|
# Temporal Logic Video (TLV) Dataset |
|
## Overview |
|
<!-- PROJECT LOGO --> |
|
<br /> |
|
<div align="center"> |
|
<a href="https://github.com/UTAustin-SwarmLab/temporal-logic-video-dataset"> |
|
<img src="images/logo.png" alt="Logo" width="240" height="240"> |
|
</a> |
|
|
|
<h3 align="center">Temporal Logic Video (TLV) Dataset</h3> |
|
|
|
<p align="center"> |
|
Synthetic and real video dataset with temporal logic annotation |
|
<br /> |
|
<a href="https://github.com/UTAustin-SwarmLab/temporal-logic-video-dataset"><strong>Explore the docs »</strong></a> |
|
<br /> |
|
<br /> |
|
<a href="https://anoymousu1.github.io/nsvs-anonymous.github.io/">NSVS-TL Project Webpage</a> |
|
· |
|
<a href="https://github.com/UTAustin-SwarmLab/Neuro-Symbolic-Video-Search-Temploral-Logic">NSVS-TL Source Code</a> |
|
</p> |
|
</div> |
|
|
|
## Overview |
|
|
|
The Temporal Logic Video (TLV) Dataset addresses the scarcity of state-of-the-art video datasets for long-horizon, temporally extended activity and object detection. It comprises two main components: |
|
|
|
1. Synthetic datasets: Generated by concatenating static images from established computer vision datasets (COCO and ImageNet), allowing for the introduction of a wide range of Temporal Logic (TL) specifications. |
|
2. Real-world datasets: Based on open-source autonomous vehicle (AV) driving datasets, specifically NuScenes and Waymo. |
|
|
|
## Table of Contents |
|
|
|
- [Dataset Composition](#dataset-composition) |
|
- [Dataset (Release)](#dataset) |
|
- [Installation](#installation) |
|
- [Usage](#usage) |
|
- [Data Generation](#data-generation) |
|
- [Contribution Guidelines](#contribution-guidelines) |
|
- [License](#license) |
|
- [Acknowledgments](#acknowledgments) |
|
|
|
## Dataset Composition |
|
|
|
### Synthetic Datasets |
|
- Source: COCO and ImageNet |
|
- Purpose: Introduce artificial Temporal Logic specifications |
|
- Generation Method: Image stitching from static datasets |
|
|
|
### Real-world Datasets |
|
- Sources: NuScenes and Waymo |
|
- Purpose: Provide real-world autonomous vehicle scenarios |
|
- Annotation: Temporal Logic specifications added to existing data |
|
|
|
## Dataset |
|
<div align="center"> |
|
<a href="https://github.com/UTAustin-SwarmLab/temporal-logic-video-dataset"> |
|
<img src="images/teaser.png" alt="Logo" width="840" height="440"> |
|
</a> |
|
</div> |
|
|
|
Though we provide a source code to generate datasets from different types of data sources, we release a dataset v1 as a proof of concept. |
|
|
|
### Dataset Structure |
|
|
|
We provide a v1 dataset as a proof of concept. The data is offered as serialized objects, each containing a set of frames with annotations. |
|
|
|
#### File Naming Convention |
|
`\<tlv_data_type\>:source:\<datasource\>-number_of_frames:\<number_of_frames\>-\<uuid\>.pkl` |
|
|
|
#### Object Attributes |
|
Each serialized object contains the following attributes: |
|
- `ground_truth`: Boolean indicating whether the dataset contains ground truth labels |
|
- `ltl_formula`: Temporal logic formula applied to the dataset |
|
- `proposition`: A set of proposition for ltl_formula |
|
- `number_of_frame`: Total number of frames in the dataset |
|
- `frames_of_interest`: Frames of interest which satisfy the ltl_formula |
|
- `labels_of_frames`: Labels for each frame |
|
- `images_of_frames`: Image data for each frame |
|
|
|
You can download a dataset from here. The structure of dataset is as follows: serializer |
|
``` |
|
tlv-dataset-v1/ |
|
├── tlv_real_dataset/ |
|
├──── prop1Uprop2/ |
|
├──── (prop1&prop2)Uprop3/ |
|
├── tlv_synthetic_dataset/ |
|
├──── Fprop1/ |
|
├──── Gprop1/ |
|
├──── prop1&prop2/ |
|
├──── prop1Uprop2/ |
|
└──── (prop1&prop2)Uprop3/ |
|
``` |
|
#### Dataset Statistics |
|
1. Total Number of Frames |
|
|
|
| Ground Truth TL Specifications | Synthetic TLV Dataset | | Real TLV Dataset | | |
|
| --- | ---: | ---: | ---: | ---: | |
|
| | COCO | ImageNet | Waymo | Nuscenes | |
|
| Eventually Event A | - | 15,750 | - | - | |
|
| Always Event A | - | 15,750 | - | - | |
|
| Event A And Event B | 31,500 | - | - | - | |
|
| Event A Until Event B | 15,750 | 15,750 | 8,736 | 19,808 | |
|
| (Event A And Event B) Until Event C | 5,789 | - | 7,459 | 7,459 | |
|
|
|
2. Total Number of datasets |
|
|
|
| Ground Truth TL Specifications | Synthetic TLV Dataset | | Real TLV Dataset | | |
|
| --- | ---: | ---: | ---: | ---: | |
|
| | COCO | ImageNet | Waymo | Nuscenes | |
|
| Eventually Event A | - | 60 | - | - | |
|
| Always Event A | - | 60 | - | - | |
|
| Event A And Event B | 120 | - | - | - | |
|
| Event A Until Event B | 60| 60 | 45| 494 | |
|
| (Event A And Event B) Until Event C | 97 | - | 30 | 186| |
|
|
|
|
|
## Installation |
|
|
|
```bash |
|
python -m venv .venv |
|
source .venv/bin/activate |
|
python -m pip install --upgrade pip build |
|
python -m pip install --editable ."[dev, test]" |
|
``` |
|
|
|
### Prerequisites |
|
|
|
1. ImageNet (ILSVRC 2017): |
|
``` |
|
ILSVRC/ |
|
├── Annotations/ |
|
├── Data/ |
|
├── ImageSets/ |
|
└── LOC_synset_mapping.txt |
|
``` |
|
|
|
2. COCO (2017): |
|
``` |
|
COCO/ |
|
└── 2017/ |
|
├── annotations/ |
|
├── train2017/ |
|
└── val2017/ |
|
``` |
|
|
|
## Usage |
|
|
|
Detailed usage instructions for data loading and processing. |
|
|
|
### Data Loader Configuration |
|
|
|
- `data_root_dir`: Root directory of the dataset |
|
- `mapping_to`: Label mapping scheme (default: "coco") |
|
- `save_dir`: Output directory for processed data |
|
|
|
### Synthetic Data Generator Configuration |
|
|
|
- `initial_number_of_frame`: Starting frame count per video |
|
- `max_number_frame`: Maximum frame count per video |
|
- `number_video_per_set_of_frame`: Videos to generate per frame set |
|
- `increase_rate`: Frame count increment rate |
|
- `ltl_logic`: Temporal Logic specification (e.g., "F prop1", "G prop1") |
|
- `save_images`: Boolean flag for saving individual frames |
|
|
|
## Data Generation |
|
|
|
### COCO Synthetic Data Generation |
|
|
|
```bash |
|
python3 run_scripts/run_synthetic_tlv_coco.py --data_root_dir "../COCO/2017" --save_dir "<output_dir>" |
|
``` |
|
|
|
### ImageNet Synthetic Data Generation |
|
|
|
```bash |
|
python3 run_synthetic_tlv_imagenet.py --data_root_dir "../ILSVRC" --save_dir "<output_dir>" |
|
``` |
|
|
|
Note: ImageNet generator does not support '&' LTL logic formulae. |
|
|
|
## License |
|
|
|
This project is licensed under the MIT License. See the [LICENSE](LICENSE) file for details. |
|
|
|
## Citation |
|
If you find this repo useful, please cite our paper: |
|
```bibtex |
|
@inproceedings{Choi_2024_ECCV, |
|
author={Choi, Minkyu and Goel Harsh and Omama, Mohammad and Yang, Yunhao and Shah, Sahil and Chinchali and Sandeep}, |
|
title={Towards Neuro-Symbolic Video Understanding}, |
|
booktitle={Proceedings of the European Conference on Computer Vision (ECCV)}, |
|
month={September}, |
|
year={2024} |
|
} |
|
``` |
|
|
|
|
|
[contributors-shield]: https://img.shields.io/github/contributors/UTAustin-SwarmLab/temporal-logic-video-dataset.svg?style=for-the-badge |
|
[contributors-url]: https://github.com/UTAustin-SwarmLab/temporal-logic-video-dataset/graphs/contributors |
|
[forks-shield]: https://img.shields.io/github/forks/UTAustin-SwarmLab/temporal-logic-video-dataset.svg?style=for-the-badge |
|
[forks-url]: https://github.com/UTAustin-SwarmLab/temporal-logic-video-dataset/network/members |
|
[stars-shield]: https://img.shields.io/github/stars/UTAustin-SwarmLab/temporal-logic-video-dataset.svg?style=for-the-badge |
|
[stars-url]: https://github.com/UTAustin-SwarmLab/temporal-logic-video-dataset/stargazers |
|
[license-shield]: https://img.shields.io/github/license/UTAustin-SwarmLab/temporal-logic-video-dataset.svg?style=for-the-badge |
|
[license-url]: https://github.com/UTAustin-SwarmLab/temporal-logic-video-dataset/blob/master/LICENSE.txt |
|
|