A dataset for benchmarking keyphrase extraction and generation techniques from long document English scientific papers. For more details about the dataset please refer the original paper - .
Dataset Summary
Dataset Structure
Data Fields
- id: unique identifier of the document.
- sections: list of all the sections present in the document.
- sec_text: list of white space separated list of words present in each section.
- sec_bio_tags: list of BIO tags of white space separated list of words present in each section.
- extractive_keyphrases: List of all the present keyphrases.
- abstractive_keyphrase: List of all the absent keyphrases.
Data Splits
Split | #datapoints |
---|---|
Train-Small | 20,000 |
Train-Medium | 50,000 |
Train-Large | 90,019 |
Test | 3413 |
Validation | 3339 |
Usage
Small Dataset
from datasets import load_dataset
# get small dataset
dataset = load_dataset("midas/ldkp3k", "small")
def order_sections(sample):
"""
corrects the order in which different sections appear in the document.
resulting order is: title, abstract, other sections in the body
"""
sections = []
sec_text = []
sec_bio_tags = []
if "title" in sample["sections"]:
title_idx = sample["sections"].index("title")
sections.append(sample["sections"].pop(title_idx))
sec_text.append(sample["sec_text"].pop(title_idx))
sec_bio_tags.append(sample["sec_bio_tags"].pop(title_idx))
if "abstract" in sample["sections"]:
abstract_idx = sample["sections"].index("abstract")
sections.append(sample["sections"].pop(abstract_idx))
sec_text.append(sample["sec_text"].pop(abstract_idx))
sec_bio_tags.append(sample["sec_bio_tags"].pop(abstract_idx))
sections += sample["sections"]
sec_text += sample["sec_text"]
sec_bio_tags += sample["sec_bio_tags"]
return sections, sec_text, sec_bio_tags
# sample from the train split
print("Sample from train data split")
train_sample = dataset["train"][0]
sections, sec_text, sec_bio_tags = order_sections(train_sample)
print("Fields in the sample: ", [key for key in train_sample.keys()])
print("Section names: ", sections)
print("Tokenized Document: ", sec_text)
print("Document BIO Tags: ", sec_bio_tags)
print("Extractive/present Keyphrases: ", train_sample["extractive_keyphrases"])
print("Abstractive/absent Keyphrases: ", train_sample["abstractive_keyphrases"])
print("\n-----------\n")
# sample from the validation split
print("Sample from validation data split")
validation_sample = dataset["validation"][0]
sections, sec_text, sec_bio_tags = order_sections(validation_sample)
print("Fields in the sample: ", [key for key in validation_sample.keys()])
print("Section names: ", sections)
print("Tokenized Document: ", sec_text)
print("Document BIO Tags: ", sec_bio_tags)
print("Extractive/present Keyphrases: ", validation_sample["extractive_keyphrases"])
print("Abstractive/absent Keyphrases: ", validation_sample["abstractive_keyphrases"])
print("\n-----------\n")
# sample from the test split
print("Sample from test data split")
test_sample = dataset["test"][0]
sections, sec_text, sec_bio_tags = order_sections(test_sample)
print("Fields in the sample: ", [key for key in test_sample.keys()])
print("Section names: ", sections)
print("Tokenized Document: ", sec_text)
print("Document BIO Tags: ", sec_bio_tags)
print("Extractive/present Keyphrases: ", test_sample["extractive_keyphrases"])
print("Abstractive/absent Keyphrases: ", test_sample["abstractive_keyphrases"])
print("\n-----------\n")
Output
Medium Dataset
from datasets import load_dataset
# get medium dataset
dataset = load_dataset("midas/ldkp3k", "medium")
Large Dataset
from datasets import load_dataset
# get large dataset
dataset = load_dataset("midas/ldkp3k", "large")
Citation Information
Please cite the works below if you use this dataset in your work.
@article{mahata2022ldkp,
title={LDKP: A Dataset for Identifying Keyphrases from Long Scientific Documents},
author={Mahata, Debanjan and Agarwal, Naveen and Gautam, Dibya and Kumar, Amardeep and Parekh, Swapnil and Singla, Yaman Kumar and Acharya, Anish and Shah, Rajiv Ratn},
journal={arXiv preprint arXiv:2203.15349},
year={2022}
}
@article{lo2019s2orc,
title={S2ORC: The semantic scholar open research corpus},
author={Lo, Kyle and Wang, Lucy Lu and Neumann, Mark and Kinney, Rodney and Weld, Dan S},
journal={arXiv preprint arXiv:1911.02782},
year={2019}
}
@inproceedings{ccano2019keyphrase,
title={Keyphrase generation: A multi-aspect survey},
author={{\c{C}}ano, Erion and Bojar, Ond{\v{r}}ej},
booktitle={2019 25th Conference of Open Innovations Association (FRUCT)},
pages={85--94},
year={2019},
organization={IEEE}
}
@article{meng2017deep,
title={Deep keyphrase generation},
author={Meng, Rui and Zhao, Sanqiang and Han, Shuguang and He, Daqing and Brusilovsky, Peter and Chi, Yu},
journal={arXiv preprint arXiv:1704.06879},
year={2017}
}
Contributions
Thanks to @debanjanbhucs, @dibyaaaaax, @UmaGunturi and @ad6398 for adding this dataset