Upload 3 files
Browse files- README (4).md +311 -0
- dataset_infos.json +1 -0
- wikitext.py +192 -0
README (4).md
ADDED
@@ -0,0 +1,311 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
annotations_creators:
|
3 |
+
- no-annotation
|
4 |
+
language_creators:
|
5 |
+
- crowdsourced
|
6 |
+
language:
|
7 |
+
- en
|
8 |
+
license:
|
9 |
+
- cc-by-sa-3.0
|
10 |
+
- gfdl
|
11 |
+
multilinguality:
|
12 |
+
- monolingual
|
13 |
+
paperswithcode_id: wikitext-2
|
14 |
+
pretty_name: WikiText
|
15 |
+
size_categories:
|
16 |
+
- 1M<n<10M
|
17 |
+
source_datasets:
|
18 |
+
- original
|
19 |
+
task_categories:
|
20 |
+
- text-generation
|
21 |
+
- fill-mask
|
22 |
+
task_ids:
|
23 |
+
- language-modeling
|
24 |
+
- masked-language-modeling
|
25 |
+
dataset_info:
|
26 |
+
- config_name: wikitext-103-v1
|
27 |
+
features:
|
28 |
+
- name: text
|
29 |
+
dtype: string
|
30 |
+
splits:
|
31 |
+
- name: test
|
32 |
+
num_bytes: 1295579
|
33 |
+
num_examples: 4358
|
34 |
+
- name: train
|
35 |
+
num_bytes: 545142639
|
36 |
+
num_examples: 1801350
|
37 |
+
- name: validation
|
38 |
+
num_bytes: 1154755
|
39 |
+
num_examples: 3760
|
40 |
+
download_size: 190229076
|
41 |
+
dataset_size: 547592973
|
42 |
+
- config_name: wikitext-2-v1
|
43 |
+
features:
|
44 |
+
- name: text
|
45 |
+
dtype: string
|
46 |
+
splits:
|
47 |
+
- name: test
|
48 |
+
num_bytes: 1270951
|
49 |
+
num_examples: 4358
|
50 |
+
- name: train
|
51 |
+
num_bytes: 10918134
|
52 |
+
num_examples: 36718
|
53 |
+
- name: validation
|
54 |
+
num_bytes: 1134127
|
55 |
+
num_examples: 3760
|
56 |
+
download_size: 4475746
|
57 |
+
dataset_size: 13323212
|
58 |
+
- config_name: wikitext-103-raw-v1
|
59 |
+
features:
|
60 |
+
- name: text
|
61 |
+
dtype: string
|
62 |
+
splits:
|
63 |
+
- name: test
|
64 |
+
num_bytes: 1305092
|
65 |
+
num_examples: 4358
|
66 |
+
- name: train
|
67 |
+
num_bytes: 546501673
|
68 |
+
num_examples: 1801350
|
69 |
+
- name: validation
|
70 |
+
num_bytes: 1159292
|
71 |
+
num_examples: 3760
|
72 |
+
download_size: 191984949
|
73 |
+
dataset_size: 548966057
|
74 |
+
- config_name: wikitext-2-raw-v1
|
75 |
+
features:
|
76 |
+
- name: text
|
77 |
+
dtype: string
|
78 |
+
splits:
|
79 |
+
- name: test
|
80 |
+
num_bytes: 1305092
|
81 |
+
num_examples: 4358
|
82 |
+
- name: train
|
83 |
+
num_bytes: 11061733
|
84 |
+
num_examples: 36718
|
85 |
+
- name: validation
|
86 |
+
num_bytes: 1159292
|
87 |
+
num_examples: 3760
|
88 |
+
download_size: 4721645
|
89 |
+
dataset_size: 13526117
|
90 |
+
---
|
91 |
+
|
92 |
+
# Dataset Card for "wikitext"
|
93 |
+
|
94 |
+
## Table of Contents
|
95 |
+
- [Dataset Description](#dataset-description)
|
96 |
+
- [Dataset Summary](#dataset-summary)
|
97 |
+
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
|
98 |
+
- [Languages](#languages)
|
99 |
+
- [Dataset Structure](#dataset-structure)
|
100 |
+
- [Data Instances](#data-instances)
|
101 |
+
- [Data Fields](#data-fields)
|
102 |
+
- [Data Splits](#data-splits)
|
103 |
+
- [Dataset Creation](#dataset-creation)
|
104 |
+
- [Curation Rationale](#curation-rationale)
|
105 |
+
- [Source Data](#source-data)
|
106 |
+
- [Annotations](#annotations)
|
107 |
+
- [Personal and Sensitive Information](#personal-and-sensitive-information)
|
108 |
+
- [Considerations for Using the Data](#considerations-for-using-the-data)
|
109 |
+
- [Social Impact of Dataset](#social-impact-of-dataset)
|
110 |
+
- [Discussion of Biases](#discussion-of-biases)
|
111 |
+
- [Other Known Limitations](#other-known-limitations)
|
112 |
+
- [Additional Information](#additional-information)
|
113 |
+
- [Dataset Curators](#dataset-curators)
|
114 |
+
- [Licensing Information](#licensing-information)
|
115 |
+
- [Citation Information](#citation-information)
|
116 |
+
- [Contributions](#contributions)
|
117 |
+
|
118 |
+
## Dataset Description
|
119 |
+
|
120 |
+
- **Homepage:** [https://blog.einstein.ai/the-wikitext-long-term-dependency-language-modeling-dataset/](https://blog.einstein.ai/the-wikitext-long-term-dependency-language-modeling-dataset/)
|
121 |
+
- **Repository:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
122 |
+
- **Paper:** [Pointer Sentinel Mixture Models](https://arxiv.org/abs/1609.07843)
|
123 |
+
- **Point of Contact:** [Stephen Merity](mailto:smerity@salesforce.com)
|
124 |
+
- **Size of downloaded dataset files:** 391.41 MB
|
125 |
+
- **Size of the generated dataset:** 1.12 GB
|
126 |
+
- **Total amount of disk used:** 1.52 GB
|
127 |
+
|
128 |
+
### Dataset Summary
|
129 |
+
|
130 |
+
The WikiText language modeling dataset is a collection of over 100 million tokens extracted from the set of verified
|
131 |
+
Good and Featured articles on Wikipedia. The dataset is available under the Creative Commons Attribution-ShareAlike License.
|
132 |
+
|
133 |
+
Compared to the preprocessed version of Penn Treebank (PTB), WikiText-2 is over 2 times larger and WikiText-103 is over
|
134 |
+
110 times larger. The WikiText dataset also features a far larger vocabulary and retains the original case, punctuation
|
135 |
+
and numbers - all of which are removed in PTB. As it is composed of full articles, the dataset is well suited for models
|
136 |
+
that can take advantage of long term dependencies.
|
137 |
+
|
138 |
+
Each subset comes in two different variants:
|
139 |
+
- Raw (for character level work) contain the raw tokens, before the addition of the <unk> (unknown) tokens.
|
140 |
+
- Non-raw (for word level work) contain only the tokens in their vocabulary (wiki.train.tokens, wiki.valid.tokens, and wiki.test.tokens).
|
141 |
+
The out-of-vocabulary tokens have been replaced with the the <unk> token.
|
142 |
+
|
143 |
+
|
144 |
+
### Supported Tasks and Leaderboards
|
145 |
+
|
146 |
+
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
147 |
+
|
148 |
+
### Languages
|
149 |
+
|
150 |
+
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
151 |
+
|
152 |
+
## Dataset Structure
|
153 |
+
|
154 |
+
### Data Instances
|
155 |
+
|
156 |
+
#### wikitext-103-raw-v1
|
157 |
+
|
158 |
+
- **Size of downloaded dataset files:** 191.98 MB
|
159 |
+
- **Size of the generated dataset:** 549.42 MB
|
160 |
+
- **Total amount of disk used:** 741.41 MB
|
161 |
+
|
162 |
+
An example of 'validation' looks as follows.
|
163 |
+
```
|
164 |
+
This example was too long and was cropped:
|
165 |
+
|
166 |
+
{
|
167 |
+
"text": "\" The gold dollar or gold one @-@ dollar piece was a coin struck as a regular issue by the United States Bureau of the Mint from..."
|
168 |
+
}
|
169 |
+
```
|
170 |
+
|
171 |
+
#### wikitext-103-v1
|
172 |
+
|
173 |
+
- **Size of downloaded dataset files:** 190.23 MB
|
174 |
+
- **Size of the generated dataset:** 548.05 MB
|
175 |
+
- **Total amount of disk used:** 738.27 MB
|
176 |
+
|
177 |
+
An example of 'train' looks as follows.
|
178 |
+
```
|
179 |
+
This example was too long and was cropped:
|
180 |
+
|
181 |
+
{
|
182 |
+
"text": "\" Senjō no Valkyria 3 : <unk> Chronicles ( Japanese : 戦場のヴァルキュリア3 , lit . Valkyria of the Battlefield 3 ) , commonly referred to..."
|
183 |
+
}
|
184 |
+
```
|
185 |
+
|
186 |
+
#### wikitext-2-raw-v1
|
187 |
+
|
188 |
+
- **Size of downloaded dataset files:** 4.72 MB
|
189 |
+
- **Size of the generated dataset:** 13.54 MB
|
190 |
+
- **Total amount of disk used:** 18.26 MB
|
191 |
+
|
192 |
+
An example of 'train' looks as follows.
|
193 |
+
```
|
194 |
+
This example was too long and was cropped:
|
195 |
+
|
196 |
+
{
|
197 |
+
"text": "\" The Sinclair Scientific Programmable was introduced in 1975 , with the same case as the Sinclair Oxford . It was larger than t..."
|
198 |
+
}
|
199 |
+
```
|
200 |
+
|
201 |
+
#### wikitext-2-v1
|
202 |
+
|
203 |
+
- **Size of downloaded dataset files:** 4.48 MB
|
204 |
+
- **Size of the generated dataset:** 13.34 MB
|
205 |
+
- **Total amount of disk used:** 17.82 MB
|
206 |
+
|
207 |
+
An example of 'train' looks as follows.
|
208 |
+
```
|
209 |
+
This example was too long and was cropped:
|
210 |
+
|
211 |
+
{
|
212 |
+
"text": "\" Senjō no Valkyria 3 : <unk> Chronicles ( Japanese : 戦場のヴァルキュリア3 , lit . Valkyria of the Battlefield 3 ) , commonly referred to..."
|
213 |
+
}
|
214 |
+
```
|
215 |
+
|
216 |
+
### Data Fields
|
217 |
+
|
218 |
+
The data fields are the same among all splits.
|
219 |
+
|
220 |
+
#### wikitext-103-raw-v1
|
221 |
+
- `text`: a `string` feature.
|
222 |
+
|
223 |
+
#### wikitext-103-v1
|
224 |
+
- `text`: a `string` feature.
|
225 |
+
|
226 |
+
#### wikitext-2-raw-v1
|
227 |
+
- `text`: a `string` feature.
|
228 |
+
|
229 |
+
#### wikitext-2-v1
|
230 |
+
- `text`: a `string` feature.
|
231 |
+
|
232 |
+
### Data Splits
|
233 |
+
|
234 |
+
| name | train |validation|test|
|
235 |
+
|-------------------|------:|---------:|---:|
|
236 |
+
|wikitext-103-raw-v1|1801350| 3760|4358|
|
237 |
+
|wikitext-103-v1 |1801350| 3760|4358|
|
238 |
+
|wikitext-2-raw-v1 | 36718| 3760|4358|
|
239 |
+
|wikitext-2-v1 | 36718| 3760|4358|
|
240 |
+
|
241 |
+
## Dataset Creation
|
242 |
+
|
243 |
+
### Curation Rationale
|
244 |
+
|
245 |
+
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
246 |
+
|
247 |
+
### Source Data
|
248 |
+
|
249 |
+
#### Initial Data Collection and Normalization
|
250 |
+
|
251 |
+
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
252 |
+
|
253 |
+
#### Who are the source language producers?
|
254 |
+
|
255 |
+
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
256 |
+
|
257 |
+
### Annotations
|
258 |
+
|
259 |
+
#### Annotation process
|
260 |
+
|
261 |
+
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
262 |
+
|
263 |
+
#### Who are the annotators?
|
264 |
+
|
265 |
+
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
266 |
+
|
267 |
+
### Personal and Sensitive Information
|
268 |
+
|
269 |
+
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
270 |
+
|
271 |
+
## Considerations for Using the Data
|
272 |
+
|
273 |
+
### Social Impact of Dataset
|
274 |
+
|
275 |
+
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
276 |
+
|
277 |
+
### Discussion of Biases
|
278 |
+
|
279 |
+
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
280 |
+
|
281 |
+
### Other Known Limitations
|
282 |
+
|
283 |
+
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
284 |
+
|
285 |
+
## Additional Information
|
286 |
+
|
287 |
+
### Dataset Curators
|
288 |
+
|
289 |
+
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
290 |
+
|
291 |
+
### Licensing Information
|
292 |
+
|
293 |
+
The dataset is available under the [Creative Commons Attribution-ShareAlike License (CC BY-SA 4.0)](https://creativecommons.org/licenses/by-sa/4.0/).
|
294 |
+
|
295 |
+
### Citation Information
|
296 |
+
|
297 |
+
```
|
298 |
+
@misc{merity2016pointer,
|
299 |
+
title={Pointer Sentinel Mixture Models},
|
300 |
+
author={Stephen Merity and Caiming Xiong and James Bradbury and Richard Socher},
|
301 |
+
year={2016},
|
302 |
+
eprint={1609.07843},
|
303 |
+
archivePrefix={arXiv},
|
304 |
+
primaryClass={cs.CL}
|
305 |
+
}
|
306 |
+
```
|
307 |
+
|
308 |
+
|
309 |
+
### Contributions
|
310 |
+
|
311 |
+
Thanks to [@thomwolf](https://github.com/thomwolf), [@lewtun](https://github.com/lewtun), [@patrickvonplaten](https://github.com/patrickvonplaten), [@mariamabarham](https://github.com/mariamabarham) for adding this dataset.
|
dataset_infos.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"wikitext-103-v1": {"description": " The WikiText language modeling dataset is a collection of over 100 million tokens extracted from the set of verified\n Good and Featured articles on Wikipedia. The dataset is available under the Creative Commons Attribution-ShareAlike\n License.\n", "citation": "@misc{merity2016pointer,\n title={Pointer Sentinel Mixture Models},\n author={Stephen Merity and Caiming Xiong and James Bradbury and Richard Socher},\n year={2016},\n eprint={1609.07843},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n", "homepage": "https://blog.einstein.ai/the-wikitext-long-term-dependency-language-modeling-dataset/", "license": "Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)", "features": {"text": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "wikitext", "config_name": "wikitext-103-v1", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"test": {"name": "test", "num_bytes": 1295579, "num_examples": 4358, "dataset_name": "wikitext"}, "train": {"name": "train", "num_bytes": 545142639, "num_examples": 1801350, "dataset_name": "wikitext"}, "validation": {"name": "validation", "num_bytes": 1154755, "num_examples": 3760, "dataset_name": "wikitext"}}, "download_checksums": {"https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-103-v1.zip": {"num_bytes": 190229076, "checksum": "242ba0f20b329cfdf1ccc61e9e9e5b59becf189db7f7a81cd2a0e2fc31539590"}}, "download_size": 190229076, "post_processing_size": null, "dataset_size": 547592973, "size_in_bytes": 737822049}, "wikitext-2-v1": {"description": " The WikiText language modeling dataset is a collection of over 100 million tokens extracted from the set of verified\n Good and Featured articles on Wikipedia. The dataset is available under the Creative Commons Attribution-ShareAlike\n License.\n", "citation": "@misc{merity2016pointer,\n title={Pointer Sentinel Mixture Models},\n author={Stephen Merity and Caiming Xiong and James Bradbury and Richard Socher},\n year={2016},\n eprint={1609.07843},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n", "homepage": "https://blog.einstein.ai/the-wikitext-long-term-dependency-language-modeling-dataset/", "license": "Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)", "features": {"text": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "wikitext", "config_name": "wikitext-2-v1", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"test": {"name": "test", "num_bytes": 1270951, "num_examples": 4358, "dataset_name": "wikitext"}, "train": {"name": "train", "num_bytes": 10918134, "num_examples": 36718, "dataset_name": "wikitext"}, "validation": {"name": "validation", "num_bytes": 1134127, "num_examples": 3760, "dataset_name": "wikitext"}}, "download_checksums": {"https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-2-v1.zip": {"num_bytes": 4475746, "checksum": "92675f1d63015c1c8b51f1656a52d5bdbc33aafa60cc47a218a66e7ee817488c"}}, "download_size": 4475746, "post_processing_size": null, "dataset_size": 13323212, "size_in_bytes": 17798958}, "wikitext-103-raw-v1": {"description": " The WikiText language modeling dataset is a collection of over 100 million tokens extracted from the set of verified\n Good and Featured articles on Wikipedia. The dataset is available under the Creative Commons Attribution-ShareAlike\n License.\n", "citation": "@misc{merity2016pointer,\n title={Pointer Sentinel Mixture Models},\n author={Stephen Merity and Caiming Xiong and James Bradbury and Richard Socher},\n year={2016},\n eprint={1609.07843},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n", "homepage": "https://blog.einstein.ai/the-wikitext-long-term-dependency-language-modeling-dataset/", "license": "Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)", "features": {"text": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "wikitext", "config_name": "wikitext-103-raw-v1", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"test": {"name": "test", "num_bytes": 1305092, "num_examples": 4358, "dataset_name": "wikitext"}, "train": {"name": "train", "num_bytes": 546501673, "num_examples": 1801350, "dataset_name": "wikitext"}, "validation": {"name": "validation", "num_bytes": 1159292, "num_examples": 3760, "dataset_name": "wikitext"}}, "download_checksums": {"https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-103-raw-v1.zip": {"num_bytes": 191984949, "checksum": "91c00ae287f0d699e18605c84afc9e45c192bc6b7797ff8837e5474655a33794"}}, "download_size": 191984949, "post_processing_size": null, "dataset_size": 548966057, "size_in_bytes": 740951006}, "wikitext-2-raw-v1": {"description": " The WikiText language modeling dataset is a collection of over 100 million tokens extracted from the set of verified\n Good and Featured articles on Wikipedia. The dataset is available under the Creative Commons Attribution-ShareAlike\n License.\n", "citation": "@misc{merity2016pointer,\n title={Pointer Sentinel Mixture Models},\n author={Stephen Merity and Caiming Xiong and James Bradbury and Richard Socher},\n year={2016},\n eprint={1609.07843},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n", "homepage": "https://blog.einstein.ai/the-wikitext-long-term-dependency-language-modeling-dataset/", "license": "Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)", "features": {"text": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "wikitext", "config_name": "wikitext-2-raw-v1", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"test": {"name": "test", "num_bytes": 1305092, "num_examples": 4358, "dataset_name": "wikitext"}, "train": {"name": "train", "num_bytes": 11061733, "num_examples": 36718, "dataset_name": "wikitext"}, "validation": {"name": "validation", "num_bytes": 1159292, "num_examples": 3760, "dataset_name": "wikitext"}}, "download_checksums": {"https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-2-raw-v1.zip": {"num_bytes": 4721645, "checksum": "ef7edb566e3e2b2d31b29c1fdb0c89a4cc683597484c3dc2517919c615435a11"}}, "download_size": 4721645, "post_processing_size": null, "dataset_size": 13526117, "size_in_bytes": 18247762}}
|
wikitext.py
ADDED
@@ -0,0 +1,192 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""TODO(wikitext): Add a description here."""
|
2 |
+
|
3 |
+
|
4 |
+
import os
|
5 |
+
|
6 |
+
import datasets
|
7 |
+
|
8 |
+
|
9 |
+
_CITATION = """\
|
10 |
+
@misc{merity2016pointer,
|
11 |
+
title={Pointer Sentinel Mixture Models},
|
12 |
+
author={Stephen Merity and Caiming Xiong and James Bradbury and Richard Socher},
|
13 |
+
year={2016},
|
14 |
+
eprint={1609.07843},
|
15 |
+
archivePrefix={arXiv},
|
16 |
+
primaryClass={cs.CL}
|
17 |
+
}
|
18 |
+
"""
|
19 |
+
|
20 |
+
_DESCRIPTION = """\
|
21 |
+
The WikiText language modeling dataset is a collection of over 100 million tokens extracted from the set of verified
|
22 |
+
Good and Featured articles on Wikipedia. The dataset is available under the Creative Commons Attribution-ShareAlike
|
23 |
+
License.
|
24 |
+
"""
|
25 |
+
_HOMEPAGE = "https://blog.einstein.ai/the-wikitext-long-term-dependency-language-modeling-dataset/"
|
26 |
+
_LICENSE = "Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)"
|
27 |
+
_DATA_URL = "https://s3.amazonaws.com/research.metamind.io/wikitext"
|
28 |
+
|
29 |
+
|
30 |
+
class WikitextConfig(datasets.BuilderConfig):
|
31 |
+
"""BuilderConfig for GLUE."""
|
32 |
+
|
33 |
+
def __init__(self, data_url, **kwargs):
|
34 |
+
"""BuilderConfig for Wikitext
|
35 |
+
|
36 |
+
Args:
|
37 |
+
data_url: `string`, url to the dataset (word or raw level)
|
38 |
+
**kwargs: keyword arguments forwarded to super.
|
39 |
+
"""
|
40 |
+
super(WikitextConfig, self).__init__(
|
41 |
+
version=datasets.Version(
|
42 |
+
"1.0.0",
|
43 |
+
),
|
44 |
+
**kwargs,
|
45 |
+
)
|
46 |
+
self.data_url = data_url
|
47 |
+
|
48 |
+
|
49 |
+
class Wikitext(datasets.GeneratorBasedBuilder):
|
50 |
+
"""TODO(wikitext_103): Short description of my dataset."""
|
51 |
+
|
52 |
+
# TODO(wikitext_103): Set up version.
|
53 |
+
VERSION = datasets.Version("0.1.0")
|
54 |
+
BUILDER_CONFIGS = [
|
55 |
+
WikitextConfig(
|
56 |
+
name="wikitext-103-v1",
|
57 |
+
data_url=_DATA_URL + "/" + "wikitext-103-v1.zip",
|
58 |
+
description="Word level dataset. No processing is needed other than replacing newlines with <eos> tokens.",
|
59 |
+
),
|
60 |
+
WikitextConfig(
|
61 |
+
name="wikitext-2-v1",
|
62 |
+
data_url=_DATA_URL + "/" + "wikitext-2-v1.zip",
|
63 |
+
description="Word level dataset. No processing is needed other than replacing newlines with <eos> tokens.",
|
64 |
+
),
|
65 |
+
WikitextConfig(
|
66 |
+
name="wikitext-103-raw-v1",
|
67 |
+
data_url=_DATA_URL + "/" + "wikitext-103-raw-v1.zip",
|
68 |
+
description="Raw level dataset: the raw tokens before the addition of <unk> tokens. "
|
69 |
+
"They should only be used for character level work or for creating newly derived datasets.",
|
70 |
+
),
|
71 |
+
WikitextConfig(
|
72 |
+
name="wikitext-2-raw-v1",
|
73 |
+
data_url=_DATA_URL + "/" + "wikitext-2-raw-v1.zip",
|
74 |
+
description="Raw level dataset: the raw tokens before the addition of <unk> tokens. "
|
75 |
+
"They should only be used for character level work or for creating newly derived datasets.",
|
76 |
+
),
|
77 |
+
]
|
78 |
+
|
79 |
+
def _info(self):
|
80 |
+
# TODO(wikitext): Specifies the datasets.DatasetInfo object
|
81 |
+
return datasets.DatasetInfo(
|
82 |
+
# This is the description that will appear on the datasets page.
|
83 |
+
description=_DESCRIPTION,
|
84 |
+
# datasets.features.FeatureConnectors
|
85 |
+
features=datasets.Features(
|
86 |
+
{
|
87 |
+
"text": datasets.Value("string")
|
88 |
+
# These are the features of your dataset like images, labels ...
|
89 |
+
}
|
90 |
+
),
|
91 |
+
# If there's a common (input, target) tuple from the features,
|
92 |
+
# specify them here. They'll be used if as_supervised=True in
|
93 |
+
# builder.as_dataset.
|
94 |
+
supervised_keys=None,
|
95 |
+
homepage=_HOMEPAGE,
|
96 |
+
license=_LICENSE,
|
97 |
+
citation=_CITATION,
|
98 |
+
)
|
99 |
+
|
100 |
+
def _split_generators(self, dl_manager):
|
101 |
+
"""Returns SplitGenerators."""
|
102 |
+
# TODO(wikitext): Downloads the data and defines the splits
|
103 |
+
# dl_manager is a datasets.download.DownloadManager that can be used to
|
104 |
+
# download and extract URLs
|
105 |
+
if self.config.name == "wikitext-103-v1":
|
106 |
+
data_file = dl_manager.download_and_extract(self.config.data_url)
|
107 |
+
data_dir = os.path.join(data_file, "wikitext-103")
|
108 |
+
return [
|
109 |
+
datasets.SplitGenerator(
|
110 |
+
name=datasets.Split.TEST,
|
111 |
+
gen_kwargs={"data_file": os.path.join(data_dir, "wiki.test.tokens"), "split": "test"},
|
112 |
+
),
|
113 |
+
datasets.SplitGenerator(
|
114 |
+
name=datasets.Split.TRAIN,
|
115 |
+
gen_kwargs={"data_file": os.path.join(data_dir, "wiki.train.tokens"), "split": "train"},
|
116 |
+
),
|
117 |
+
datasets.SplitGenerator(
|
118 |
+
name=datasets.Split.VALIDATION,
|
119 |
+
gen_kwargs={"data_file": os.path.join(data_dir, "wiki.valid.tokens"), "split": "valid"},
|
120 |
+
),
|
121 |
+
]
|
122 |
+
else:
|
123 |
+
if self.config.name == "wikitext-103-raw-v1":
|
124 |
+
data_file = dl_manager.download_and_extract(self.config.data_url)
|
125 |
+
data_dir = os.path.join(data_file, "wikitext-103-raw")
|
126 |
+
return [
|
127 |
+
datasets.SplitGenerator(
|
128 |
+
name=datasets.Split.TEST,
|
129 |
+
gen_kwargs={"data_file": os.path.join(data_dir, "wiki.test.raw"), "split": "test"},
|
130 |
+
),
|
131 |
+
datasets.SplitGenerator(
|
132 |
+
name=datasets.Split.TRAIN,
|
133 |
+
gen_kwargs={"data_file": os.path.join(data_dir, "wiki.train.raw"), "split": "train"},
|
134 |
+
),
|
135 |
+
datasets.SplitGenerator(
|
136 |
+
name=datasets.Split.VALIDATION,
|
137 |
+
gen_kwargs={"data_file": os.path.join(data_dir, "wiki.valid.raw"), "split": "valid"},
|
138 |
+
),
|
139 |
+
]
|
140 |
+
else:
|
141 |
+
if self.config.name == "wikitext-2-raw-v1":
|
142 |
+
data_file = dl_manager.download_and_extract(self.config.data_url)
|
143 |
+
data_dir = os.path.join(data_file, "wikitext-2-raw")
|
144 |
+
return [
|
145 |
+
datasets.SplitGenerator(
|
146 |
+
name=datasets.Split.TEST,
|
147 |
+
gen_kwargs={"data_file": os.path.join(data_dir, "wiki.test.raw"), "split": "test"},
|
148 |
+
),
|
149 |
+
datasets.SplitGenerator(
|
150 |
+
name=datasets.Split.TRAIN,
|
151 |
+
gen_kwargs={"data_file": os.path.join(data_dir, "wiki.train.raw"), "split": "train"},
|
152 |
+
),
|
153 |
+
datasets.SplitGenerator(
|
154 |
+
name=datasets.Split.VALIDATION,
|
155 |
+
gen_kwargs={"data_file": os.path.join(data_dir, "wiki.valid.raw"), "split": "valid"},
|
156 |
+
),
|
157 |
+
]
|
158 |
+
else:
|
159 |
+
if self.config.name == "wikitext-2-v1":
|
160 |
+
data_file = dl_manager.download_and_extract(self.config.data_url)
|
161 |
+
data_dir = os.path.join(data_file, "wikitext-2")
|
162 |
+
return [
|
163 |
+
datasets.SplitGenerator(
|
164 |
+
name=datasets.Split.TEST,
|
165 |
+
gen_kwargs={"data_file": os.path.join(data_dir, "wiki.test.tokens"), "split": "test"},
|
166 |
+
),
|
167 |
+
datasets.SplitGenerator(
|
168 |
+
name=datasets.Split.TRAIN,
|
169 |
+
gen_kwargs={
|
170 |
+
"data_file": os.path.join(data_dir, "wiki.train.tokens"),
|
171 |
+
"split": "train",
|
172 |
+
},
|
173 |
+
),
|
174 |
+
datasets.SplitGenerator(
|
175 |
+
name=datasets.Split.VALIDATION,
|
176 |
+
gen_kwargs={
|
177 |
+
"data_file": os.path.join(data_dir, "wiki.valid.tokens"),
|
178 |
+
"split": "valid",
|
179 |
+
},
|
180 |
+
),
|
181 |
+
]
|
182 |
+
|
183 |
+
def _generate_examples(self, data_file, split):
|
184 |
+
|
185 |
+
"""Yields examples."""
|
186 |
+
# TODO(wikitext): Yields (key, example) tuples from the dataset
|
187 |
+
with open(data_file, encoding="utf-8") as f:
|
188 |
+
for idx, row in enumerate(f):
|
189 |
+
if row.strip():
|
190 |
+
yield idx, {"text": row}
|
191 |
+
else:
|
192 |
+
yield idx, {"text": ""}
|