |
|
156 |
+
save_final_df_as_jsonl(CONFIG_NAME, final_df)
|
157 |
|
processors/sales.ipynb
CHANGED
@@ -10,6 +10,7 @@
|
|
10 |
"import os\n",
|
11 |
"\n",
|
12 |
"from helpers import (\n",
|
|
|
13 |
" get_combined_df,\n",
|
14 |
" save_final_df_as_jsonl,\n",
|
15 |
" handle_slug_column_mappings,\n",
|
@@ -23,11 +24,7 @@
|
|
23 |
"metadata": {},
|
24 |
"outputs": [],
|
25 |
"source": [
|
26 |
-
"
|
27 |
-
"PROCESSED_DIR = \"../processed/\"\n",
|
28 |
-
"FACET_DIR = \"sales/\"\n",
|
29 |
-
"FULL_DATA_DIR_PATH = os.path.join(DATA_DIR, FACET_DIR)\n",
|
30 |
-
"FULL_PROCESSED_DIR_PATH = os.path.join(PROCESSED_DIR, FACET_DIR)"
|
31 |
]
|
32 |
},
|
33 |
{
|
@@ -448,6 +445,8 @@
|
|
448 |
}
|
449 |
],
|
450 |
"source": [
|
|
|
|
|
451 |
"exclude_columns = [\n",
|
452 |
" \"RegionID\",\n",
|
453 |
" \"SizeRank\",\n",
|
@@ -466,16 +465,16 @@
|
|
466 |
" \"_sales_count_now_\": \"Nowcast\",\n",
|
467 |
"}\n",
|
468 |
"\n",
|
469 |
-
"
|
470 |
"\n",
|
471 |
-
"for filename in os.listdir(
|
472 |
" if filename.endswith(\".csv\"):\n",
|
473 |
" print(\"processing \" + filename)\n",
|
474 |
" # ignore monthly data for now since it is redundant\n",
|
475 |
" if \"month\" in filename:\n",
|
476 |
" continue\n",
|
477 |
"\n",
|
478 |
-
" cur_df = pd.read_csv(os.path.join(
|
479 |
"\n",
|
480 |
" cur_df = set_home_type(cur_df, filename)\n",
|
481 |
"\n",
|
@@ -1294,7 +1293,7 @@
|
|
1294 |
"metadata": {},
|
1295 |
"outputs": [],
|
1296 |
"source": [
|
1297 |
-
"save_final_df_as_jsonl(
|
1298 |
]
|
1299 |
}
|
1300 |
],
|
|
|
10 |
"import os\n",
|
11 |
"\n",
|
12 |
"from helpers import (\n",
|
13 |
+
" get_data_path_for_config,\n",
|
14 |
" get_combined_df,\n",
|
15 |
" save_final_df_as_jsonl,\n",
|
16 |
" handle_slug_column_mappings,\n",
|
|
|
24 |
"metadata": {},
|
25 |
"outputs": [],
|
26 |
"source": [
|
27 |
+
"CONFIG_NAME = \"sales\""
|
|
|
|
|
|
|
|
|
28 |
]
|
29 |
},
|
30 |
{
|
|
|
445 |
}
|
446 |
],
|
447 |
"source": [
|
448 |
+
"data_frames = []\n",
|
449 |
+
"\n",
|
450 |
"exclude_columns = [\n",
|
451 |
" \"RegionID\",\n",
|
452 |
" \"SizeRank\",\n",
|
|
|
465 |
" \"_sales_count_now_\": \"Nowcast\",\n",
|
466 |
"}\n",
|
467 |
"\n",
|
468 |
+
"data_dir_path = get_data_path_for_config(CONFIG_NAME)\n",
|
469 |
"\n",
|
470 |
+
"for filename in os.listdir(data_dir_path):\n",
|
471 |
" if filename.endswith(\".csv\"):\n",
|
472 |
" print(\"processing \" + filename)\n",
|
473 |
" # ignore monthly data for now since it is redundant\n",
|
474 |
" if \"month\" in filename:\n",
|
475 |
" continue\n",
|
476 |
"\n",
|
477 |
+
" cur_df = pd.read_csv(os.path.join(data_dir_path, filename))\n",
|
478 |
"\n",
|
479 |
" cur_df = set_home_type(cur_df, filename)\n",
|
480 |
"\n",
|
|
|
1293 |
"metadata": {},
|
1294 |
"outputs": [],
|
1295 |
"source": [
|
1296 |
+
"save_final_df_as_jsonl(CONFIG_NAME, final_df)"
|
1297 |
]
|
1298 |
}
|
1299 |
],
|
processors/sales.py
CHANGED
@@ -1,13 +1,14 @@
|
|
1 |
#!/usr/bin/env python
|
2 |
# coding: utf-8
|
3 |
|
4 |
-
# In[
|
5 |
|
6 |
|
7 |
import pandas as pd
|
8 |
import os
|
9 |
|
10 |
from helpers import (
|
|
|
11 |
get_combined_df,
|
12 |
save_final_df_as_jsonl,
|
13 |
handle_slug_column_mappings,
|
@@ -15,19 +16,17 @@ from helpers import (
|
|
15 |
)
|
16 |
|
17 |
|
18 |
-
# In[
|
19 |
|
20 |
|
21 |
-
|
22 |
-
PROCESSED_DIR = "../processed/"
|
23 |
-
FACET_DIR = "sales/"
|
24 |
-
FULL_DATA_DIR_PATH = os.path.join(DATA_DIR, FACET_DIR)
|
25 |
-
FULL_PROCESSED_DIR_PATH = os.path.join(PROCESSED_DIR, FACET_DIR)
|
26 |
|
27 |
|
28 |
-
# In[
|
29 |
|
30 |
|
|
|
|
|
31 |
exclude_columns = [
|
32 |
"RegionID",
|
33 |
"SizeRank",
|
@@ -46,16 +45,16 @@ slug_column_mappings = {
|
|
46 |
"_sales_count_now_": "Nowcast",
|
47 |
}
|
48 |
|
49 |
-
|
50 |
|
51 |
-
for filename in os.listdir(
|
52 |
if filename.endswith(".csv"):
|
53 |
print("processing " + filename)
|
54 |
# ignore monthly data for now since it is redundant
|
55 |
if "month" in filename:
|
56 |
continue
|
57 |
|
58 |
-
cur_df = pd.read_csv(os.path.join(
|
59 |
|
60 |
cur_df = set_home_type(cur_df, filename)
|
61 |
|
@@ -80,7 +79,7 @@ combined_df = get_combined_df(
|
|
80 |
combined_df
|
81 |
|
82 |
|
83 |
-
# In[
|
84 |
|
85 |
|
86 |
# Adjust column names
|
@@ -98,7 +97,7 @@ final_df["Date"] = pd.to_datetime(final_df["Date"])
|
|
98 |
final_df.sort_values(by=["Region ID", "Home Type", "Date"])
|
99 |
|
100 |
|
101 |
-
# In[
|
102 |
|
103 |
|
104 |
final_df["Date"] = pd.to_datetime(final_df["Date"], format="%Y-%m-%d")
|
@@ -106,8 +105,8 @@ final_df["Date"] = pd.to_datetime(final_df["Date"], format="%Y-%m-%d")
|
|
106 |
final_df
|
107 |
|
108 |
|
109 |
-
# In[
|
110 |
|
111 |
|
112 |
-
save_final_df_as_jsonl(
|
113 |
|
|
|
1 |
#!/usr/bin/env python
|
2 |
# coding: utf-8
|
3 |
|
4 |
+
# In[1]:
|
5 |
|
6 |
|
7 |
import pandas as pd
|
8 |
import os
|
9 |
|
10 |
from helpers import (
|
11 |
+
get_data_path_for_config,
|
12 |
get_combined_df,
|
13 |
save_final_df_as_jsonl,
|
14 |
handle_slug_column_mappings,
|
|
|
16 |
)
|
17 |
|
18 |
|
19 |
+
# In[2]:
|
20 |
|
21 |
|
22 |
+
CONFIG_NAME = "sales"
|
|
|
|
|
|
|
|
|
23 |
|
24 |
|
25 |
+
# In[3]:
|
26 |
|
27 |
|
28 |
+
data_frames = []
|
29 |
+
|
30 |
exclude_columns = [
|
31 |
"RegionID",
|
32 |
"SizeRank",
|
|
|
45 |
"_sales_count_now_": "Nowcast",
|
46 |
}
|
47 |
|
48 |
+
data_dir_path = get_data_path_for_config(CONFIG_NAME)
|
49 |
|
50 |
+
for filename in os.listdir(data_dir_path):
|
51 |
if filename.endswith(".csv"):
|
52 |
print("processing " + filename)
|
53 |
# ignore monthly data for now since it is redundant
|
54 |
if "month" in filename:
|
55 |
continue
|
56 |
|
57 |
+
cur_df = pd.read_csv(os.path.join(data_dir_path, filename))
|
58 |
|
59 |
cur_df = set_home_type(cur_df, filename)
|
60 |
|
|
|
79 |
combined_df
|
80 |
|
81 |
|
82 |
+
# In[4]:
|
83 |
|
84 |
|
85 |
# Adjust column names
|
|
|
97 |
final_df.sort_values(by=["Region ID", "Home Type", "Date"])
|
98 |
|
99 |
|
100 |
+
# In[5]:
|
101 |
|
102 |
|
103 |
final_df["Date"] = pd.to_datetime(final_df["Date"], format="%Y-%m-%d")
|
|
|
105 |
final_df
|
106 |
|
107 |
|
108 |
+
# In[6]:
|
109 |
|
110 |
|
111 |
+
save_final_df_as_jsonl(CONFIG_NAME, final_df)
|
112 |
|