feat: add rentals
Browse files- data/rentals/City_zori_uc_sfrcondomfr_sm_month.csv +0 -0
- data/rentals/City_zori_uc_sfrcondomfr_sm_sa_month.csv +0 -0
- data/rentals/County_zori_uc_sfrcondomfr_sm_month.csv +0 -0
- data/rentals/County_zori_uc_sfrcondomfr_sm_sa_month.csv +0 -0
- data/rentals/Metro_zori_uc_mfr_sm_month.csv +0 -0
- data/rentals/Metro_zori_uc_mfr_sm_sa_month.csv +0 -0
- data/rentals/Metro_zori_uc_sfr_sm_month.csv +0 -0
- data/rentals/Metro_zori_uc_sfr_sm_sa_month.csv +0 -0
- data/rentals/Metro_zori_uc_sfrcondomfr_sm_month.csv +0 -0
- data/rentals/Metro_zori_uc_sfrcondomfr_sm_sa_month.csv +0 -0
- data/rentals/Zip_zori_uc_sfrcondomfr_sm_month.csv +0 -0
- data/rentals/Zip_zori_uc_sfrcondomfr_sm_sa_month.csv +0 -0
- processed/rentals/final.jsonl +3 -0
- processors/rentals.ipynb +396 -0
- tester.ipynb +10 -14
- zillow.py +40 -0
data/rentals/City_zori_uc_sfrcondomfr_sm_month.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
data/rentals/City_zori_uc_sfrcondomfr_sm_sa_month.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
data/rentals/County_zori_uc_sfrcondomfr_sm_month.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
data/rentals/County_zori_uc_sfrcondomfr_sm_sa_month.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
data/rentals/Metro_zori_uc_mfr_sm_month.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
data/rentals/Metro_zori_uc_mfr_sm_sa_month.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
data/rentals/Metro_zori_uc_sfr_sm_month.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
data/rentals/Metro_zori_uc_sfr_sm_sa_month.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
data/rentals/Metro_zori_uc_sfrcondomfr_sm_month.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
data/rentals/Metro_zori_uc_sfrcondomfr_sm_sa_month.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
data/rentals/Zip_zori_uc_sfrcondomfr_sm_month.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
data/rentals/Zip_zori_uc_sfrcondomfr_sm_sa_month.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
processed/rentals/final.jsonl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bb1ebabaee1148e8960e20e063dd5aebe6dddfdd4013911c4e3cbdd5002328cb
|
3 |
+
size 20448052
|
processors/rentals.ipynb
ADDED
@@ -0,0 +1,396 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 2,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [],
|
8 |
+
"source": [
|
9 |
+
"import pandas as pd\n",
|
10 |
+
"import os"
|
11 |
+
]
|
12 |
+
},
|
13 |
+
{
|
14 |
+
"cell_type": "code",
|
15 |
+
"execution_count": 3,
|
16 |
+
"metadata": {},
|
17 |
+
"outputs": [],
|
18 |
+
"source": [
|
19 |
+
"DATA_DIR = \"../data\"\n",
|
20 |
+
"PROCESSED_DIR = \"../processed/\"\n",
|
21 |
+
"FACET_DIR = \"rentals/\"\n",
|
22 |
+
"FULL_DATA_DIR_PATH = os.path.join(DATA_DIR, FACET_DIR)\n",
|
23 |
+
"FULL_PROCESSED_DIR_PATH = os.path.join(PROCESSED_DIR, FACET_DIR)"
|
24 |
+
]
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"cell_type": "code",
|
28 |
+
"execution_count": 70,
|
29 |
+
"metadata": {},
|
30 |
+
"outputs": [
|
31 |
+
{
|
32 |
+
"name": "stdout",
|
33 |
+
"output_type": "stream",
|
34 |
+
"text": [
|
35 |
+
"Index(['RegionID', 'SizeRank', 'RegionName', 'RegionType', 'StateName',\n",
|
36 |
+
" 'Home Type', 'Date', 'Rent (Smoothed)'],\n",
|
37 |
+
" dtype='object')\n",
|
38 |
+
"['Rent (Smoothed) (Seasonally Adjusted)', 'RegionID', 'Home Type', 'Date']\n",
|
39 |
+
"Index(['RegionID', 'SizeRank', 'RegionName', 'RegionType', 'StateName',\n",
|
40 |
+
" 'Home Type', 'Date', 'Rent (Smoothed)',\n",
|
41 |
+
" 'Rent (Smoothed) (Seasonally Adjusted)'],\n",
|
42 |
+
" dtype='object')\n",
|
43 |
+
"['RegionID', 'Home Type', 'Date']\n",
|
44 |
+
"Index(['RegionID', 'SizeRank', 'RegionName', 'RegionType', 'StateName',\n",
|
45 |
+
" 'Home Type', 'Date', 'Rent (Smoothed)',\n",
|
46 |
+
" 'Rent (Smoothed) (Seasonally Adjusted)'],\n",
|
47 |
+
" dtype='object')\n"
|
48 |
+
]
|
49 |
+
},
|
50 |
+
{
|
51 |
+
"data": {
|
52 |
+
"text/html": [
|
53 |
+
"<div>\n",
|
54 |
+
"<style scoped>\n",
|
55 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
56 |
+
" vertical-align: middle;\n",
|
57 |
+
" }\n",
|
58 |
+
"\n",
|
59 |
+
" .dataframe tbody tr th {\n",
|
60 |
+
" vertical-align: top;\n",
|
61 |
+
" }\n",
|
62 |
+
"\n",
|
63 |
+
" .dataframe thead th {\n",
|
64 |
+
" text-align: right;\n",
|
65 |
+
" }\n",
|
66 |
+
"</style>\n",
|
67 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
68 |
+
" <thead>\n",
|
69 |
+
" <tr style=\"text-align: right;\">\n",
|
70 |
+
" <th></th>\n",
|
71 |
+
" <th>RegionID</th>\n",
|
72 |
+
" <th>SizeRank</th>\n",
|
73 |
+
" <th>RegionName</th>\n",
|
74 |
+
" <th>RegionType</th>\n",
|
75 |
+
" <th>StateName</th>\n",
|
76 |
+
" <th>Home Type</th>\n",
|
77 |
+
" <th>Date</th>\n",
|
78 |
+
" <th>Rent (Smoothed)</th>\n",
|
79 |
+
" <th>Rent (Smoothed) (Seasonally Adjusted)</th>\n",
|
80 |
+
" </tr>\n",
|
81 |
+
" </thead>\n",
|
82 |
+
" <tbody>\n",
|
83 |
+
" <tr>\n",
|
84 |
+
" <th>0</th>\n",
|
85 |
+
" <td>102001</td>\n",
|
86 |
+
" <td>0</td>\n",
|
87 |
+
" <td>United States</td>\n",
|
88 |
+
" <td>country</td>\n",
|
89 |
+
" <td>NaN</td>\n",
|
90 |
+
" <td>SFR</td>\n",
|
91 |
+
" <td>2015-01-31</td>\n",
|
92 |
+
" <td>1251.119548</td>\n",
|
93 |
+
" <td>1253.380721</td>\n",
|
94 |
+
" </tr>\n",
|
95 |
+
" <tr>\n",
|
96 |
+
" <th>1</th>\n",
|
97 |
+
" <td>102001</td>\n",
|
98 |
+
" <td>0</td>\n",
|
99 |
+
" <td>United States</td>\n",
|
100 |
+
" <td>country</td>\n",
|
101 |
+
" <td>NaN</td>\n",
|
102 |
+
" <td>SFR</td>\n",
|
103 |
+
" <td>2015-02-28</td>\n",
|
104 |
+
" <td>1257.678915</td>\n",
|
105 |
+
" <td>1258.745304</td>\n",
|
106 |
+
" </tr>\n",
|
107 |
+
" <tr>\n",
|
108 |
+
" <th>2</th>\n",
|
109 |
+
" <td>102001</td>\n",
|
110 |
+
" <td>0</td>\n",
|
111 |
+
" <td>United States</td>\n",
|
112 |
+
" <td>country</td>\n",
|
113 |
+
" <td>NaN</td>\n",
|
114 |
+
" <td>SFR</td>\n",
|
115 |
+
" <td>2015-03-31</td>\n",
|
116 |
+
" <td>1266.242657</td>\n",
|
117 |
+
" <td>1263.914519</td>\n",
|
118 |
+
" </tr>\n",
|
119 |
+
" <tr>\n",
|
120 |
+
" <th>3</th>\n",
|
121 |
+
" <td>102001</td>\n",
|
122 |
+
" <td>0</td>\n",
|
123 |
+
" <td>United States</td>\n",
|
124 |
+
" <td>country</td>\n",
|
125 |
+
" <td>NaN</td>\n",
|
126 |
+
" <td>SFR</td>\n",
|
127 |
+
" <td>2015-04-30</td>\n",
|
128 |
+
" <td>1276.548397</td>\n",
|
129 |
+
" <td>1269.232278</td>\n",
|
130 |
+
" </tr>\n",
|
131 |
+
" <tr>\n",
|
132 |
+
" <th>4</th>\n",
|
133 |
+
" <td>102001</td>\n",
|
134 |
+
" <td>0</td>\n",
|
135 |
+
" <td>United States</td>\n",
|
136 |
+
" <td>country</td>\n",
|
137 |
+
" <td>NaN</td>\n",
|
138 |
+
" <td>SFR</td>\n",
|
139 |
+
" <td>2015-05-31</td>\n",
|
140 |
+
" <td>1286.191645</td>\n",
|
141 |
+
" <td>1273.346695</td>\n",
|
142 |
+
" </tr>\n",
|
143 |
+
" <tr>\n",
|
144 |
+
" <th>...</th>\n",
|
145 |
+
" <td>...</td>\n",
|
146 |
+
" <td>...</td>\n",
|
147 |
+
" <td>...</td>\n",
|
148 |
+
" <td>...</td>\n",
|
149 |
+
" <td>...</td>\n",
|
150 |
+
" <td>...</td>\n",
|
151 |
+
" <td>...</td>\n",
|
152 |
+
" <td>...</td>\n",
|
153 |
+
" <td>...</td>\n",
|
154 |
+
" </tr>\n",
|
155 |
+
" <tr>\n",
|
156 |
+
" <th>96007</th>\n",
|
157 |
+
" <td>845167</td>\n",
|
158 |
+
" <td>296</td>\n",
|
159 |
+
" <td>Ottawa, IL</td>\n",
|
160 |
+
" <td>msa</td>\n",
|
161 |
+
" <td>IL</td>\n",
|
162 |
+
" <td>multifamily</td>\n",
|
163 |
+
" <td>2023-08-31</td>\n",
|
164 |
+
" <td>NaN</td>\n",
|
165 |
+
" <td>NaN</td>\n",
|
166 |
+
" </tr>\n",
|
167 |
+
" <tr>\n",
|
168 |
+
" <th>96008</th>\n",
|
169 |
+
" <td>845167</td>\n",
|
170 |
+
" <td>296</td>\n",
|
171 |
+
" <td>Ottawa, IL</td>\n",
|
172 |
+
" <td>msa</td>\n",
|
173 |
+
" <td>IL</td>\n",
|
174 |
+
" <td>multifamily</td>\n",
|
175 |
+
" <td>2023-09-30</td>\n",
|
176 |
+
" <td>NaN</td>\n",
|
177 |
+
" <td>NaN</td>\n",
|
178 |
+
" </tr>\n",
|
179 |
+
" <tr>\n",
|
180 |
+
" <th>96009</th>\n",
|
181 |
+
" <td>845167</td>\n",
|
182 |
+
" <td>296</td>\n",
|
183 |
+
" <td>Ottawa, IL</td>\n",
|
184 |
+
" <td>msa</td>\n",
|
185 |
+
" <td>IL</td>\n",
|
186 |
+
" <td>multifamily</td>\n",
|
187 |
+
" <td>2023-10-31</td>\n",
|
188 |
+
" <td>NaN</td>\n",
|
189 |
+
" <td>NaN</td>\n",
|
190 |
+
" </tr>\n",
|
191 |
+
" <tr>\n",
|
192 |
+
" <th>96010</th>\n",
|
193 |
+
" <td>845167</td>\n",
|
194 |
+
" <td>296</td>\n",
|
195 |
+
" <td>Ottawa, IL</td>\n",
|
196 |
+
" <td>msa</td>\n",
|
197 |
+
" <td>IL</td>\n",
|
198 |
+
" <td>multifamily</td>\n",
|
199 |
+
" <td>2023-11-30</td>\n",
|
200 |
+
" <td>804.147562</td>\n",
|
201 |
+
" <td>NaN</td>\n",
|
202 |
+
" </tr>\n",
|
203 |
+
" <tr>\n",
|
204 |
+
" <th>96011</th>\n",
|
205 |
+
" <td>845167</td>\n",
|
206 |
+
" <td>296</td>\n",
|
207 |
+
" <td>Ottawa, IL</td>\n",
|
208 |
+
" <td>msa</td>\n",
|
209 |
+
" <td>IL</td>\n",
|
210 |
+
" <td>multifamily</td>\n",
|
211 |
+
" <td>2023-12-31</td>\n",
|
212 |
+
" <td>800.000000</td>\n",
|
213 |
+
" <td>NaN</td>\n",
|
214 |
+
" </tr>\n",
|
215 |
+
" </tbody>\n",
|
216 |
+
"</table>\n",
|
217 |
+
"<p>96012 rows Γ 9 columns</p>\n",
|
218 |
+
"</div>"
|
219 |
+
],
|
220 |
+
"text/plain": [
|
221 |
+
" RegionID SizeRank RegionName RegionType StateName Home Type \\\n",
|
222 |
+
"0 102001 0 United States country NaN SFR \n",
|
223 |
+
"1 102001 0 United States country NaN SFR \n",
|
224 |
+
"2 102001 0 United States country NaN SFR \n",
|
225 |
+
"3 102001 0 United States country NaN SFR \n",
|
226 |
+
"4 102001 0 United States country NaN SFR \n",
|
227 |
+
"... ... ... ... ... ... ... \n",
|
228 |
+
"96007 845167 296 Ottawa, IL msa IL multifamily \n",
|
229 |
+
"96008 845167 296 Ottawa, IL msa IL multifamily \n",
|
230 |
+
"96009 845167 296 Ottawa, IL msa IL multifamily \n",
|
231 |
+
"96010 845167 296 Ottawa, IL msa IL multifamily \n",
|
232 |
+
"96011 845167 296 Ottawa, IL msa IL multifamily \n",
|
233 |
+
"\n",
|
234 |
+
" Date Rent (Smoothed) Rent (Smoothed) (Seasonally Adjusted) \n",
|
235 |
+
"0 2015-01-31 1251.119548 1253.380721 \n",
|
236 |
+
"1 2015-02-28 1257.678915 1258.745304 \n",
|
237 |
+
"2 2015-03-31 1266.242657 1263.914519 \n",
|
238 |
+
"3 2015-04-30 1276.548397 1269.232278 \n",
|
239 |
+
"4 2015-05-31 1286.191645 1273.346695 \n",
|
240 |
+
"... ... ... ... \n",
|
241 |
+
"96007 2023-08-31 NaN NaN \n",
|
242 |
+
"96008 2023-09-30 NaN NaN \n",
|
243 |
+
"96009 2023-10-31 NaN NaN \n",
|
244 |
+
"96010 2023-11-30 804.147562 NaN \n",
|
245 |
+
"96011 2023-12-31 800.000000 NaN \n",
|
246 |
+
"\n",
|
247 |
+
"[96012 rows x 9 columns]"
|
248 |
+
]
|
249 |
+
},
|
250 |
+
"execution_count": 70,
|
251 |
+
"metadata": {},
|
252 |
+
"output_type": "execute_result"
|
253 |
+
}
|
254 |
+
],
|
255 |
+
"source": [
|
256 |
+
"# base cols RegionID,SizeRank,RegionName,RegionType,StateName\n",
|
257 |
+
"\n",
|
258 |
+
"exclude_columns = [\n",
|
259 |
+
" \"RegionID\",\n",
|
260 |
+
" \"SizeRank\",\n",
|
261 |
+
" \"RegionName\",\n",
|
262 |
+
" \"RegionType\",\n",
|
263 |
+
" \"StateName\",\n",
|
264 |
+
" \"Home Type\",\n",
|
265 |
+
"]\n",
|
266 |
+
"\n",
|
267 |
+
"batches = {\"rent\": []}\n",
|
268 |
+
"\n",
|
269 |
+
"for filename in os.listdir(FULL_DATA_DIR_PATH):\n",
|
270 |
+
" if filename.endswith(\".csv\"):\n",
|
271 |
+
" # print(\"processing \" + filename)\n",
|
272 |
+
" cur_df = pd.read_csv(os.path.join(FULL_DATA_DIR_PATH, filename))\n",
|
273 |
+
"\n",
|
274 |
+
" if \"_sfrcondomfr_\" in filename:\n",
|
275 |
+
" cur_df[\"Home Type\"] = \"all homes plus multifamily\"\n",
|
276 |
+
" # skip for now\n",
|
277 |
+
" continue\n",
|
278 |
+
" elif \"_sfr_\" in filename:\n",
|
279 |
+
" cur_df[\"Home Type\"] = \"SFR\"\n",
|
280 |
+
" elif \"_mfr_\" in filename:\n",
|
281 |
+
" cur_df[\"Home Type\"] = \"multifamily\"\n",
|
282 |
+
"\n",
|
283 |
+
" # Identify columns to pivot\n",
|
284 |
+
" columns_to_pivot = [col for col in cur_df.columns if col not in exclude_columns]\n",
|
285 |
+
"\n",
|
286 |
+
" smoothed = \"_sm_\" in filename\n",
|
287 |
+
" seasonally_adjusted = \"_sa_\" in filename\n",
|
288 |
+
"\n",
|
289 |
+
" # if \"_mlp_\" in filename:\n",
|
290 |
+
" col_name = \"Rent\"\n",
|
291 |
+
" if smoothed:\n",
|
292 |
+
" col_name += \" (Smoothed)\"\n",
|
293 |
+
" if seasonally_adjusted:\n",
|
294 |
+
" col_name += \" (Seasonally Adjusted)\"\n",
|
295 |
+
" cur_df = pd.melt(\n",
|
296 |
+
" cur_df,\n",
|
297 |
+
" id_vars=exclude_columns,\n",
|
298 |
+
" value_vars=columns_to_pivot,\n",
|
299 |
+
" var_name=\"Date\",\n",
|
300 |
+
" value_name=col_name,\n",
|
301 |
+
" )\n",
|
302 |
+
" batches[\"rent\"].append(cur_df)\n",
|
303 |
+
" # print(filename)\n",
|
304 |
+
"\n",
|
305 |
+
"\n",
|
306 |
+
"def get_combined_df(data_frames):\n",
|
307 |
+
" combined_df = None\n",
|
308 |
+
" if len(data_frames) > 1:\n",
|
309 |
+
" # iterate over dataframes and merge or concat\n",
|
310 |
+
" combined_df = data_frames[0]\n",
|
311 |
+
" for i in range(1, len(data_frames)):\n",
|
312 |
+
" cur_df = data_frames[i]\n",
|
313 |
+
" if combined_df.columns.equals(cur_df.columns):\n",
|
314 |
+
" combined_df = pd.concat([combined_df, cur_df])\n",
|
315 |
+
" else:\n",
|
316 |
+
" cols_to_use = list(cur_df.columns.difference(combined_df.columns))\n",
|
317 |
+
" on = [\"RegionID\", \"Home Type\", \"Date\"]\n",
|
318 |
+
" for col in on:\n",
|
319 |
+
" if col not in cols_to_use:\n",
|
320 |
+
" cols_to_use.append(col)\n",
|
321 |
+
" print(cols_to_use)\n",
|
322 |
+
"\n",
|
323 |
+
" combined_df = pd.merge(\n",
|
324 |
+
" combined_df,\n",
|
325 |
+
" cur_df[cols_to_use],\n",
|
326 |
+
" on=on,\n",
|
327 |
+
" how=\"outer\",\n",
|
328 |
+
" )\n",
|
329 |
+
"\n",
|
330 |
+
" print(combined_df.columns)\n",
|
331 |
+
" elif len(data_frames) == 1:\n",
|
332 |
+
" combined_df = data_frames[0]\n",
|
333 |
+
"\n",
|
334 |
+
" return combined_df\n",
|
335 |
+
"\n",
|
336 |
+
"\n",
|
337 |
+
"combined_df = get_combined_df(batches[\"rent\"])\n",
|
338 |
+
"combined_df"
|
339 |
+
]
|
340 |
+
},
|
341 |
+
{
|
342 |
+
"cell_type": "code",
|
343 |
+
"execution_count": 71,
|
344 |
+
"metadata": {},
|
345 |
+
"outputs": [],
|
346 |
+
"source": [
|
347 |
+
"final_df = combined_df\n",
|
348 |
+
"final_df = final_df.rename(\n",
|
349 |
+
" columns={\n",
|
350 |
+
" \"RegionID\": \"Region ID\",\n",
|
351 |
+
" \"SizeRank\": \"Size Rank\",\n",
|
352 |
+
" \"RegionName\": \"Region\",\n",
|
353 |
+
" \"RegionType\": \"Region Type\",\n",
|
354 |
+
" \"StateName\": \"State\",\n",
|
355 |
+
" }\n",
|
356 |
+
")\n",
|
357 |
+
"\n",
|
358 |
+
"# sort by region id and date\n",
|
359 |
+
"# final_df.sort_values(by=[\"Region ID\", \"Date\", \"Home Type\"])"
|
360 |
+
]
|
361 |
+
},
|
362 |
+
{
|
363 |
+
"cell_type": "code",
|
364 |
+
"execution_count": 72,
|
365 |
+
"metadata": {},
|
366 |
+
"outputs": [],
|
367 |
+
"source": [
|
368 |
+
"if not os.path.exists(FULL_PROCESSED_DIR_PATH):\n",
|
369 |
+
" os.makedirs(FULL_PROCESSED_DIR_PATH)\n",
|
370 |
+
"\n",
|
371 |
+
"final_df.to_json(FULL_PROCESSED_DIR_PATH + \"final.jsonl\", orient=\"records\", lines=True)"
|
372 |
+
]
|
373 |
+
}
|
374 |
+
],
|
375 |
+
"metadata": {
|
376 |
+
"kernelspec": {
|
377 |
+
"display_name": "Python 3",
|
378 |
+
"language": "python",
|
379 |
+
"name": "python3"
|
380 |
+
},
|
381 |
+
"language_info": {
|
382 |
+
"codemirror_mode": {
|
383 |
+
"name": "ipython",
|
384 |
+
"version": 3
|
385 |
+
},
|
386 |
+
"file_extension": ".py",
|
387 |
+
"mimetype": "text/x-python",
|
388 |
+
"name": "python",
|
389 |
+
"nbconvert_exporter": "python",
|
390 |
+
"pygments_lexer": "ipython3",
|
391 |
+
"version": "3.12.2"
|
392 |
+
}
|
393 |
+
},
|
394 |
+
"nbformat": 4,
|
395 |
+
"nbformat_minor": 2
|
396 |
+
}
|
tester.ipynb
CHANGED
@@ -26,25 +26,21 @@
|
|
26 |
"metadata": {},
|
27 |
"outputs": [
|
28 |
{
|
29 |
-
"
|
30 |
-
"
|
31 |
-
"
|
32 |
-
|
33 |
-
"\
|
34 |
-
"
|
35 |
-
"
|
36 |
-
"
|
37 |
-
"File \u001b[0;32m~/opt/anaconda3/envs/sta663/lib/python3.12/site-packages/datasets/load.py:2257\u001b[0m, in \u001b[0;36mload_dataset_builder\u001b[0;34m(path, name, data_dir, data_files, cache_dir, features, download_config, download_mode, revision, token, use_auth_token, storage_options, trust_remote_code, _require_default_config_name, **config_kwargs)\u001b[0m\n\u001b[1;32m 2255\u001b[0m builder_cls \u001b[38;5;241m=\u001b[39m get_dataset_builder_class(dataset_module, dataset_name\u001b[38;5;241m=\u001b[39mdataset_name)\n\u001b[1;32m 2256\u001b[0m \u001b[38;5;66;03m# Instantiate the dataset builder\u001b[39;00m\n\u001b[0;32m-> 2257\u001b[0m builder_instance: DatasetBuilder \u001b[38;5;241m=\u001b[39m \u001b[43mbuilder_cls\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 2258\u001b[0m \u001b[43m \u001b[49m\u001b[43mcache_dir\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcache_dir\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2259\u001b[0m \u001b[43m \u001b[49m\u001b[43mdataset_name\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdataset_name\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2260\u001b[0m \u001b[43m \u001b[49m\u001b[43mconfig_name\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mconfig_name\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2261\u001b[0m \u001b[43m \u001b[49m\u001b[43mdata_dir\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdata_dir\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2262\u001b[0m \u001b[43m \u001b[49m\u001b[43mdata_files\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdata_files\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2263\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mhash\u001b[39;49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdataset_module\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mhash\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2264\u001b[0m \u001b[43m \u001b[49m\u001b[43minfo\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43minfo\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2265\u001b[0m \u001b[43m \u001b[49m\u001b[43mfeatures\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mfeatures\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2266\u001b[0m \u001b[43m \u001b[49m\u001b[43mtoken\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtoken\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2267\u001b[0m \u001b[43m \u001b[49m\u001b[43mstorage_options\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstorage_options\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2268\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mbuilder_kwargs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2269\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mconfig_kwargs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2270\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 2271\u001b[0m builder_instance\u001b[38;5;241m.\u001b[39m_use_legacy_cache_dir_if_possible(dataset_module)\n\u001b[1;32m 2273\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m builder_instance\n",
|
38 |
-
"File \u001b[0;32m~/opt/anaconda3/envs/sta663/lib/python3.12/site-packages/datasets/builder.py:371\u001b[0m, in \u001b[0;36mDatasetBuilder.__init__\u001b[0;34m(self, cache_dir, dataset_name, config_name, hash, base_path, info, features, token, use_auth_token, repo_id, data_files, data_dir, storage_options, writer_batch_size, name, **config_kwargs)\u001b[0m\n\u001b[1;32m 369\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m data_dir \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m 370\u001b[0m config_kwargs[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mdata_dir\u001b[39m\u001b[38;5;124m\"\u001b[39m] \u001b[38;5;241m=\u001b[39m data_dir\n\u001b[0;32m--> 371\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mconfig, \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mconfig_id \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_create_builder_config\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 372\u001b[0m \u001b[43m \u001b[49m\u001b[43mconfig_name\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mconfig_name\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 373\u001b[0m \u001b[43m \u001b[49m\u001b[43mcustom_features\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mfeatures\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 374\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mconfig_kwargs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 375\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 377\u001b[0m \u001b[38;5;66;03m# prepare info: DatasetInfo are a standardized dataclass across all datasets\u001b[39;00m\n\u001b[1;32m 378\u001b[0m \u001b[38;5;66;03m# Prefill datasetinfo\u001b[39;00m\n\u001b[1;32m 379\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m info \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m 380\u001b[0m \u001b[38;5;66;03m# TODO FOR PACKAGED MODULES IT IMPORTS DATA FROM src/packaged_modules which doesn't make sense\u001b[39;00m\n",
|
39 |
-
"File \u001b[0;32m~/opt/anaconda3/envs/sta663/lib/python3.12/site-packages/datasets/builder.py:592\u001b[0m, in \u001b[0;36mDatasetBuilder._create_builder_config\u001b[0;34m(self, config_name, custom_features, **config_kwargs)\u001b[0m\n\u001b[1;32m 590\u001b[0m builder_config \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mbuilder_configs\u001b[38;5;241m.\u001b[39mget(config_name)\n\u001b[1;32m 591\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m builder_config \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mBUILDER_CONFIGS:\n\u001b[0;32m--> 592\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\n\u001b[1;32m 593\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mBuilderConfig \u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mconfig_name\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m not found. Available: \u001b[39m\u001b[38;5;132;01m{\u001b[39;00m\u001b[38;5;28mlist\u001b[39m(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mbuilder_configs\u001b[38;5;241m.\u001b[39mkeys())\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 594\u001b[0m )\n\u001b[1;32m 596\u001b[0m \u001b[38;5;66;03m# if not using an existing config, then create a new config on the fly\u001b[39;00m\n\u001b[1;32m 597\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m builder_config:\n",
|
40 |
-
"\u001b[0;31mValueError\u001b[0m: BuilderConfig 'for_sale_listings' not found. Available: ['home_value_forecasts', 'new_constructions']"
|
41 |
]
|
42 |
}
|
43 |
],
|
44 |
"source": [
|
45 |
-
"configs = [\"home_value_forecasts\", \"new_constructions\", \"for_sale_listings\"]\n",
|
46 |
"\n",
|
47 |
-
"dataset = load_dataset(\"misikoff/zillow\", \"
|
48 |
]
|
49 |
},
|
50 |
{
|
|
|
26 |
"metadata": {},
|
27 |
"outputs": [
|
28 |
{
|
29 |
+
"name": "stderr",
|
30 |
+
"output_type": "stream",
|
31 |
+
"text": [
|
32 |
+
"Downloading builder script: 100%|ββββββββββ| 16.4k/16.4k [00:00<00:00, 13.8MB/s]\n",
|
33 |
+
"Downloading data: 100%|ββββββββββ| 739M/739M [00:17<00:00, 42.9MB/s] \n",
|
34 |
+
"Generating train split: 2398149 examples [01:07, 35317.36 examples/s]\n",
|
35 |
+
"Generating validation split: 2398149 examples [01:08, 35184.06 examples/s]\n",
|
36 |
+
"Generating test split: 2398149 examples [01:09, 34579.04 examples/s]\n"
|
|
|
|
|
|
|
|
|
37 |
]
|
38 |
}
|
39 |
],
|
40 |
"source": [
|
41 |
+
"configs = [\"home_value_forecasts\", \"new_constructions\", \"for_sale_listings\", \"rentals\"]\n",
|
42 |
"\n",
|
43 |
+
"dataset = load_dataset(\"misikoff/zillow\", \"rentals\", trust_remote_code=True)"
|
44 |
]
|
45 |
},
|
46 |
{
|
zillow.py
CHANGED
@@ -86,6 +86,11 @@ class NewDataset(datasets.GeneratorBasedBuilder):
|
|
86 |
version=VERSION,
|
87 |
description="This part of my dataset covers a second domain",
|
88 |
),
|
|
|
|
|
|
|
|
|
|
|
89 |
]
|
90 |
|
91 |
DEFAULT_CONFIG_NAME = "home_value_forecasts" # It's not mandatory to have a default configuration. Just use one if it make sense.
|
@@ -172,6 +177,25 @@ class NewDataset(datasets.GeneratorBasedBuilder):
|
|
172 |
# These are the features of your dataset like images, labels ...
|
173 |
}
|
174 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
175 |
# else: # This is an example to show how to have different features for "home_value_forecasts" and "second_domain"
|
176 |
# features = datasets.Features(
|
177 |
# {
|
@@ -312,6 +336,22 @@ class NewDataset(datasets.GeneratorBasedBuilder):
|
|
312 |
"New Pending": data["New Pending"],
|
313 |
# "answer": "" if split == "test" else data["answer"],
|
314 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
315 |
# else:
|
316 |
# yield key, {
|
317 |
# "sentence": data["sentence"],
|
|
|
86 |
version=VERSION,
|
87 |
description="This part of my dataset covers a second domain",
|
88 |
),
|
89 |
+
datasets.BuilderConfig(
|
90 |
+
name="rentals",
|
91 |
+
version=VERSION,
|
92 |
+
description="This part of my dataset covers a second domain",
|
93 |
+
),
|
94 |
]
|
95 |
|
96 |
DEFAULT_CONFIG_NAME = "home_value_forecasts" # It's not mandatory to have a default configuration. Just use one if it make sense.
|
|
|
177 |
# These are the features of your dataset like images, labels ...
|
178 |
}
|
179 |
)
|
180 |
+
elif self.config.name == "rentals":
|
181 |
+
features = datasets.Features(
|
182 |
+
{
|
183 |
+
"Region ID": datasets.Value(dtype="string", id="Region ID"),
|
184 |
+
"Size Rank": datasets.Value(dtype="int32", id="Size Rank"),
|
185 |
+
"Region": datasets.Value(dtype="string", id="Region"),
|
186 |
+
"Region Type": datasets.Value(dtype="string", id="Region Type"),
|
187 |
+
"State": datasets.Value(dtype="string", id="State"),
|
188 |
+
"Home Type": datasets.Value(dtype="string", id="Home Type"),
|
189 |
+
"Date": datasets.Value(dtype="string", id="Date"),
|
190 |
+
"Rent (Smoothed)": datasets.Value(
|
191 |
+
dtype="float32", id="Rent (Smoothed)"
|
192 |
+
),
|
193 |
+
"Rent (Smoothed) (Seasonally Adjusted)": datasets.Value(
|
194 |
+
dtype="float32", id="Rent (Smoothed) (Seasonally Adjusted)"
|
195 |
+
),
|
196 |
+
# These are the features of your dataset like images, labels ...
|
197 |
+
}
|
198 |
+
)
|
199 |
# else: # This is an example to show how to have different features for "home_value_forecasts" and "second_domain"
|
200 |
# features = datasets.Features(
|
201 |
# {
|
|
|
336 |
"New Pending": data["New Pending"],
|
337 |
# "answer": "" if split == "test" else data["answer"],
|
338 |
}
|
339 |
+
elif self.config.name == "rentals":
|
340 |
+
# Yields examples as (key, example) tuples
|
341 |
+
yield key, {
|
342 |
+
"Region ID": data["Region ID"],
|
343 |
+
"Size Rank": data["Size Rank"],
|
344 |
+
"Region": data["Region"],
|
345 |
+
"Region Type": data["Region Type"],
|
346 |
+
"State": data["State"],
|
347 |
+
"Home Type": data["Home Type"],
|
348 |
+
"Date": data["Date"],
|
349 |
+
"Rent (Smoothed)": data["Rent (Smoothed)"],
|
350 |
+
"Rent (Smoothed) (Seasonally Adjusted)": data[
|
351 |
+
"Rent (Smoothed) (Seasonally Adjusted)"
|
352 |
+
],
|
353 |
+
# "answer": "" if split == "test" else data["answer"],
|
354 |
+
}
|
355 |
# else:
|
356 |
# yield key, {
|
357 |
# "sentence": data["sentence"],
|