mmteb-miracl-reranking / mmteb-miracl-reranking.py
crystina-z's picture
Rename miracl-reranking.py to mmteb-miracl-reranking.py
6d1962c verified
raw
history blame
5.62 kB
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
import json
import gzip
import datasets
from collections import defaultdict
from dataclasses import dataclass
_CITATION = """
"""
surprise_languages = ["de", "yo"]
new_languages = ["es", "fa", "fr", "hi", "zh"] + surprise_languages
languages = ["ar", "bn", "en", "es", "fa", "fi", "fr", "hi", "id", "ja", "ko", "ru", "sw", "te", "th", "zh"] + surprise_languages
_DESCRIPTION = "dataset load script for MIRACL"
def get_first_stage_runfile(lang):
first_stages = [
"bm25", "mdpr", "hybrid",
]
return {
first_stage: f"https://huggingface.co/datasets/miracl/miracl-reranking/resolve/main/data/{first_stage}/{lang}.gz" for first_stage in first_stages
}
_DATASET_URLS = {
lang: {
"dev": {
"topics": f"https://huggingface.co/datasets/miracl/miracl/resolve/main/miracl-v1.0-{lang}/topics/topics.miracl-v1.0-{lang}-dev.tsv",
"qrels": f"https://huggingface.co/datasets/miracl/miracl/resolve/main/miracl-v1.0-{lang}/qrels/qrels.miracl-v1.0-{lang}-dev.tsv",
**get_first_stage_runfile(lang),
},
} for lang in languages
}
def load_topic(fn):
qid2topic = {}
with open(fn, encoding="utf-8") as f:
for line in f:
qid, topic = line.strip().split("\t")
qid2topic[qid] = topic
return qid2topic
def load_qrels(fn):
if fn is None:
return None
qrels = defaultdict(dict)
with open(fn, encoding="utf-8") as f:
for line in f:
qid, _, docid, rel = line.strip().split("\t")
qrels[qid][docid] = int(rel)
return qrels
def load_runfile(fn, topk=100):
file_handle = gzip.open(fn, "rb") if fn.endswith(".gz") else open(fn, "r")
runs = defaultdict(dict)
for line in file_handle:
if not isinstance(line, str):
line = line.decode()
qid, _, docid, _, score, _ = line.strip().split()
runs[qid][docid] = float(score)
if topk > 0:
for qid in runs:
runs[qid] = dict(sorted(
runs[qid].items(),
key=lambda doc_score: doc_score[1],
reverse=True,
)[:topk])
return runs
class MIRACLReranking(datasets.GeneratorBasedBuilder):
BUILDER_CONFIGS = [datasets.BuilderConfig(
version=datasets.Version("1.0.0"),
name=lang, description=f"MIRACL Reranking in language {lang}."
) for lang in languages
]
def _info(self):
features = datasets.Features(
query=datasets.Value("string"),
positive=datasets.Sequence(datasets.Value("string")),
negative=datasets.Sequence(datasets.Value("string")),
candidates=datasets.Sequence(datasets.Value("string")),
)
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# This defines the different columns of the dataset and their types
features=features, # Here we define them above because they are different between the two configurations
supervised_keys=None,
# Homepage of the dataset for documentation
homepage="https://project-miracl.github.io",
# License for the dataset if available
license="",
# Citation for the dataset
citation=_CITATION,
)
def _split_generators(self, dl_manager):
lang = self.config.name
downloaded_files = dl_manager.download_and_extract(_DATASET_URLS[lang]["dev"])
splits = [
datasets.SplitGenerator(
name="dev",
gen_kwargs={
"filepaths": downloaded_files,
},
),
]
return splits
def _generate_examples(self, filepaths):
def formulate_doc(title, text):
return f"{title} {text}"
lang = self.config.name
miracl_corpus = datasets.load_dataset("miracl/miracl-corpus", lang)["train"]
docid2doc = {doc["docid"]: formulate_doc(doc["title"], doc["text"]) for doc in miracl_corpus}
topic_fn = filepaths["topics"]
qrel_fn = filepaths["qrels"]
runfile = filepaths["bm25"]
qid2topic = load_topic(topic_fn)
qrels = load_qrels(qrel_fn)
runs = load_runfile(runfile, topk=100)
for qid in qid2topic:
data = {}
pos_docids = [docid for docid, rel in qrels[qid].items() if rel == 1] if qrels is not None else []
neg_docids = [docid for docid, rel in qrels[qid].items() if rel == 0] if qrels is not None else []
data["query"] = qid2topic[qid]
data["positive"] = [docid2doc[docid] for docid in pos_docids]
data["negative"] = [docid2doc[docid] for docid in neg_docids]
data["candidates"] = [docid2doc[docid] for docid in runs[qid]]
yield qid, data