"""Mímir Core v1 dataset.""" import gzip import json import datasets logger = datasets.logging.get_logger(__name__) _DESCRIPTION = """\\nMímir Core v1.""" _CITATION = """ """ _URL = "https://github.com/NbAiLab/mimir-data" _DATA_URL = "https://huggingface.co/datasets/mimir-project/mimir-core/resolve/main/data/{split_suffix}-{segment}-{index:04d}-of-{n_shards:04d}.json" _N_SHARDS_PER_SPLIT = { "bad": {"train": 6, "validation": 1}, "medium": {"train": 21, "validation": 1}, "good": {"train": 7, "validation": 1}, } _SEGMENTS = ("bad", "medium", "good") class MimirCoreConfig(datasets.BuilderConfig): """BuilderConfig for MimirCore.""" def __init__(self, name=None, *args, **kwargs): """BuilderConfig for MimirCore. Args: **kwargs: keyword arguments forwarded to super. """ if name is None: name = "default" elif name not in _SEGMENTS: raise ValueError(f"Invalid segment option '{name}'. Options are {str(_SEGMENTS)}.") self.name = name super().__init__( *args, name=name, **kwargs, ) class MimirCore(datasets.GeneratorBasedBuilder): """Mimir Core v1.""" BUILDER_CONFIGS = [MimirCoreConfig()] + [MimirCoreConfig(segment) for segment in _SEGMENTS] BUILDER_CONFIG_CLASS = MimirCoreConfig DEFAULT_CONFIG_NAME = "default" def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "id": datasets.Value("string"), "doc_type": datasets.Value("string"), "publish_year": datasets.Value("int32"), "lang_fasttext": datasets.Value("string"), "lang_fasttext_conf": datasets.Value("string"), "text": datasets.Value("string"), "perplexity": datasets.Value("float"), "perplexity_model": datasets.Value("string"), "harmful_pp": datasets.Value("float"), "segment": datasets.Value("string"), } ), supervised_keys=None, homepage=_URL, citation=_CITATION, ) def _split_generators(self, dl_manager): if self.config.name != "default": segments = [self.config.name] else: segments = _SEGMENTS data_urls = {} for split in ["train", "validation"]: data_urls[split] = [] for segment in segments: data_urls[split] += [ _DATA_URL.format( split_suffix=split, segment=segment, index=index, n_shards=_N_SHARDS_PER_SPLIT[segment][split], ) for index in range(1, _N_SHARDS_PER_SPLIT[segment][split] + 1) ] train_downloaded_files = dl_manager.download(data_urls["train"]) validation_downloaded_files = dl_manager.download(data_urls["validation"]) return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepaths": train_downloaded_files}), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={"filepaths": validation_downloaded_files} ), ] def _generate_examples(self, filepaths): """This function returns the examples in the raw (text) form by iterating on all the files.""" id_ = 0 for filepath in filepaths: logger.info("generating examples from = %s", filepath) with open(filepath, "rb") as b, gzip.open(b, "rt", encoding="utf-8") as f: for line in f: if line.strip(): example = json.loads(line) yield id_, example id_ += 1