|
"""Mímir Core v1 dataset.""" |
|
import gzip |
|
import json |
|
import datasets |
|
|
|
logger = datasets.logging.get_logger(__name__) |
|
_DESCRIPTION = """\\nMímir Core v1.""" |
|
_CITATION = """ |
|
""" |
|
_URL = "https://github.com/NbAiLab/mimir-data" |
|
_DATA_URL = "https://huggingface.co/datasets/mimir-project/mimir-core/resolve/main/data/{split_suffix}-{segment}-{index:04d}-of-{n_shards:04d}.json" |
|
_N_SHARDS_PER_SPLIT = { |
|
"bad": {"train": 6, "validation": 1}, |
|
"medium": {"train": 21, "validation": 1}, |
|
"good": {"train": 7, "validation": 1}, |
|
} |
|
_SEGMENTS = ("bad", "medium", "good") |
|
|
|
|
|
class MimirCoreConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for MimirCore.""" |
|
|
|
def __init__(self, name=None, *args, **kwargs): |
|
"""BuilderConfig for MimirCore. |
|
Args: |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
if name is None: |
|
name = "default" |
|
elif name not in _SEGMENTS: |
|
raise ValueError(f"Invalid segment option '{name}'. Options are {str(_SEGMENTS)}.") |
|
self.name = name |
|
super().__init__( |
|
*args, |
|
name=name, |
|
**kwargs, |
|
) |
|
|
|
|
|
class MimirCore(datasets.GeneratorBasedBuilder): |
|
"""Mimir Core v1.""" |
|
BUILDER_CONFIGS = [MimirCoreConfig()] + [MimirCoreConfig(segment) for segment in _SEGMENTS] |
|
BUILDER_CONFIG_CLASS = MimirCoreConfig |
|
DEFAULT_CONFIG_NAME = "default" |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"doc_type": datasets.Value("string"), |
|
"publish_year": datasets.Value("int32"), |
|
"lang_fasttext": datasets.Value("string"), |
|
"lang_fasttext_conf": datasets.Value("string"), |
|
"text": datasets.Value("string"), |
|
"perplexity": datasets.Value("float"), |
|
"perplexity_model": datasets.Value("string"), |
|
"harmful_pp": datasets.Value("float"), |
|
"segment": datasets.Value("string"), |
|
} |
|
), |
|
supervised_keys=None, |
|
homepage=_URL, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
if self.config.name != "default": |
|
segments = [self.config.name] |
|
else: |
|
segments = _SEGMENTS |
|
data_urls = {} |
|
for split in ["train", "validation"]: |
|
data_urls[split] = [] |
|
for segment in segments: |
|
data_urls[split] += [ |
|
_DATA_URL.format( |
|
split_suffix=split, |
|
segment=segment, |
|
index=index, |
|
n_shards=_N_SHARDS_PER_SPLIT[segment][split], |
|
) |
|
for index in range(1, _N_SHARDS_PER_SPLIT[segment][split] + 1) |
|
] |
|
train_downloaded_files = dl_manager.download(data_urls["train"]) |
|
validation_downloaded_files = dl_manager.download(data_urls["validation"]) |
|
|
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepaths": train_downloaded_files}), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, gen_kwargs={"filepaths": validation_downloaded_files} |
|
), |
|
|
|
] |
|
|
|
def _generate_examples(self, filepaths): |
|
"""This function returns the examples in the raw (text) form by iterating on all the files.""" |
|
id_ = 0 |
|
for filepath in filepaths: |
|
logger.info("generating examples from = %s", filepath) |
|
with open(filepath, "rb") as b, gzip.open(b, "rt", encoding="utf-8") as f: |
|
for line in f: |
|
if line.strip(): |
|
example = json.loads(line) |
|
yield id_, example |
|
id_ += 1 |
|
|