annotations_creators:
- expert-generated
language:
- ar
- bn
- en
- es
- fa
- fi
- fr
- hi
- id
- ja
- ko
- ru
- sw
- te
- th
- zh
multilinguality:
- multilingual
pretty_name: NoMIRACL
size_categories:
- 10K<n<100K
source_datasets:
- miracl/miracl
task_categories:
- text-classification
license:
- apache-2.0
Dataset Card for NoMIRACL
Retrieval Augmented Generation (RAG) is a powerful approach to incorporate external knowledge into large language models (LLMs) to enhance the accuracy and faithfulness of generated responses. However, evaluating LLM robustness in RAG across different language families has been a challenge, leading to gaps in understanding the model's performance against errors in external retrieved knowledge. To address this, we present NoMIRACL, a human-annotated dataset designed for evaluating LLM robustness in RAG across 18 diverse languages.
NoMIRACL includes both a non-relevant
and a relevant
subset. The non-relevant
subset contains queries with all passages manually judged as non-relevant or noisy, while the relevant
subset includes queries with at least one judged relevant passage. LLM robustness is measured using two key metrics: hallucination rate and error rate.
All the topics are generated by native speakers of each language from our work in MIRACL, who also label the relevance between the topics and a given document list. The queries with no-relevant documents are used to create the non-relevant
subset whereas queries with atleast one relevant document (i.e., queries in MIRACL dev and test) are used to create relevant
subset.
This repository contains the topics, qrels and top-10 (maximum) annotated documents of NoMIRACL. The whole collection can be found be here.
Quickstart
import datasets
language = 'german' # or any of the 18 languages
subset = 'relevant' # or 'non_relevant'
split = 'test' # or 'dev' for development split
# four combinations available: 'dev.relevant', 'dev.non_relevant', 'test.relevant' and 'test.non_relevant'
nomiracl = datasets.load_dataset('miracl/nomiracl', language, split=f'{split}.{subset}')
Dataset Description
- Repository: https://github.com/project-miracl/nomiracl
- Paper: https://arxiv.org/abs/2312.11361
Dataset Structure
To access the data using HuggingFace datasets
:
import datasets
language = 'german' # or any of the 18 languages
subset = 'relevant' # or 'non_relevant'
split = 'test' # or 'dev' for development split
# four combinations: 'dev.relevant', 'dev.non_relevant', 'test.relevant' and 'test.non_relevant'
nomiracl = datasets.load_dataset('miracl/nomiracl', language, f'{split}.{subset}')
# Non-relevant subsets will have empty `positive_passages` column.
for data in nomiracl:
query_id = data['query_id']
query = data['query']
positive_passages = data['positive_passages']
negative_passages = data['negative_passages']
for entry in positive_passages: # OR 'negative_passages'
docid = entry['docid']
title = entry['title']
text = entry['text']
Dataset Statistics
For NoMIRACL dataset statistics, please refer to our publication here.
Citation Information
@article{thakur2023nomiracl,
title={NoMIRACL: Knowing When You Don't Know for Robust Multilingual Retrieval-Augmented Generation},
author={Nandan Thakur and Luiz Bonifacio and Xinyu Zhang and Odunayo Ogundepo and Ehsan Kamalloo and David Alfonso-Hermelo and Xiaoguang Li and Qun Liu and Boxing Chen and Mehdi Rezagholizadeh and Jimmy Lin},
journal={ArXiv},
year={2023},
volume={abs/2312.11361}