|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import json |
|
import gzip |
|
import datasets |
|
from collections import defaultdict |
|
from dataclasses import dataclass |
|
|
|
_CITATION = """ |
|
""" |
|
|
|
surprise_languages = ["de", "yo"] |
|
new_languages = ["es", "fa", "fr", "hi", "zh"] + surprise_languages |
|
languages = ["ar", "bn", "en", "es", "fa", "fi", "fr", "hi", "id", "ja", "ko", "ru", "sw", "te", "th", "zh"] + surprise_languages |
|
|
|
_DESCRIPTION = "dataset load script for MIRACL" |
|
|
|
|
|
def get_first_stage_runfile(lang): |
|
first_stages = [ |
|
"bm25", "mdpr", "hybrid", |
|
] |
|
return { |
|
first_stage: f"https://huggingface.co/datasets/miracl/miracl-reranking/resolve/main/data/{first_stage}/{lang}.gz" for first_stage in first_stages |
|
} |
|
|
|
|
|
_DATASET_URLS = { |
|
lang: { |
|
"dev": { |
|
"topics": f"https://huggingface.co/datasets/miracl/miracl/resolve/main/miracl-v1.0-{lang}/topics/topics.miracl-v1.0-{lang}-dev.tsv", |
|
"qrels": f"https://huggingface.co/datasets/miracl/miracl/resolve/main/miracl-v1.0-{lang}/qrels/qrels.miracl-v1.0-{lang}-dev.tsv", |
|
**get_first_stage_runfile(lang), |
|
}, |
|
} for lang in languages |
|
} |
|
|
|
|
|
def load_topic(fn): |
|
qid2topic = {} |
|
with open(fn, encoding="utf-8") as f: |
|
for line in f: |
|
qid, topic = line.strip().split("\t") |
|
qid2topic[qid] = topic |
|
return qid2topic |
|
|
|
|
|
def load_qrels(fn): |
|
if fn is None: |
|
return None |
|
|
|
qrels = defaultdict(dict) |
|
with open(fn, encoding="utf-8") as f: |
|
for line in f: |
|
qid, _, docid, rel = line.strip().split("\t") |
|
qrels[qid][docid] = int(rel) |
|
return qrels |
|
|
|
|
|
def load_runfile(fn, topk=100): |
|
file_handle = gzip.open(fn, "rb") if fn.endswith(".gz") else open(fn, "r") |
|
runs = defaultdict(dict) |
|
for line in file_handle: |
|
if not isinstance(line, str): |
|
line = line.decode() |
|
qid, _, docid, _, score, _ = line.strip().split() |
|
runs[qid][docid] = float(score) |
|
|
|
if topk > 0: |
|
for qid in runs: |
|
runs[qid] = dict(sorted( |
|
runs[qid].items(), |
|
key=lambda doc_score: doc_score[1], |
|
reverse=True, |
|
)[:topk]) |
|
return runs |
|
|
|
|
|
class MIRACLReranking(datasets.GeneratorBasedBuilder): |
|
BUILDER_CONFIGS = [datasets.BuilderConfig( |
|
version=datasets.Version("1.0.0"), |
|
name=lang, description=f"MIRACL Reranking in language {lang}." |
|
) for lang in languages |
|
] |
|
|
|
def _info(self): |
|
features = datasets.Features( |
|
query=datasets.Value("string"), |
|
positive=datasets.Sequence(datasets.Value("string")), |
|
negative=datasets.Sequence(datasets.Value("string")), |
|
candidates=datasets.Sequence(datasets.Value("string")), |
|
) |
|
|
|
return datasets.DatasetInfo( |
|
|
|
description=_DESCRIPTION, |
|
|
|
features=features, |
|
supervised_keys=None, |
|
|
|
homepage="https://project-miracl.github.io", |
|
|
|
license="", |
|
|
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
lang = self.config.name |
|
downloaded_files = dl_manager.download_and_extract(_DATASET_URLS[lang]["dev"]) |
|
|
|
splits = [ |
|
datasets.SplitGenerator( |
|
name="dev", |
|
gen_kwargs={ |
|
"filepaths": downloaded_files, |
|
}, |
|
), |
|
] |
|
|
|
return splits |
|
|
|
def _generate_examples(self, filepaths): |
|
def formulate_doc(title, text): |
|
return f"{title} {text}" |
|
|
|
lang = self.config.name |
|
miracl_corpus = datasets.load_dataset("miracl/miracl-corpus", lang)["train"] |
|
docid2doc = {doc["docid"]: formulate_doc(doc["title"], doc["text"]) for doc in miracl_corpus} |
|
|
|
topic_fn = filepaths["topics"] |
|
qrel_fn = filepaths["qrels"] |
|
runfile = filepaths["bm25"] |
|
|
|
qid2topic = load_topic(topic_fn) |
|
qrels = load_qrels(qrel_fn) |
|
runs = load_runfile(runfile, topk=100) |
|
for qid in qid2topic: |
|
data = {} |
|
|
|
pos_docids = [docid for docid, rel in qrels[qid].items() if rel == 1] if qrels is not None else [] |
|
neg_docids = [docid for docid, rel in qrels[qid].items() if rel == 0] if qrels is not None else [] |
|
|
|
data["query"] = qid2topic[qid] |
|
data["positive"] = [docid2doc[docid] for docid in pos_docids] |
|
data["negative"] = [docid2doc[docid] for docid in neg_docids] |
|
data["candidates"] = [docid2doc[docid] for docid in runs[qid]] |
|
|
|
yield qid, data |
|
|