misikoff commited on
Commit
e10c179
β€’
1 Parent(s): 2be48a5

feat: update readmes and adjust home value forecasts

Browse files
README.md CHANGED
@@ -1,10 +1,190 @@
1
  ---
2
- license: mit
3
- # configs:
4
- # - config_name: home value forecasts
5
- # data_files: "processed/home_value_forecasts/final.csv"
6
- # - split: train
7
- # path: "data.csv"
8
- # - split: test
9
- # path: "holdout.csv"
 
 
 
 
10
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ # language:
3
+ # - "List of ISO 639-1 code for your language"
4
+ # - lang1
5
+ # - lang2
6
+ pretty_name: "Zillow"
7
+ # tags:
8
+ # - tag1
9
+ # - tag2
10
+ license: "other"
11
+ # task_categories:
12
+ # - task1
13
+ # - task2
14
  ---
15
+
16
+ # Housing Data Provided by Zillow
17
+ ## Updated 2023-02-01
18
+
19
+ This dataset contains several configs produced based on files available at https://www.zillow.com/research/data/.
20
+
21
+ supported configs:
22
+ <!-- list each with a short description (1 sentence) -->
23
+ - [`home_values`](https://huggingface.co/datasets/misikoff/zillow#home-values): Zillow Home Value Index (ZHVI) for all homes, mid-tier, bottom-tier, and top-tier homes.
24
+ - [`home_value_forecasts`](https://huggingface.co/datasets/misikoff/zillow#home-value-forecasts): Zillow Home Value Forecast (ZHVF) for all homes, mid-tier, bottom-tier, and top-tier homes.
25
+ - [`rentals`](https://huggingface.co/datasets/misikoff/zillow#rentals): Zillow Observed Rent Index (ZORI) for all homes, mid-tier, bottom-tier, and top-tier homes.
26
+ - [`for_sale_listings`](https://huggingface.co/datasets/misikoff/zillow#for-sale-listings): Median listing price, new listings, and new pending listings.
27
+ - [`sales`](https://huggingface.co/datasets/misikoff/zillow#sales): Median sale price, median sale price per square foot, and sales count.
28
+ - [`days_on_market`](https://huggingface.co/datasets/misikoff/zillow#days-on-market): Days to pending, days to close, share of listings with a price cut, and price cuts.
29
+ - [`new_constructions`](https://huggingface.co/datasets/misikoff/zillow#new-constructions): Median sale price, median sale price per square foot, and sales count.
30
+
31
+ ## HOME VALUES
32
+
33
+ <!-- Zillow Home Value Index (ZHVI): A measure of the typical home value and market changes across a given region and housing type. It reflects the typical value for homes in the 35th to 65th percentile range. Available as a smoothed, seasonally adjusted measure and as a raw measure. -->
34
+
35
+ <!-- Zillow publishes top-tier ZHVI (\$, typical value for homes within the 65th to 95th percentile range for a given region) and bottom-tier ZHVI (\$, typical value for homes within the 5th to 35th percentile range for a given region). -->
36
+
37
+ <!-- Zillow also publishes ZHVI for all single-family residences (\$, typical value for all single-family homes in a given region), for condo/coops (\$), for all homes with 1, 2, 3, 4 and 5+ bedrooms (\$), and the ZHVI per square foot (\$, typical value of all homes per square foot calculated by taking the estimated home value for each home in a given region and dividing it by the home’s square footage). -->
38
+
39
+ <!-- Note: Starting with the January 2023 data release, and for all subsequent releases, the full ZHVI time series has been upgraded to harness the power of the neural Zestimate. -->
40
+
41
+ <!-- More information about what ZHVI is and how it’s calculated is available on this overview page. Here’s a handy ZHVI User Guide for information about properly citing and making calculations with this metric. -->
42
+
43
+ Base Columns
44
+ - `Region ID`: dtype="string", a unique identifier for the region
45
+ - `Size Rank`: dtype="int32", a rank of the region's size
46
+ - `Region`: dtype="string", the name of the region
47
+ - `Region Type`: dtype="string", the type of region
48
+ - `State`: dtype="string", the US state abbreviation for the state containing the region
49
+ - `Home Type`: dtype="string", the type of home
50
+ - `Date`: dtype="string", the date of the last day of the month for this data
51
+
52
+ Value Columns
53
+ - `Mid Tier ZHVI (Smoothed) (Seasonally Adjusted)`: dtype="float32",
54
+ - `Bottom Tier ZHVI (Smoothed) (Seasonally Adjusted)`: dtype="float32",
55
+ - `Top Tier ZHVI (Smoothed) (Seasonally Adjusted)`: dtype="float32",
56
+ - `ZHVI`: dtype="float32",
57
+ - `Mid Tier ZHVI`: dtype="float32"
58
+
59
+
60
+ ## HOME VALUES FORECASTS
61
+
62
+ <!-- Zillow Home Value Forecast (ZHVF): A month-ahead, quarter-ahead and year-ahead forecast of the Zillow Home Value Index (ZHVI). ZHVF is created using the all homes, mid-tier cut of ZHVI and is available both raw and smoothed, seasonally adjusted. -->
63
+
64
+ <!-- Note: Starting with the January 2023 forecast (made available in February 2023), Zillow’s Home Value Forecast is based on the upgraded ZHVI that harnesses the power of the neural Zestimate. More information about what ZHVI is and how it’s calculated is available on this overview page. -->
65
+
66
+ Base Columns
67
+ - `Region ID`: dtype="string", a unique identifier for the region
68
+ - `Size Rank`: dtype="int32", a rank of the region's size
69
+ - `Region`: dtype="string", the name of the region
70
+ - `Region Type`: dtype="string", the type of region
71
+ - `State`: dtype="string", the US state abbreviation for the state containing the region
72
+ - `City`: dtype="string", id="City"),
73
+ - `Metro`: dtype="string", id="Metro"),
74
+ - `County`: dtype="string", id="County"),
75
+ - `Home Type`: dtype="string", the type of home
76
+ - `Date`: dtype="string", the date of these forecasts
77
+
78
+ Value Columns
79
+ - `Month Over Month % (Smoothed)`: dtype="float32",
80
+ - `Quarter Over Quarter % (Smoothed)`: dtype="float32",
81
+ - `Year Over Year % (Smoothed)`: dtype="float32"
82
+ - `Month Over Month % (Raw)`: dtype="float32"
83
+ - `Quarter Over Quarter % (Raw)`: dtype="float32"
84
+ - `Year Over Year % (Raw)`: dtype="float32"
85
+
86
+ ## RENTALS
87
+
88
+ Base Columns
89
+ - `Region ID`: dtype="string", a unique identifier for the region
90
+ - `Size Rank`: dtype="int32", a rank of the region's size
91
+ - `Region`: dtype="string", the name of the region
92
+ - `Region Type`: dtype="string", the type of region
93
+ - `State`: dtype="string", the US state abbreviation for the state containing the region
94
+ - `Home Type`: dtype="string", the type of home
95
+ - `Date`: dtype="string", the date of the last day of the month for this data
96
+
97
+ Value Columns
98
+ - `Rent (Smoothed)`: dtype="float32", Zillow Observed Rent Index (ZORI): A smoothed measure of the typical observed market rate rent across a given region. ZORI is a repeat-rent index that is weighted to the rental housing stock to ensure representativeness across the entire market, not just those homes currently listed for-rent. The index is dollar-denominated by computing the mean of listed rents that fall into the 40th to 60th percentile range for all homes and apartments in a given region, which is weighted to reflect the rental housing stock.
99
+ - `Rent (Smoothed) (Seasonally Adjusted)`: dtype="float32", Zillow Observed Rent Index (ZORI) :A smoothed measure of the typical observed market rate rent across a given region. ZORI is a repeat-rent index that is weighted to the rental housing stock to ensure representativeness across the entire market, not just those homes currently listed for-rent. The index is dollar-denominated by computing the mean of listed rents that fall into the 40th to 60th percentile range for all homes and apartments in a given region, which is weighted to reflect the rental housing stock.
100
+
101
+ ## FOR-SALE LISTINGS
102
+
103
+ Base Columns
104
+ - `Region ID`: dtype="string", a unique identifier for the region
105
+ - `Size Rank`: dtype="int32", a rank of the region's size
106
+ - `Region`: dtype="string", the name of the region
107
+ - `Region Type`: dtype="string", the type of region
108
+ - `State`: dtype="string", the US state abbreviation for the state containing the region
109
+ - `Home Type`: dtype="string", the type of home
110
+ - `Date`: dtype="string", the date of the last day of the month for this data
111
+
112
+ Value Columns
113
+ - `Median Listing Price`: dtype="float32", The median price at which homes across various geographies were listed.
114
+ - `Median Listing Price (Smoothed)`: dtype="float32", The median price at which homes across various geographies were listed. (smoothed)
115
+ - `New Listings`: dtype="int32", how many new listings have come on the market in a given month
116
+ - `New Listings (Smoothed)`: dtype="int32", how many new listings have come on the market in a given month. (smoothed)
117
+ - `New Pending (Smoothed)`: dtype="int32", The count of listings that changed from for-sale to pending status on Zillow.com in a given time period. (smoothed)
118
+ - `New Pending`: dtype="int32", The count of listings that changed from for-sale to pending status on Zillow.com in a given time period.
119
+
120
+
121
+ ## SALES (TODO investigate columns)
122
+ <!-- Sale-to-List Ratio (mean/median): Ratio of sale vs. final list price. -->
123
+ <!-- Percent of Sales Below/Above List: Share of sales where sale price below/above the final list price; excludes homes sold for exactly the list price. -->
124
+
125
+ Base Columns
126
+ - `Region ID`: dtype="string", a unique identifier for the region
127
+ - `Size Rank`: dtype="int32", a rank of the region's size
128
+ - `Region`: dtype="string", the name of the region
129
+ - `Region Type`: dtype="string", the type of region
130
+ - `State`: dtype="string", the US state abbreviation for the state containing the region
131
+ - `Home Type`: dtype="string", the type of home
132
+ - `Date`: dtype="string", the date of the last day of the month for this data
133
+
134
+ Value Columns
135
+ - `Median Sale Price`: dtype="float32", The median price at which homes across various geographies were sold.
136
+ - `Median Sale Price per Sqft`: dtype="float32" The median price per square foot at which homes across various geographies were sold.
137
+ - `Sales Count`: dtype="int32", The "Sales Count Nowcast" is the estimated number of unique properties that sold during the month after accounting for the latency between when sales occur and when they are reported.
138
+
139
+ ## DAYS ON MARKET AND PRICE CUTS (TODO investigate columns more)
140
+
141
+ Days to Pending: How long it takes homes in a region to change to pending status on Zillow.com after first being shown as for sale. The reported figure indicates the number of days (mean or median) that it took for homes that went pending during the week being reported, to go pending. This differs from the old β€œDays on Zillow” metric in that it excludes the in-contract period before a home sells.
142
+ Days to Close (mean/median): Number of days between the listing going pending and the sale date.
143
+ Share of Listings With a Price Cut: The number of unique properties with a list price at the end of the month that’s less than the list price at the beginning of the month, divided by the number of unique properties with an active listing at some point during the month.
144
+ Price Cuts: The mean and median price cut for listings in a given region during a given time period, expressed as both dollars ($) and as a percentage (%) of list price.
145
+
146
+ Base Columns
147
+ - `Region ID`: dtype="string", a unique identifier for the region
148
+ - `Size Rank`: dtype="int32", a rank of the region's size
149
+ - `Region`: dtype="string", the name of the region
150
+ - `Region Type`: dtype="string", the type of region
151
+ - `State`: dtype="string", the US state abbreviation for the state containing the region
152
+ - `Home Type`: dtype="string", the type of home
153
+ - `Date`: dtype="string", the date of the last day of the week for this data
154
+
155
+ Value Columns
156
+ - `Mean Listings Price Cut Amount (Smoothed)`: dtype="float32"
157
+ - `Percent Listings Price Cut`: dtype="float32", The number of unique properties with a list price at the end of the month that’s less than the list price at the beginning of the month, divided by the number of unique properties with an active listing at some point during the month.
158
+ - `Mean Listings Price Cut Amount`: dtype="float32"
159
+ - `Percent Listings Price Cut (Smoothed)`: dtype="float32"
160
+ - `Median Days on Pending (Smoothed)`: dtype="float32", median number of days it takes for homes in a region to change to pending status on Zillow.com after first being shown as for sale. (smoothed)
161
+ - `Median Days on Pending`: dtype="float32", median number of days it takes for homes in a region to change to pending status on Zillow.com after first being shown as for sale.
162
+
163
+ ## NEW CONSTRUCTION
164
+
165
+ Base Columns
166
+ - `Region ID`: dtype="string", a unique identifier for the region
167
+ - `Size Rank`: dtype="int32", a rank of the region's size
168
+ - `Region`: dtype="string", the name of the region
169
+ - `Region Type`: dtype="string", the type of region
170
+ - `State`: dtype="string", the US state abbreviation for the state containing the region
171
+ - `Home Type`: dtype="string", the type of home
172
+ - `Date`: dtype="string", the date of the last day of the month for this data
173
+
174
+ Value Columns
175
+ - `Median Sale Price`: dtype="float32", the median sale price of new construction homes that sold during the month in the specified region
176
+ - `Median Sale Price per Sqft`: dtype="float32", the median sale price per square foot of new construction homes that sold during the month in the specified region
177
+ - `Sales Count`: dtype="int32", the number of new construction homes that sold during the month in the specified region
178
+
179
+ ## DEFINITIONS OF HOME TYPES
180
+ - All Homes: Zillow defines all homes as single-family, condominium and co-operative homes with a county record. Unless specified, all series cover this segment of the housing stock.
181
+ - Condo/Co-op: Condominium and co-operative homes.
182
+ - Multifamily 5+ units: Units in buildings with 5 or more housing units, that are not condominiums or co-ops.
183
+ - Duplex/Triplex/Quadplex: Housing units in buildings with 2, 3, or 4 housing units.
184
+
185
+ # Example Usage
186
+ ```python
187
+ from datasets import load_dataset
188
+
189
+ dataset = load_dataset("misikoff/zillow", 'home_values', trust_remote_code=True)
190
+ ```
data/README.md ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ # Raw Data
2
+
3
+ This is the raw data downloaded directly from https://www.zillow.com/research/data/. It is processed by the processors and the result is stored in the processed directory.
processed/README.md ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ # Processed Data stored as *.jsonl files
2
+
3
+ This is where the processed files are stored, to be ingested by zillow.py.
processed/home_value_forecasts/final.jsonl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f0557666842cd52409b8f1509e1402270d649ddb9371f9992007422a807d29fa
3
+ size 8185465
processors/README.md ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+
2
+ # Processors
3
+
4
+ These processors build the processed files found in the `processed` directory. They are used to ingest the raw data and prepare it for analysis.
processors/home_value_forecasts.ipynb CHANGED
@@ -2,7 +2,7 @@
2
  "cells": [
3
  {
4
  "cell_type": "code",
5
- "execution_count": 9,
6
  "metadata": {},
7
  "outputs": [],
8
  "source": [
@@ -12,7 +12,7 @@
12
  },
13
  {
14
  "cell_type": "code",
15
- "execution_count": 10,
16
  "metadata": {},
17
  "outputs": [],
18
  "source": [
@@ -25,7 +25,7 @@
25
  },
26
  {
27
  "cell_type": "code",
28
- "execution_count": 11,
29
  "metadata": {},
30
  "outputs": [
31
  {
@@ -361,7 +361,7 @@
361
  "[21062 rows x 16 columns]"
362
  ]
363
  },
364
- "execution_count": 11,
365
  "metadata": {},
366
  "output_type": "execute_result"
367
  }
@@ -418,7 +418,7 @@
418
  },
419
  {
420
  "cell_type": "code",
421
- "execution_count": 12,
422
  "metadata": {},
423
  "outputs": [
424
  {
@@ -442,15 +442,15 @@
442
  " <thead>\n",
443
  " <tr style=\"text-align: right;\">\n",
444
  " <th></th>\n",
445
- " <th>RegionID</th>\n",
446
- " <th>RegionName</th>\n",
447
  " <th>RegionType</th>\n",
448
- " <th>SizeRank</th>\n",
449
  " <th>State</th>\n",
450
  " <th>City</th>\n",
451
  " <th>Metro</th>\n",
452
  " <th>County</th>\n",
453
- " <th>BaseDate</th>\n",
454
  " <th>Month Over Month % (Smoothed)</th>\n",
455
  " <th>Quarter Over Quarter % (Smoothed)</th>\n",
456
  " <th>Year Over Year % (Smoothed)</th>\n",
@@ -664,20 +664,20 @@
664
  "</div>"
665
  ],
666
  "text/plain": [
667
- " RegionID RegionName RegionType SizeRank State City \\\n",
668
- "0 102001 United States country 0 NaN NaN \n",
669
- "1 394913 New York, NY msa 1 NY New York \n",
670
- "2 753899 Los Angeles, CA msa 2 CA Los Angeles \n",
671
- "3 394463 Chicago, IL msa 3 IL Chicago \n",
672
- "4 394514 Dallas, TX msa 4 TX Dallas \n",
673
- "... ... ... ... ... ... ... \n",
674
- "20162 82097 55087 zip 39992 MN Warsaw \n",
675
- "20163 85325 62093 zip 39992 IL NaN \n",
676
- "20164 92085 77661 zip 39992 TX NaN \n",
677
- "20165 92811 79078 zip 39992 TX NaN \n",
678
- "20166 98183 95419 zip 39992 CA Camp Meeker \n",
679
  "\n",
680
- " Metro County BaseDate \\\n",
681
  "0 NaN NaN 2023-12-31 \n",
682
  "1 NaN NaN 2023-12-31 \n",
683
  "2 NaN NaN 2023-12-31 \n",
@@ -732,7 +732,7 @@
732
  "[21062 rows x 15 columns]"
733
  ]
734
  },
735
- "execution_count": 12,
736
  "metadata": {},
737
  "output_type": "execute_result"
738
  }
@@ -756,12 +756,20 @@
756
  "\n",
757
  "final_df = combined_df[all_cols]\n",
758
  "final_df = final_df.drop(\"StateName\", axis=1)\n",
759
- "final_df = final_df.rename(columns={\"CountyName\": \"County\"})\n",
 
 
 
 
 
 
 
 
760
  "\n",
761
  "# iterate over rows of final_df and populate State and City columns if the regionType is msa\n",
762
  "for index, row in final_df.iterrows():\n",
763
  " if row[\"RegionType\"] == \"msa\":\n",
764
- " regionName = row[\"RegionName\"]\n",
765
  " # final_df.at[index, 'Metro'] = regionName\n",
766
  "\n",
767
  " city = regionName.split(\", \")[0]\n",
@@ -775,7 +783,7 @@
775
  },
776
  {
777
  "cell_type": "code",
778
- "execution_count": 13,
779
  "metadata": {},
780
  "outputs": [],
781
  "source": [
 
2
  "cells": [
3
  {
4
  "cell_type": "code",
5
+ "execution_count": 1,
6
  "metadata": {},
7
  "outputs": [],
8
  "source": [
 
12
  },
13
  {
14
  "cell_type": "code",
15
+ "execution_count": 2,
16
  "metadata": {},
17
  "outputs": [],
18
  "source": [
 
25
  },
26
  {
27
  "cell_type": "code",
28
+ "execution_count": 3,
29
  "metadata": {},
30
  "outputs": [
31
  {
 
361
  "[21062 rows x 16 columns]"
362
  ]
363
  },
364
+ "execution_count": 3,
365
  "metadata": {},
366
  "output_type": "execute_result"
367
  }
 
418
  },
419
  {
420
  "cell_type": "code",
421
+ "execution_count": 7,
422
  "metadata": {},
423
  "outputs": [
424
  {
 
442
  " <thead>\n",
443
  " <tr style=\"text-align: right;\">\n",
444
  " <th></th>\n",
445
+ " <th>Region ID</th>\n",
446
+ " <th>Region</th>\n",
447
  " <th>RegionType</th>\n",
448
+ " <th>Size Rank</th>\n",
449
  " <th>State</th>\n",
450
  " <th>City</th>\n",
451
  " <th>Metro</th>\n",
452
  " <th>County</th>\n",
453
+ " <th>Date</th>\n",
454
  " <th>Month Over Month % (Smoothed)</th>\n",
455
  " <th>Quarter Over Quarter % (Smoothed)</th>\n",
456
  " <th>Year Over Year % (Smoothed)</th>\n",
 
664
  "</div>"
665
  ],
666
  "text/plain": [
667
+ " Region ID Region RegionType Size Rank State City \\\n",
668
+ "0 102001 United States country 0 NaN NaN \n",
669
+ "1 394913 New York, NY msa 1 NY New York \n",
670
+ "2 753899 Los Angeles, CA msa 2 CA Los Angeles \n",
671
+ "3 394463 Chicago, IL msa 3 IL Chicago \n",
672
+ "4 394514 Dallas, TX msa 4 TX Dallas \n",
673
+ "... ... ... ... ... ... ... \n",
674
+ "20162 82097 55087 zip 39992 MN Warsaw \n",
675
+ "20163 85325 62093 zip 39992 IL NaN \n",
676
+ "20164 92085 77661 zip 39992 TX NaN \n",
677
+ "20165 92811 79078 zip 39992 TX NaN \n",
678
+ "20166 98183 95419 zip 39992 CA Camp Meeker \n",
679
  "\n",
680
+ " Metro County Date \\\n",
681
  "0 NaN NaN 2023-12-31 \n",
682
  "1 NaN NaN 2023-12-31 \n",
683
  "2 NaN NaN 2023-12-31 \n",
 
732
  "[21062 rows x 15 columns]"
733
  ]
734
  },
735
+ "execution_count": 7,
736
  "metadata": {},
737
  "output_type": "execute_result"
738
  }
 
756
  "\n",
757
  "final_df = combined_df[all_cols]\n",
758
  "final_df = final_df.drop(\"StateName\", axis=1)\n",
759
+ "final_df = final_df.rename(\n",
760
+ " columns={\n",
761
+ " \"CountyName\": \"County\",\n",
762
+ " \"BaseDate\": \"Date\",\n",
763
+ " \"RegionName\": \"Region\",\n",
764
+ " \"RegionID\": \"Region ID\",\n",
765
+ " \"SizeRank\": \"Size Rank\",\n",
766
+ " }\n",
767
+ ")\n",
768
  "\n",
769
  "# iterate over rows of final_df and populate State and City columns if the regionType is msa\n",
770
  "for index, row in final_df.iterrows():\n",
771
  " if row[\"RegionType\"] == \"msa\":\n",
772
+ " regionName = row[\"Region\"]\n",
773
  " # final_df.at[index, 'Metro'] = regionName\n",
774
  "\n",
775
  " city = regionName.split(\", \")[0]\n",
 
783
  },
784
  {
785
  "cell_type": "code",
786
+ "execution_count": 8,
787
  "metadata": {},
788
  "outputs": [],
789
  "source": [
tester.ipynb CHANGED
@@ -2,7 +2,7 @@
2
  "cells": [
3
  {
4
  "cell_type": "code",
5
- "execution_count": 10,
6
  "metadata": {},
7
  "outputs": [],
8
  "source": [
@@ -13,9 +13,71 @@
13
  },
14
  {
15
  "cell_type": "code",
16
- "execution_count": 14,
17
  "metadata": {},
18
  "outputs": [
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19
  {
20
  "name": "stdout",
21
  "output_type": "stream",
@@ -24,29 +86,21 @@
24
  ]
25
  },
26
  {
27
- "ename": "UnboundLocalError",
28
- "evalue": "cannot access local variable 'features' where it is not associated with a value",
29
- "output_type": "error",
30
- "traceback": [
31
- "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
32
- "\u001b[0;31mUnboundLocalError\u001b[0m Traceback (most recent call last)",
33
- "Cell \u001b[0;32mIn[14], line 12\u001b[0m\n\u001b[1;32m 10\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m config \u001b[38;5;129;01min\u001b[39;00m configs:\n\u001b[1;32m 11\u001b[0m \u001b[38;5;28mprint\u001b[39m(config)\n\u001b[0;32m---> 12\u001b[0m dataset \u001b[38;5;241m=\u001b[39m \u001b[43mload_dataset\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mmisikoff/zillow\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mconfig\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mtrust_remote_code\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mTrue\u001b[39;49;00m\u001b[43m)\u001b[49m\n",
34
- "File \u001b[0;32m~/opt/anaconda3/envs/sta663/lib/python3.12/site-packages/datasets/load.py:2548\u001b[0m, in \u001b[0;36mload_dataset\u001b[0;34m(path, name, data_dir, data_files, split, cache_dir, features, download_config, download_mode, verification_mode, ignore_verifications, keep_in_memory, save_infos, revision, token, use_auth_token, task, streaming, num_proc, storage_options, trust_remote_code, **config_kwargs)\u001b[0m\n\u001b[1;32m 2543\u001b[0m verification_mode \u001b[38;5;241m=\u001b[39m VerificationMode(\n\u001b[1;32m 2544\u001b[0m (verification_mode \u001b[38;5;129;01mor\u001b[39;00m VerificationMode\u001b[38;5;241m.\u001b[39mBASIC_CHECKS) \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m save_infos \u001b[38;5;28;01melse\u001b[39;00m VerificationMode\u001b[38;5;241m.\u001b[39mALL_CHECKS\n\u001b[1;32m 2545\u001b[0m )\n\u001b[1;32m 2547\u001b[0m \u001b[38;5;66;03m# Create a dataset builder\u001b[39;00m\n\u001b[0;32m-> 2548\u001b[0m builder_instance \u001b[38;5;241m=\u001b[39m \u001b[43mload_dataset_builder\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 2549\u001b[0m \u001b[43m \u001b[49m\u001b[43mpath\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mpath\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2550\u001b[0m \u001b[43m \u001b[49m\u001b[43mname\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mname\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2551\u001b[0m \u001b[43m \u001b[49m\u001b[43mdata_dir\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdata_dir\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2552\u001b[0m \u001b[43m \u001b[49m\u001b[43mdata_files\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdata_files\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2553\u001b[0m \u001b[43m \u001b[49m\u001b[43mcache_dir\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcache_dir\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2554\u001b[0m \u001b[43m \u001b[49m\u001b[43mfeatures\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mfeatures\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2555\u001b[0m \u001b[43m \u001b[49m\u001b[43mdownload_config\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdownload_config\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2556\u001b[0m \u001b[43m \u001b[49m\u001b[43mdownload_mode\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdownload_mode\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2557\u001b[0m \u001b[43m \u001b[49m\u001b[43mrevision\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mrevision\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2558\u001b[0m \u001b[43m \u001b[49m\u001b[43mtoken\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtoken\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2559\u001b[0m \u001b[43m \u001b[49m\u001b[43mstorage_options\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstorage_options\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2560\u001b[0m \u001b[43m \u001b[49m\u001b[43mtrust_remote_code\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtrust_remote_code\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2561\u001b[0m \u001b[43m \u001b[49m\u001b[43m_require_default_config_name\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mname\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;129;43;01mis\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mNone\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[1;32m 2562\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mconfig_kwargs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2563\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 2565\u001b[0m \u001b[38;5;66;03m# Return iterable dataset in case of streaming\u001b[39;00m\n\u001b[1;32m 2566\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m streaming:\n",
35
- "File \u001b[0;32m~/opt/anaconda3/envs/sta663/lib/python3.12/site-packages/datasets/load.py:2257\u001b[0m, in \u001b[0;36mload_dataset_builder\u001b[0;34m(path, name, data_dir, data_files, cache_dir, features, download_config, download_mode, revision, token, use_auth_token, storage_options, trust_remote_code, _require_default_config_name, **config_kwargs)\u001b[0m\n\u001b[1;32m 2255\u001b[0m builder_cls \u001b[38;5;241m=\u001b[39m get_dataset_builder_class(dataset_module, dataset_name\u001b[38;5;241m=\u001b[39mdataset_name)\n\u001b[1;32m 2256\u001b[0m \u001b[38;5;66;03m# Instantiate the dataset builder\u001b[39;00m\n\u001b[0;32m-> 2257\u001b[0m builder_instance: DatasetBuilder \u001b[38;5;241m=\u001b[39m \u001b[43mbuilder_cls\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 2258\u001b[0m \u001b[43m \u001b[49m\u001b[43mcache_dir\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcache_dir\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2259\u001b[0m \u001b[43m \u001b[49m\u001b[43mdataset_name\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdataset_name\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2260\u001b[0m \u001b[43m \u001b[49m\u001b[43mconfig_name\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mconfig_name\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2261\u001b[0m \u001b[43m \u001b[49m\u001b[43mdata_dir\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdata_dir\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2262\u001b[0m \u001b[43m \u001b[49m\u001b[43mdata_files\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdata_files\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2263\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mhash\u001b[39;49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdataset_module\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mhash\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2264\u001b[0m \u001b[43m \u001b[49m\u001b[43minfo\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43minfo\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2265\u001b[0m \u001b[43m \u001b[49m\u001b[43mfeatures\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mfeatures\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2266\u001b[0m \u001b[43m \u001b[49m\u001b[43mtoken\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtoken\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2267\u001b[0m \u001b[43m \u001b[49m\u001b[43mstorage_options\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstorage_options\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2268\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mbuilder_kwargs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2269\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mconfig_kwargs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2270\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 2271\u001b[0m builder_instance\u001b[38;5;241m.\u001b[39m_use_legacy_cache_dir_if_possible(dataset_module)\n\u001b[1;32m 2273\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m builder_instance\n",
36
- "File \u001b[0;32m~/opt/anaconda3/envs/sta663/lib/python3.12/site-packages/datasets/builder.py:382\u001b[0m, in \u001b[0;36mDatasetBuilder.__init__\u001b[0;34m(self, cache_dir, dataset_name, config_name, hash, base_path, info, features, token, use_auth_token, repo_id, data_files, data_dir, storage_options, writer_batch_size, name, **config_kwargs)\u001b[0m\n\u001b[1;32m 379\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m info \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m 380\u001b[0m \u001b[38;5;66;03m# TODO FOR PACKAGED MODULES IT IMPORTS DATA FROM src/packaged_modules which doesn't make sense\u001b[39;00m\n\u001b[1;32m 381\u001b[0m info \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mget_exported_dataset_info()\n\u001b[0;32m--> 382\u001b[0m info\u001b[38;5;241m.\u001b[39mupdate(\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_info\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m)\n\u001b[1;32m 383\u001b[0m info\u001b[38;5;241m.\u001b[39mbuilder_name \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mname\n\u001b[1;32m 384\u001b[0m info\u001b[38;5;241m.\u001b[39mdataset_name \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mdataset_name\n",
37
- "File \u001b[0;32m~/.cache/huggingface/modules/datasets_modules/datasets/misikoff--zillow/d642880e153f01354c57f69b68ea9e02d46260977e73b26b4c4853d95d4fccac/zillow.py:266\u001b[0m, in \u001b[0;36mNewDataset._info\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 234\u001b[0m \u001b[38;5;28;01melif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mconfig\u001b[38;5;241m.\u001b[39mname \u001b[38;5;241m==\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mhome_values\u001b[39m\u001b[38;5;124m\"\u001b[39m:\n\u001b[1;32m 235\u001b[0m features \u001b[38;5;241m=\u001b[39m datasets\u001b[38;5;241m.\u001b[39mFeatures(\n\u001b[1;32m 236\u001b[0m {\n\u001b[1;32m 237\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mRegion ID\u001b[39m\u001b[38;5;124m\"\u001b[39m: datasets\u001b[38;5;241m.\u001b[39mValue(dtype\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mstring\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;28mid\u001b[39m\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mRegion ID\u001b[39m\u001b[38;5;124m\"\u001b[39m),\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 260\u001b[0m }\n\u001b[1;32m 261\u001b[0m )\n\u001b[1;32m 262\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m datasets\u001b[38;5;241m.\u001b[39mDatasetInfo(\n\u001b[1;32m 263\u001b[0m \u001b[38;5;66;03m# This is the description that will appear on the datasets page.\u001b[39;00m\n\u001b[1;32m 264\u001b[0m description\u001b[38;5;241m=\u001b[39m_DESCRIPTION,\n\u001b[1;32m 265\u001b[0m \u001b[38;5;66;03m# This defines the different columns of the dataset and their types\u001b[39;00m\n\u001b[0;32m--> 266\u001b[0m features\u001b[38;5;241m=\u001b[39m\u001b[43mfeatures\u001b[49m, \u001b[38;5;66;03m# Here we define them above because they are different between the two configurations\u001b[39;00m\n\u001b[1;32m 267\u001b[0m \u001b[38;5;66;03m# If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and\u001b[39;00m\n\u001b[1;32m 268\u001b[0m \u001b[38;5;66;03m# specify them. They'll be used if as_supervised=True in builder.as_dataset.\u001b[39;00m\n\u001b[1;32m 269\u001b[0m \u001b[38;5;66;03m# supervised_keys=(\"sentence\", \"label\"),\u001b[39;00m\n\u001b[1;32m 270\u001b[0m \u001b[38;5;66;03m# Homepage of the dataset for documentation\u001b[39;00m\n\u001b[1;32m 271\u001b[0m homepage\u001b[38;5;241m=\u001b[39m_HOMEPAGE,\n\u001b[1;32m 272\u001b[0m \u001b[38;5;66;03m# License for the dataset if available\u001b[39;00m\n\u001b[1;32m 273\u001b[0m license\u001b[38;5;241m=\u001b[39m_LICENSE,\n\u001b[1;32m 274\u001b[0m \u001b[38;5;66;03m# Citation for the dataset\u001b[39;00m\n\u001b[1;32m 275\u001b[0m citation\u001b[38;5;241m=\u001b[39m_CITATION,\n\u001b[1;32m 276\u001b[0m )\n",
38
- "\u001b[0;31mUnboundLocalError\u001b[0m: cannot access local variable 'features' where it is not associated with a value"
39
  ]
40
  }
41
  ],
42
  "source": [
43
  "configs = [\n",
44
- " # \"home_value_forecasts\",\n",
45
- " # \"new_constructions\",\n",
46
- " # \"for_sale_listings\",\n",
47
- " # \"rentals\",\n",
48
- " # \"sales\",\n",
49
- " # \"home_values\",\n",
50
  " \"days_on_market\",\n",
51
  "]\n",
52
  "for config in configs:\n",
 
2
  "cells": [
3
  {
4
  "cell_type": "code",
5
+ "execution_count": 4,
6
  "metadata": {},
7
  "outputs": [],
8
  "source": [
 
13
  },
14
  {
15
  "cell_type": "code",
16
+ "execution_count": 7,
17
  "metadata": {},
18
  "outputs": [
19
+ {
20
+ "name": "stdout",
21
+ "output_type": "stream",
22
+ "text": [
23
+ "home_value_forecasts\n",
24
+ "new_constructions\n",
25
+ "for_sale_listings\n"
26
+ ]
27
+ },
28
+ {
29
+ "name": "stderr",
30
+ "output_type": "stream",
31
+ "text": [
32
+ "Downloading data: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 215M/215M [00:05<00:00, 37.3MB/s] \n",
33
+ "Generating train split: 693661 examples [00:20, 34052.02 examples/s]\n"
34
+ ]
35
+ },
36
+ {
37
+ "name": "stdout",
38
+ "output_type": "stream",
39
+ "text": [
40
+ "rentals\n"
41
+ ]
42
+ },
43
+ {
44
+ "name": "stderr",
45
+ "output_type": "stream",
46
+ "text": [
47
+ "Downloading data: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 413M/413M [00:12<00:00, 34.2MB/s] \n",
48
+ "Generating train split: 1258740 examples [00:28, 44715.39 examples/s]\n"
49
+ ]
50
+ },
51
+ {
52
+ "name": "stdout",
53
+ "output_type": "stream",
54
+ "text": [
55
+ "sales\n"
56
+ ]
57
+ },
58
+ {
59
+ "name": "stderr",
60
+ "output_type": "stream",
61
+ "text": [
62
+ "Downloading data: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 280M/280M [00:06<00:00, 41.1MB/s] \n",
63
+ "Generating train split: 504608 examples [00:19, 25569.29 examples/s]\n"
64
+ ]
65
+ },
66
+ {
67
+ "name": "stdout",
68
+ "output_type": "stream",
69
+ "text": [
70
+ "home_values\n"
71
+ ]
72
+ },
73
+ {
74
+ "name": "stderr",
75
+ "output_type": "stream",
76
+ "text": [
77
+ "Downloading data: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 47.3M/47.3M [00:01<00:00, 29.7MB/s]\n",
78
+ "Generating train split: 117912 examples [00:03, 35540.83 examples/s]\n"
79
+ ]
80
+ },
81
  {
82
  "name": "stdout",
83
  "output_type": "stream",
 
86
  ]
87
  },
88
  {
89
+ "name": "stderr",
90
+ "output_type": "stream",
91
+ "text": [
92
+ "Generating train split: 586714 examples [00:16, 34768.33 examples/s]\n"
 
 
 
 
 
 
 
 
93
  ]
94
  }
95
  ],
96
  "source": [
97
  "configs = [\n",
98
+ " \"home_value_forecasts\",\n",
99
+ " \"new_constructions\",\n",
100
+ " \"for_sale_listings\",\n",
101
+ " \"rentals\",\n",
102
+ " \"sales\",\n",
103
+ " \"home_values\",\n",
104
  " \"days_on_market\",\n",
105
  "]\n",
106
  "for config in configs:\n",
zillow.py CHANGED
@@ -37,15 +37,13 @@ _DESCRIPTION = """\
37
  This new dataset is designed to solve this great NLP task and is crafted with a lot of care.
38
  """
39
 
40
- # TODO: Add a link to an official homepage for the dataset here
41
- _HOMEPAGE = ""
42
 
43
  # TODO: Add the licence for the dataset here if you can find it
44
  _LICENSE = ""
45
 
46
 
47
- # TODO: Name of the dataset usually matches the script name with CamelCase instead of snake_case
48
- class NewDataset(datasets.GeneratorBasedBuilder):
49
  """TODO: Short description of my dataset."""
50
 
51
  VERSION = datasets.Version("1.1.0")
@@ -88,21 +86,21 @@ class NewDataset(datasets.GeneratorBasedBuilder):
88
  ),
89
  ]
90
 
91
- DEFAULT_CONFIG_NAME = "home_value_forecasts"
92
 
93
  def _info(self):
94
  if self.config.name == "home_value_forecasts":
95
  features = datasets.Features(
96
  {
97
- "RegionID": datasets.Value(dtype="string", id="RegionID"),
98
- "SizeRank": datasets.Value(dtype="int32", id="SizeRank"),
99
- "RegionName": datasets.Value(dtype="string", id="RegionName"),
100
  "RegionType": datasets.Value(dtype="string", id="RegionType"),
101
  "State": datasets.Value(dtype="string", id="State"),
102
  "City": datasets.Value(dtype="string", id="City"),
103
  "Metro": datasets.Value(dtype="string", id="Metro"),
104
  "County": datasets.Value(dtype="string", id="County"),
105
- "BaseDate": datasets.Value(dtype="string", id="BaseDate"),
106
  "Month Over Month % (Smoothed)": datasets.Value(
107
  dtype="float32", id="Month Over Month % (Smoothed)"
108
  ),
@@ -347,15 +345,15 @@ class NewDataset(datasets.GeneratorBasedBuilder):
347
  data = json.loads(row)
348
  if self.config.name == "home_value_forecasts":
349
  yield key, {
350
- "RegionID": data["RegionID"],
351
- "SizeRank": data["SizeRank"],
352
- "RegionName": data["RegionName"],
353
  "RegionType": data["RegionType"],
354
  "State": data["State"],
355
  "City": data["City"],
356
  "Metro": data["Metro"],
357
  "County": data["County"],
358
- "BaseDate": data["BaseDate"],
359
  "Month Over Month % (Smoothed)": data[
360
  "Month Over Month % (Smoothed)"
361
  ],
 
37
  This new dataset is designed to solve this great NLP task and is crafted with a lot of care.
38
  """
39
 
40
+ _HOMEPAGE = "https://huggingface.co/datasets/misikoff/zillow"
 
41
 
42
  # TODO: Add the licence for the dataset here if you can find it
43
  _LICENSE = ""
44
 
45
 
46
+ class Zillow(datasets.GeneratorBasedBuilder):
 
47
  """TODO: Short description of my dataset."""
48
 
49
  VERSION = datasets.Version("1.1.0")
 
86
  ),
87
  ]
88
 
89
+ DEFAULT_CONFIG_NAME = ""
90
 
91
  def _info(self):
92
  if self.config.name == "home_value_forecasts":
93
  features = datasets.Features(
94
  {
95
+ "Region ID": datasets.Value(dtype="string", id="Region ID"),
96
+ "Size Rank": datasets.Value(dtype="int32", id="Size Rank"),
97
+ "Region": datasets.Value(dtype="string", id="Region"),
98
  "RegionType": datasets.Value(dtype="string", id="RegionType"),
99
  "State": datasets.Value(dtype="string", id="State"),
100
  "City": datasets.Value(dtype="string", id="City"),
101
  "Metro": datasets.Value(dtype="string", id="Metro"),
102
  "County": datasets.Value(dtype="string", id="County"),
103
+ "Date": datasets.Value(dtype="string", id="Date"),
104
  "Month Over Month % (Smoothed)": datasets.Value(
105
  dtype="float32", id="Month Over Month % (Smoothed)"
106
  ),
 
345
  data = json.loads(row)
346
  if self.config.name == "home_value_forecasts":
347
  yield key, {
348
+ "Region ID": data["Region ID"],
349
+ "Size Rank": data["Size Rank"],
350
+ "Region": data["Region"],
351
  "RegionType": data["RegionType"],
352
  "State": data["State"],
353
  "City": data["City"],
354
  "Metro": data["Metro"],
355
  "County": data["County"],
356
+ "Date": data["Date"],
357
  "Month Over Month % (Smoothed)": data[
358
  "Month Over Month % (Smoothed)"
359
  ],