jpcorb20 commited on
Commit
beba983
·
verified ·
1 Parent(s): 9131095

Create simord_hf_loader.py

Browse files
Files changed (1) hide show
  1. simord_hf_loader.py +268 -0
simord_hf_loader.py ADDED
@@ -0,0 +1,268 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # simord_hf_loader.py
2
+ # HF Datasets loader that uses mediqa-oe.data.process_data.attach_transcript_section
3
+ # to merge transcripts into local annotations: train, test1, test2.
4
+ #
5
+ # Dataset license: CDLA-2.0-permissive (for SIMORD). Respect upstream source licenses.
6
+ #
7
+ # Requirements:
8
+ # pip install datasets nltk requests
9
+ # pip install -e /path/to/mediqa-oe # or add repo to PYTHONPATH
10
+ #
11
+ # Usage:
12
+ # from datasets import load_dataset
13
+ # ds = load_dataset(
14
+ # "path/to/simord_hf_loader.py",
15
+ # data_dir="path/to/annotations_dir", # with train.json, test1.json, test2.json (lists of dicts)
16
+ # )
17
+ # print(ds)
18
+ #
19
+ # The loader will auto-download ACI-Bench and PriMock57 from GitHub to create transcript_dict.
20
+
21
+ import json
22
+ import os
23
+ import re
24
+ from typing import Dict, Iterable, List, Tuple
25
+
26
+ import datasets
27
+ import nltk
28
+
29
+ # Ensure sentence tokenizer needed by mediqa-oe code is available
30
+ try:
31
+ nltk.data.find("tokenizers/punkt_tab")
32
+ except LookupError:
33
+ nltk.download("punkt_tab")
34
+
35
+ # ---- Import the exact merge function from your repo ----
36
+ # (Relies on your local mediqa-oe being importable)
37
+ from mediqa_oe.data.process_data import attach_transcript_section # noqa: E402
38
+
39
+ # ---- Sources (same as your script) ----
40
+ ACI_BENCH_URL = "https://github.com/wyim/aci-bench/archive/refs/heads/main.zip"
41
+ PRIMOCK_URL = "https://github.com/babylonhealth/primock57/archive/refs/heads/main.zip"
42
+
43
+ _DESCRIPTION = """\
44
+ SIMORD loader that merges transcripts from ACI-Bench and PriMock57 into local annotations
45
+ using mediqa-oe.data.process_data.attach_transcript_section.
46
+ """
47
+ _CITATION = r"""@article{corbeil2025empowering,
48
+ title={Empowering Healthcare Practitioners with Language Models: Structuring Speech Transcripts in Two Real-World Clinical Applications},
49
+ author={Corbeil, Jean-Philippe and Ben Abacha, Asma and Michalopoulos, George and Swazinna, Patrick and Del-Agua, Miguel and Tremblay, Julien and Jeeson Daniel, Aju and Bader, Corey and Cho, Yoon-Chan and Krishnan, Parvathi and Bodenstab, Nathan and Lin, Tony and Teng, Wen and Beaulieu, Francois and Vozila, Paul},
50
+ journal={arXiv preprint arXiv:2507.05517},
51
+ year={2025}
52
+ }"""
53
+ _LICENSE = "CDLA-2.0-permissive"
54
+ _HOMEPAGE = "https://huggingface.co/datasets/<your-org>/SIMORD"
55
+
56
+ # ----------------------- helpers to read upstream transcripts -----------------------
57
+
58
+ def _walk_json_files(directory: str) -> List[str]:
59
+ out = []
60
+ for d, _, files in os.walk(directory):
61
+ for fn in files:
62
+ if fn.lower().endswith(".json"):
63
+ out.append(os.path.join(d, fn))
64
+ out.sort()
65
+ return out
66
+
67
+ def _read_json_records(path: str) -> Iterable[dict]:
68
+ with open(path, "r", encoding="utf-8") as f:
69
+ data = json.load(f)
70
+ if isinstance(data, dict) and "data" in data and isinstance(data["data"], list):
71
+ for r in data["data"]:
72
+ yield r
73
+ elif isinstance(data, list):
74
+ for r in data:
75
+ yield r
76
+ else:
77
+ # single dict record
78
+ yield data
79
+
80
+ def _normalize_id_from_aci(file_field: str, basename: str) -> str:
81
+ # matches your script:
82
+ # file_id = "_".join(d.get("file", "").split("-")[0:2])
83
+ # transcript_id = "acibench_" + file_id + "_" + basename
84
+ file_id = "_".join((file_field or "").split("-")[0:2])
85
+ return f"acibench_{file_id}_{basename}"
86
+
87
+ def _build_aci_transcript_dict(root: str) -> Dict[str, dict]:
88
+ """
89
+ Mirror of read_aci_bench_data + walk_aci_bench_directory:
90
+ looks in .../aci-bench-main/data/challenge_data_json and .../src_experiment_data_json
91
+ and builds {transcript_id: {"transcript": <src_text>}}
92
+ """
93
+ tdict: Dict[str, dict] = {}
94
+ base = None
95
+ # Find the 'aci-bench-main' folder inside root
96
+ for name in os.listdir(root):
97
+ if name.startswith("aci-bench"):
98
+ base = os.path.join(root, name)
99
+ break
100
+ if not base:
101
+ return tdict
102
+
103
+ for sub in ("data/challenge_data_json", "data/src_experiment_data_json"):
104
+ p = os.path.join(base, sub)
105
+ if not os.path.isdir(p):
106
+ continue
107
+ for fp in _walk_json_files(p):
108
+ basename = os.path.splitext(os.path.basename(fp))[0]
109
+ for rec in _read_json_records(fp):
110
+ src = rec.get("src")
111
+ file_field = rec.get("file", "")
112
+ tid = _normalize_id_from_aci(file_field, basename)
113
+ if src:
114
+ tdict[tid] = {"transcript": src}
115
+ return tdict
116
+
117
+ def _read_text(path: str) -> str:
118
+ with open(path, "r", encoding="utf-8") as f:
119
+ return f.read()
120
+
121
+ def _normalize_primock_id(stem: str) -> str:
122
+ # replicate replacements used in your script:
123
+ # primock_id = filename.replace("day", "primock57_")
124
+ # primock_id = primock_id.replace("consultation0", "")
125
+ # primock_id = primock_id.replace("consultation", "")
126
+ s = stem
127
+ s = s.replace("day", "primock57_")
128
+ s = s.replace("consultation0", "")
129
+ s = s.replace("consultation", "")
130
+ return s
131
+
132
+ def _build_primock_transcript_dict(root: str) -> Dict[str, dict]:
133
+ """
134
+ Mirror of read_primock_data post-conversion:
135
+ reads *.txt in primock57-main/transcripts and applies the same tag normalization.
136
+ """
137
+ tdict: Dict[str, dict] = {}
138
+ base = None
139
+ for name in os.listdir(root):
140
+ if name.startswith("primock57"):
141
+ base = os.path.join(root, name)
142
+ break
143
+ if not base:
144
+ return tdict
145
+
146
+ tx_dir = os.path.join(base, "transcripts")
147
+ if not os.path.isdir(tx_dir):
148
+ # If transcripts haven't been generated yet by upstream script, we skip.
149
+ return tdict
150
+
151
+ for fn in os.listdir(tx_dir):
152
+ if not fn.lower().endswith(".txt"):
153
+ continue
154
+ fp = os.path.join(tx_dir, fn)
155
+ lines = [ln.strip() for ln in _read_text(fp).splitlines() if ln.strip()]
156
+ norm = []
157
+ for line in lines:
158
+ line = line.replace("Doctor:", "[doctor]").replace("Patient:", "[patient]")
159
+ norm.append(line)
160
+ stem = os.path.splitext(fn)[0]
161
+ primock_id = _normalize_primock_id(stem)
162
+ tdict[primock_id] = {"transcript": "\n".join(norm)}
163
+ return tdict
164
+
165
+ def _load_annotations(path: str) -> List[dict]:
166
+ # Expect a JSON array (list of dicts). If JSONL, we also handle it gracefully.
167
+ if path.lower().endswith((".jsonl", ".ndjson")):
168
+ out = []
169
+ with open(path, "r", encoding="utf-8") as f:
170
+ for line in f:
171
+ line = line.strip()
172
+ if line:
173
+ out.append(json.loads(line))
174
+ return out
175
+ with open(path, "r", encoding="utf-8") as f:
176
+ data = json.load(f)
177
+ if isinstance(data, list):
178
+ return data
179
+ raise ValueError(f"{path} must be a JSON list (or JSONL).")
180
+
181
+ # ----------------------- HF builder -----------------------
182
+
183
+ class SimordMergeConfig(datasets.BuilderConfig):
184
+ def __init__(self, **kwargs):
185
+ super().__init__(version=datasets.Version("1.0.0"), **kwargs)
186
+
187
+ class SimordMerge(datasets.GeneratorBasedBuilder):
188
+ BUILDER_CONFIGS = [
189
+ SimordMergeConfig(
190
+ name="default",
191
+ description="SIMORD with transcripts merged via attach_transcript_section from mediqa-oe.",
192
+ )
193
+ ]
194
+ DEFAULT_CONFIG_NAME = "default"
195
+
196
+ def _info(self) -> datasets.DatasetInfo:
197
+ # We expose a compact schema:
198
+ # - id
199
+ # - transcript: sequence of {turn_id, speaker, transcript}
200
+ # - raw: JSON string dump of the full (possibly augmented) annotation record
201
+ features = datasets.Features(
202
+ {
203
+ "id": datasets.Value("string"),
204
+ "transcript": datasets.Sequence(
205
+ {
206
+ "turn_id": datasets.Value("int32"),
207
+ "speaker": datasets.Value("string"),
208
+ "transcript": datasets.Value("string"),
209
+ }
210
+ ),
211
+ "raw": datasets.Value("string"),
212
+ }
213
+ )
214
+ return datasets.DatasetInfo(
215
+ description=_DESCRIPTION,
216
+ features=features,
217
+ homepage=_HOMEPAGE,
218
+ license=_LICENSE,
219
+ citation=_CITATION,
220
+ )
221
+
222
+ def _split_generators(self, dl_manager: datasets.DownloadManager):
223
+ data_dir = self.config.data_dir or os.getcwd()
224
+
225
+ # Local annotations (lists of dicts with at least an "id")
226
+ train_path = os.path.join(data_dir, "train.json")
227
+ test1_path = os.path.join(data_dir, "test1.json")
228
+ test2_path = os.path.join(data_dir, "test2.json")
229
+
230
+ for p in (train_path, test1_path, test2_path):
231
+ if not os.path.isfile(p):
232
+ raise FileNotFoundError(f"Expected annotation file: {p}")
233
+
234
+ # Download & extract upstream sources (same URLs your script uses)
235
+ aci_dir = dl_manager.download_and_extract(ACI_BENCH_URL)
236
+ primock_dir = dl_manager.download_and_extract(PRIMOCK_URL)
237
+
238
+ # Build transcript_dict exactly like your script would
239
+ transcript_dict: Dict[str, dict] = {}
240
+ transcript_dict.update(_build_aci_transcript_dict(aci_dir))
241
+ transcript_dict.update(_build_primock_transcript_dict(primock_dir))
242
+
243
+ # Stash for use in _generate_examples
244
+ self._transcript_dict = transcript_dict
245
+
246
+ return [
247
+ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"ann_path": train_path}),
248
+ datasets.SplitGenerator(name="test1", gen_kwargs={"ann_path": test1_path}),
249
+ datasets.SplitGenerator(name="test2", gen_kwargs={"ann_path": test2_path}),
250
+ ]
251
+
252
+ def _generate_examples(self, ann_path: str):
253
+ # Load the annotation list and call your function to attach transcripts
254
+ section = _load_annotations(ann_path)
255
+
256
+ # attach_transcript_section mutates in place, adding parsed turns to d["transcript"]
257
+ attach_transcript_section(section, self._transcript_dict)
258
+
259
+ for idx, rec in enumerate(section):
260
+ rid = str(rec.get("id", idx))
261
+ turns = rec.get("transcript") or [] # now a list of {turn_id, speaker, transcript}
262
+ # Store the full augmented record in "raw" for maximum fidelity
263
+ raw_str = json.dumps(rec, ensure_ascii=False)
264
+ yield idx, {
265
+ "id": rid,
266
+ "transcript": turns,
267
+ "raw": raw_str,
268
+ }