|
|
|
|
|
""" |
|
Created on Tue Mar 12 16:13:56 2024 |
|
|
|
@author: tominhanh |
|
""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import pandas as pd |
|
from PIL import Image as PilImage |
|
import datasets |
|
from datasets import DatasetBuilder, GeneratorBasedBuilder, DownloadManager, DatasetInfo, Features, Image, ClassLabel, Value, Sequence, load_dataset, SplitGenerator |
|
import os |
|
import io |
|
from typing import Tuple, Dict, List |
|
import numpy as np |
|
import zipfile |
|
import requests |
|
import random |
|
from io import BytesIO |
|
import csv |
|
|
|
_CITATION = """\ |
|
https://arxiv.org/abs/2102.09099 |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
The comprehensive dataset contains over 220,000 single-rater and multi-rater labeled nuclei from breast cancer images |
|
obtained from TCGA, making it one of the largest datasets for nucleus detection, classification, and segmentation in hematoxylin and eosin-stained |
|
digital slides of breast cancer. This version of the dataset is a revised single-rater dataset, featuring over 125,000 nucleus csvs. |
|
These nuclei were annotated through a collaborative effort involving pathologists, pathology residents, and medical students, using the Digital Slide Archive. |
|
""" |
|
|
|
_HOMEPAGE = "https://sites.google.com/view/nucls/home?authuser=0" |
|
|
|
_LICENSE = "CC0 1.0 license" |
|
|
|
_URL = "https://www.dropbox.com/scl/fi/zsm9l3bkwx808wfryv5zm/NuCLS_dataset.zip?rlkey=x3358slgrxt00zpn7zpkpjr2h&dl=1" |
|
|
|
class NuCLSDataset(GeneratorBasedBuilder): |
|
"""The NuCLS dataset.""" |
|
|
|
VERSION = datasets.Version("1.1.0") |
|
|
|
def _info(self): |
|
"""Returns the dataset info.""" |
|
|
|
|
|
raw_classification = ClassLabel(names=[ |
|
'apoptotic_body', 'ductal_epithelium', 'eosinophil','fibroblast', 'lymphocyte', |
|
'macrophage', 'mitotic_figure', 'myoepithelium', 'neutrophil', |
|
'plasma_cell','tumor', 'unlabeled', 'vascular_endothelium' |
|
]) |
|
main_classification = ClassLabel(names=[ |
|
'AMBIGUOUS', 'lymphocyte', 'macrophage', 'nonTILnonMQ_stromal', |
|
'plasma_cell', 'tumor_mitotic', 'tumor_nonMitotic', |
|
]) |
|
super_classification = ClassLabel(names=[ |
|
'AMBIGUOUS','nonTIL_stromal','sTIL', 'tumor_any', |
|
]) |
|
type = ClassLabel(names=['rectangle', 'polyline']) |
|
|
|
|
|
features = Features({ |
|
'rgb_image': Image(decode=True), |
|
'mask_image': Image(decode=True), |
|
'visualization_image': Image(decode=True), |
|
'annotation_coordinates': Features({ |
|
'raw_classification': Sequence(Value("string")), |
|
'main_classification': Sequence(Value("string")), |
|
'super_classification': Sequence(Value("string")), |
|
'type': Sequence(Value("string")), |
|
'xmin': Sequence(Value('int64')), |
|
'ymin': Sequence(Value('int64')), |
|
'xmax': Sequence(Value('int64')), |
|
'ymax': Sequence(Value('int64')), |
|
'coords_x': Sequence(Sequence(Value('int64'))), |
|
'coords_y': Sequence(Sequence(Value('int64'))), |
|
}) |
|
}) |
|
return DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
supervised_keys=None, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: DownloadManager): |
|
|
|
data_dir = dl_manager.download_and_extract(_URL) |
|
|
|
|
|
base_dir = os.path.join(data_dir, "NuCLS_dataset") |
|
rgb_dir = os.path.join(base_dir, "rgb") |
|
visualization_dir = os.path.join(base_dir, "visualization") |
|
mask_dir = os.path.join(base_dir, "mask") |
|
csv_dir = os.path.join(base_dir, "csv") |
|
split_dir = os.path.join(base_dir, "train_test_splits") |
|
|
|
|
|
unique_filenames = [os.path.splitext(f)[0] for f in os.listdir(rgb_dir)] |
|
|
|
|
|
split_slide_names = self._process_train_test_split_files(split_dir) |
|
|
|
|
|
split_generators = [] |
|
for fold in split_slide_names: |
|
train_slide_names, test_slide_names = split_slide_names[fold] |
|
|
|
|
|
train_filenames = [fn for fn in unique_filenames if any(sn in fn for sn in train_slide_names)] |
|
test_filenames = [fn for fn in unique_filenames if any(sn in fn for sn in test_slide_names)] |
|
|
|
|
|
train_filepaths = self._map_filenames_to_paths(train_filenames, rgb_dir, visualization_dir, mask_dir, csv_dir) |
|
test_filepaths = self._map_filenames_to_paths(test_filenames, rgb_dir, visualization_dir, mask_dir, csv_dir) |
|
|
|
|
|
split_generators.append( |
|
datasets.SplitGenerator( |
|
name=f"{datasets.Split.TRAIN}_fold_{fold}", |
|
gen_kwargs={"filepaths": train_filepaths} |
|
) |
|
) |
|
split_generators.append( |
|
datasets.SplitGenerator( |
|
name=f"{datasets.Split.TEST}_fold_{fold}", |
|
gen_kwargs={"filepaths": test_filepaths} |
|
) |
|
) |
|
|
|
return split_generators |
|
|
|
def _process_train_test_split_files(self, split_dir): |
|
"""Reads the train/test split CSV files and returns a dictionary with fold numbers as keys and tuple of train/test slide names as values.""" |
|
split_slide_names = {} |
|
for split_file in os.listdir(split_dir): |
|
file_path = os.path.join(split_dir, split_file) |
|
fold_number = split_file.split('_')[1] |
|
|
|
with open(file_path, 'r') as f: |
|
csv_reader = csv.reader(f) |
|
next(csv_reader) |
|
for row in csv_reader: |
|
slide_name = row[1] |
|
if "train" in split_file: |
|
split_slide_names.setdefault(fold_number, ([], []))[0].append(slide_name) |
|
elif "test" in split_file: |
|
split_slide_names.setdefault(fold_number, ([], []))[1].append(slide_name) |
|
|
|
return split_slide_names |
|
|
|
def _map_filenames_to_paths(self, filenames, rgb_dir, visualization_dir, mask_dir, csv_dir): |
|
"""Maps filenames to file paths for each split.""" |
|
filepaths = {} |
|
for filename in filenames: |
|
filepaths[filename] = { |
|
'rgb': os.path.join(rgb_dir, filename + '.png'), |
|
'visualization': os.path.join(visualization_dir, filename + '.png'), |
|
'mask': os.path.join(mask_dir, filename + '.png'), |
|
'csv': os.path.join(csv_dir, filename + '.csv'), |
|
} |
|
return filepaths |
|
|
|
def _generate_examples(self, filepaths): |
|
"""Yield examples as (key, example) tuples.""" |
|
|
|
for key, paths in filepaths.items(): |
|
|
|
rgb_image = self._read_image_file(paths['rgb']) |
|
mask_image = self._read_image_file(paths['mask']) |
|
visualization_image = self._read_image_file(paths['visualization']) |
|
|
|
|
|
annotation_coordinates = self._read_csv_file(paths['csv']) |
|
|
|
|
|
yield key, { |
|
'rgb_image': rgb_image, |
|
'mask_image': mask_image, |
|
'visualization_image': visualization_image, |
|
'annotation_coordinates': annotation_coordinates, |
|
} |
|
|
|
def _read_image_file(self, file_path: str, ) -> bytes: |
|
"""Reads an image file and returns it as a bytes_like object.""" |
|
try: |
|
with open(file_path, 'rb') as f: |
|
return f.read() |
|
except Exception as e: |
|
print(f"Error reading image file {file_path}: {e}") |
|
return None |
|
|
|
def _read_csv_file(self, filepath): |
|
"""Reads the annotation CSV file and formats the data.""" |
|
|
|
with open(filepath, 'r', encoding='utf-8') as csvfile: |
|
reader = csv.DictReader(csvfile) |
|
annotations = { |
|
'raw_classification': [], |
|
'main_classification': [], |
|
'super_classification': [], |
|
'type': [], |
|
'xmin': [], |
|
'ymin': [], |
|
'xmax': [], |
|
'ymax': [], |
|
'coords_x': [], |
|
'coords_y': [] |
|
} |
|
|
|
for row in reader: |
|
annotations['raw_classification'].append(row.get('raw_classification', '')) |
|
annotations['main_classification'].append(row.get('main_classification', '')) |
|
annotations['super_classification'].append(row.get('super_classification', '')) |
|
annotations['type'].append(row.get('type', '')) |
|
annotations['xmin'].append(int(row.get('xmin', 0))) |
|
annotations['ymin'].append(int(row.get('ymin', 0))) |
|
annotations['xmax'].append(int(row.get('xmax', 0))) |
|
annotations['ymax'].append(int(row.get('ymax', 0))) |
|
|
|
|
|
coords_x = row.get('coords_x', '') |
|
coords_y = row.get('coords_y', '') |
|
annotations['coords_x'].append([int(coord) if coord.isdigit() else 0 for coord in coords_x.split(',')]) |
|
annotations['coords_y'].append([int(coord) if coord.isdigit() else 0 for coord in coords_y.split(',')]) |
|
|
|
return annotations |
|
|