|
--- |
|
annotations_creators: |
|
- crowdsourced |
|
language_creators: |
|
- found |
|
language: |
|
- en |
|
license: |
|
- ms-pl |
|
multilinguality: |
|
- monolingual |
|
size_categories: |
|
- 10K<n<100K |
|
source_datasets: |
|
- original |
|
task_categories: |
|
- question-answering |
|
task_ids: |
|
- extractive-qa |
|
paperswithcode_id: null |
|
pretty_name: Microsoft Research Sequential Question Answering |
|
dataset_info: |
|
features: |
|
- name: id |
|
dtype: string |
|
- name: annotator |
|
dtype: int32 |
|
- name: position |
|
dtype: int32 |
|
- name: question |
|
dtype: string |
|
- name: question_and_history |
|
sequence: string |
|
- name: table_file |
|
dtype: string |
|
- name: table_header |
|
sequence: string |
|
- name: table_data |
|
sequence: |
|
sequence: string |
|
- name: answer_coordinates |
|
sequence: |
|
- name: row_index |
|
dtype: int32 |
|
- name: column_index |
|
dtype: int32 |
|
- name: answer_text |
|
sequence: string |
|
splits: |
|
- name: train |
|
num_bytes: 19732499 |
|
num_examples: 12276 |
|
- name: validation |
|
num_bytes: 3738331 |
|
num_examples: 2265 |
|
- name: test |
|
num_bytes: 5105873 |
|
num_examples: 3012 |
|
download_size: 4796932 |
|
dataset_size: 28576703 |
|
--- |
|
|
|
# Dataset Card for Microsoft Research Sequential Question Answering |
|
|
|
## Table of Contents |
|
- [Dataset Description](#dataset-description) |
|
- [Dataset Summary](#dataset-summary) |
|
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) |
|
- [Languages](#languages) |
|
- [Dataset Structure](#dataset-structure) |
|
- [Data Instances](#data-instances) |
|
- [Data Fields](#data-fields) |
|
- [Data Splits](#data-splits) |
|
- [Dataset Creation](#dataset-creation) |
|
- [Curation Rationale](#curation-rationale) |
|
- [Source Data](#source-data) |
|
- [Annotations](#annotations) |
|
- [Personal and Sensitive Information](#personal-and-sensitive-information) |
|
- [Considerations for Using the Data](#considerations-for-using-the-data) |
|
- [Social Impact of Dataset](#social-impact-of-dataset) |
|
- [Discussion of Biases](#discussion-of-biases) |
|
- [Other Known Limitations](#other-known-limitations) |
|
- [Additional Information](#additional-information) |
|
- [Dataset Curators](#dataset-curators) |
|
- [Licensing Information](#licensing-information) |
|
- [Citation Information](#citation-information) |
|
- [Contributions](#contributions) |
|
|
|
## Dataset Description |
|
|
|
- **Homepage:** [Microsoft Research Sequential Question Answering (SQA) Dataset](https://msropendata.com/datasets/b25190ed-0f59-47b1-9211-5962858142c2) |
|
- **Repository:** |
|
- **Paper:** [https://www.microsoft.com/en-us/research/wp-content/uploads/2017/05/acl17-dynsp.pdf](https://www.microsoft.com/en-us/research/wp-content/uploads/2017/05/acl17-dynsp.pdf) |
|
- **Leaderboard:** |
|
- **Point of Contact:** |
|
- Scott Wen-tau Yih scottyih@microsoft.com |
|
- Mohit Iyyer m.iyyer@gmail.com |
|
- Ming-Wei Chang minchang@microsoft.com |
|
|
|
### Dataset Summary |
|
|
|
Recent work in semantic parsing for question answering has focused on long and complicated questions, many of which would seem unnatural if asked in a normal conversation between two humans. In an effort to explore a conversational QA setting, we present a more realistic task: answering sequences of simple but inter-related questions. |
|
|
|
We created SQA by asking crowdsourced workers to decompose 2,022 questions from WikiTableQuestions (WTQ)*, which contains highly-compositional questions about tables from Wikipedia. We had three workers decompose each WTQ question, resulting in a dataset of 6,066 sequences that contain 17,553 questions in total. Each question is also associated with answers in the form of cell locations in the tables. |
|
|
|
- Panupong Pasupat, Percy Liang. "Compositional Semantic Parsing on Semi-Structured Tables" ACL-2015. |
|
[http://www-nlp.stanford.edu/software/sempre/wikitable/](http://www-nlp.stanford.edu/software/sempre/wikitable/) |
|
|
|
### Supported Tasks and Leaderboards |
|
|
|
[More Information Needed] |
|
|
|
### Languages |
|
|
|
English (`en`). |
|
|
|
## Dataset Structure |
|
|
|
### Data Instances |
|
|
|
``` |
|
{'id': 'nt-639', |
|
'annotator': 0, |
|
'position': 0, |
|
'question': 'where are the players from?', |
|
'table_file': 'table_csv/203_149.csv', |
|
'table_header': ['Pick', 'Player', 'Team', 'Position', 'School'], |
|
'table_data': [['1', |
|
'Ben McDonald', |
|
'Baltimore Orioles', |
|
'RHP', |
|
'Louisiana State University'], |
|
['2', |
|
'Tyler Houston', |
|
'Atlanta Braves', |
|
'C', |
|
'"Valley HS (Las Vegas', |
|
' NV)"'], |
|
['3', 'Roger Salkeld', 'Seattle Mariners', 'RHP', 'Saugus (CA) HS'], |
|
['4', |
|
'Jeff Jackson', |
|
'Philadelphia Phillies', |
|
'OF', |
|
'"Simeon HS (Chicago', |
|
' IL)"'], |
|
['5', 'Donald Harris', 'Texas Rangers', 'OF', 'Texas Tech University'], |
|
['6', 'Paul Coleman', 'Saint Louis Cardinals', 'OF', 'Frankston (TX) HS'], |
|
['7', 'Frank Thomas', 'Chicago White Sox', '1B', 'Auburn University'], |
|
['8', 'Earl Cunningham', 'Chicago Cubs', 'OF', 'Lancaster (SC) HS'], |
|
['9', |
|
'Kyle Abbott', |
|
'California Angels', |
|
'LHP', |
|
'Long Beach State University'], |
|
['10', |
|
'Charles Johnson', |
|
'Montreal Expos', |
|
'C', |
|
'"Westwood HS (Fort Pierce', |
|
' FL)"'], |
|
['11', |
|
'Calvin Murray', |
|
'Cleveland Indians', |
|
'3B', |
|
'"W.T. White High School (Dallas', |
|
' TX)"'], |
|
['12', 'Jeff Juden', 'Houston Astros', 'RHP', 'Salem (MA) HS'], |
|
['13', 'Brent Mayne', 'Kansas City Royals', 'C', 'Cal State Fullerton'], |
|
['14', |
|
'Steve Hosey', |
|
'San Francisco Giants', |
|
'OF', |
|
'Fresno State University'], |
|
['15', |
|
'Kiki Jones', |
|
'Los Angeles Dodgers', |
|
'RHP', |
|
'"Hillsborough HS (Tampa', |
|
' FL)"'], |
|
['16', 'Greg Blosser', 'Boston Red Sox', 'OF', 'Sarasota (FL) HS'], |
|
['17', 'Cal Eldred', 'Milwaukee Brewers', 'RHP', 'University of Iowa'], |
|
['18', |
|
'Willie Greene', |
|
'Pittsburgh Pirates', |
|
'SS', |
|
'"Jones County HS (Gray', |
|
' GA)"'], |
|
['19', 'Eddie Zosky', 'Toronto Blue Jays', 'SS', 'Fresno State University'], |
|
['20', 'Scott Bryant', 'Cincinnati Reds', 'OF', 'University of Texas'], |
|
['21', 'Greg Gohr', 'Detroit Tigers', 'RHP', 'Santa Clara University'], |
|
['22', |
|
'Tom Goodwin', |
|
'Los Angeles Dodgers', |
|
'OF', |
|
'Fresno State University'], |
|
['23', 'Mo Vaughn', 'Boston Red Sox', '1B', 'Seton Hall University'], |
|
['24', 'Alan Zinter', 'New York Mets', 'C', 'University of Arizona'], |
|
['25', 'Chuck Knoblauch', 'Minnesota Twins', '2B', 'Texas A&M University'], |
|
['26', 'Scott Burrell', 'Seattle Mariners', 'RHP', 'Hamden (CT) HS']], |
|
'answer_coordinates': {'row_index': [0, |
|
1, |
|
2, |
|
3, |
|
4, |
|
5, |
|
6, |
|
7, |
|
8, |
|
9, |
|
10, |
|
11, |
|
12, |
|
13, |
|
14, |
|
15, |
|
16, |
|
17, |
|
18, |
|
19, |
|
20, |
|
21, |
|
22, |
|
23, |
|
24, |
|
25], |
|
'column_index': [4, |
|
4, |
|
4, |
|
4, |
|
4, |
|
4, |
|
4, |
|
4, |
|
4, |
|
4, |
|
4, |
|
4, |
|
4, |
|
4, |
|
4, |
|
4, |
|
4, |
|
4, |
|
4, |
|
4, |
|
4, |
|
4, |
|
4, |
|
4, |
|
4, |
|
4]}, |
|
'answer_text': ['Louisiana State University', |
|
'Valley HS (Las Vegas, NV)', |
|
'Saugus (CA) HS', |
|
'Simeon HS (Chicago, IL)', |
|
'Texas Tech University', |
|
'Frankston (TX) HS', |
|
'Auburn University', |
|
'Lancaster (SC) HS', |
|
'Long Beach State University', |
|
'Westwood HS (Fort Pierce, FL)', |
|
'W.T. White High School (Dallas, TX)', |
|
'Salem (MA) HS', |
|
'Cal State Fullerton', |
|
'Fresno State University', |
|
'Hillsborough HS (Tampa, FL)', |
|
'Sarasota (FL) HS', |
|
'University of Iowa', |
|
'Jones County HS (Gray, GA)', |
|
'Fresno State University', |
|
'University of Texas', |
|
'Santa Clara University', |
|
'Fresno State University', |
|
'Seton Hall University', |
|
'University of Arizona', |
|
'Texas A&M University', |
|
'Hamden (CT) HS']} |
|
``` |
|
|
|
### Data Fields |
|
|
|
- `id` (`str`): question sequence id (the id is consistent with those in WTQ) |
|
- `annotator` (`int`): `0`, `1`, `2` (the 3 annotators who annotated the question intent) |
|
- `position` (`int`): the position of the question in the sequence |
|
- `question` (`str`): the question given by the annotator |
|
- `table_file` (`str`): the associated table |
|
- `table_header` (`List[str]`): a list of headers in the table |
|
- `table_data` (`List[List[str]]`): 2d array of data in the table |
|
- `answer_coordinates` (`List[Dict]`): the table cell coordinates of the answers (0-based, where 0 is the first row after the table header) |
|
- `row_index` |
|
- `column_index` |
|
- `answer_text` (`List[str]`): the content of the answer cells |
|
|
|
Note that some text fields may contain Tab or LF characters and thus start with quotes. |
|
It is recommended to use a CSV parser like the Python CSV package to process the data. |
|
|
|
### Data Splits |
|
|
|
|
|
| | train | test | |
|
|-------------|------:|-----:| |
|
| N. examples | 14541 | 3012 | |
|
|
|
|
|
## Dataset Creation |
|
|
|
### Curation Rationale |
|
|
|
[More Information Needed] |
|
|
|
### Source Data |
|
|
|
#### Initial Data Collection and Normalization |
|
|
|
[More Information Needed] |
|
|
|
#### Who are the source language producers? |
|
|
|
[More Information Needed] |
|
|
|
### Annotations |
|
|
|
#### Annotation process |
|
|
|
[More Information Needed] |
|
|
|
#### Who are the annotators? |
|
|
|
[More Information Needed] |
|
|
|
### Personal and Sensitive Information |
|
|
|
[More Information Needed] |
|
|
|
## Considerations for Using the Data |
|
|
|
### Social Impact of Dataset |
|
|
|
[More Information Needed] |
|
|
|
### Discussion of Biases |
|
|
|
[More Information Needed] |
|
|
|
### Other Known Limitations |
|
|
|
[More Information Needed] |
|
|
|
## Additional Information |
|
|
|
### Dataset Curators |
|
|
|
[More Information Needed] |
|
|
|
### Licensing Information |
|
|
|
[Microsoft Research Data License Agreement](https://msropendata-web-api.azurewebsites.net/licenses/2f933be3-284d-500b-7ea3-2aa2fd0f1bb2/view). |
|
|
|
### Citation Information |
|
|
|
``` |
|
@inproceedings{iyyer-etal-2017-search, |
|
title = "Search-based Neural Structured Learning for Sequential Question Answering", |
|
author = "Iyyer, Mohit and |
|
Yih, Wen-tau and |
|
Chang, Ming-Wei", |
|
booktitle = "Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)", |
|
month = jul, |
|
year = "2017", |
|
address = "Vancouver, Canada", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://aclanthology.org/P17-1167", |
|
doi = "10.18653/v1/P17-1167", |
|
pages = "1821--1831", |
|
} |
|
|
|
``` |
|
|
|
### Contributions |
|
|
|
Thanks to [@mattbui](https://github.com/mattbui) for adding this dataset. |