|
|
|
import datasets |
|
from huggingface_hub import HfApi |
|
from datasets import DownloadManager, DatasetInfo |
|
from datasets.data_files import DataFilesDict |
|
import os |
|
import json |
|
|
|
|
|
|
|
_NAME = "mickylan2367/LoadingScriptPractice" |
|
_EXTENSION = [".png"] |
|
_REVISION = "main" |
|
|
|
|
|
|
|
_HOMEPAGE = "https://huggingface.co/datasets/mickylan2367/spectrogram_musicCaps" |
|
|
|
_DESCRIPTION = f"""\ |
|
{_NAME} Datasets including spectrogram.png file from Google MusicCaps Datasets! |
|
Using for Project Learning... |
|
""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class spectrogram_musicCapsConfig(datasets.BuilderConfig): |
|
"""Builder Config for spectrogram_MusicCaps""" |
|
|
|
def __init__(self, **kwargs): |
|
"""BuilderConfig |
|
Args: |
|
data_url: `string`, url to download the zip file from. |
|
metadata_urls: dictionary with keys 'train' and 'validation' containing the archive metadata URLs |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super(spectrogram_musicCapsConfig, self).__init__(version=datasets.Version("1.0.0"), **kwargs) |
|
|
|
|
|
|
|
class spectrogram_musicCaps(datasets.GeneratorBasedBuilder): |
|
|
|
|
|
BUILDER_CONFIGS = [ |
|
spectrogram_musicCapsConfig( |
|
name="MusicCaps data 0_10", |
|
description="Datasets from MusicCaps by Mikan", |
|
), |
|
|
|
|
|
|
|
|
|
|
|
] |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"image": datasets.Image(), |
|
"caption": datasets.Value("string"), |
|
"data_idx": datasets.Value("int32"), |
|
"number" : datasets.Value("int32"), |
|
"label" : datasets.Value("string") |
|
} |
|
), |
|
supervised_keys=("image", "caption", "data_idx", "number", "label"), |
|
homepage=_HOMEPAGE, |
|
|
|
|
|
|
|
) |
|
|
|
def _split_generators(self, dl_manager: DownloadManager): |
|
|
|
hfh_dataset_info = HfApi().dataset_info(_NAME, revision=_REVISION, timeout=100.0) |
|
|
|
split_metadata_paths = DataFilesDict.from_hf_repo( |
|
{datasets.Split.TRAIN: ["**"]}, |
|
dataset_info=hfh_dataset_info, |
|
allowed_extensions=["jsonl", ".jsonl"], |
|
) |
|
|
|
|
|
data_path = DataFilesDict.from_hf_repo( |
|
{datasets.Split.TRAIN: ["**"]}, |
|
dataset_info=hfh_dataset_info, |
|
allowed_extensions=["zip", ".zip"], |
|
) |
|
|
|
gs = [] |
|
for split, files in data_path.items(): |
|
''' |
|
split : "train" or "test" or "val" |
|
files : zip files |
|
''' |
|
|
|
split_metadata_path = dl_manager.download_and_extract(split_metadata_paths[split][0]) |
|
downloaded_files_path = dl_manager.download_and_extract(files) |
|
|
|
|
|
gs.append( |
|
datasets.SplitGenerator( |
|
name = split, |
|
gen_kwargs={ |
|
"images" : downloaded_files_path, |
|
"metadata_path": split_metadata_path |
|
} |
|
) |
|
) |
|
return gs |
|
|
|
def _generate_examples(self, images, metadata_path): |
|
"""Generate images and captions for splits.""" |
|
|
|
|
|
file_list = list() |
|
caption_list = list() |
|
dataIDX_list = list() |
|
num_list = list() |
|
label_list = list() |
|
|
|
with open(metadata_path) as fin: |
|
for line in fin: |
|
data = json.loads(line) |
|
file_list.append(data["file_name"]) |
|
caption_list.append(data["caption"]) |
|
dataIDX_list.append(data["data_idx"]) |
|
num_list.append(data["number"]) |
|
label_list.append(data["label"]) |
|
|
|
for idx, (file_path, file_obj) in enumerate(images): |
|
yield file_path, { |
|
"image": { |
|
"path": file_path, |
|
"bytes": file_obj.read() |
|
}, |
|
"caption" : caption_list[idx], |
|
"data_idx" : dataIDX_list[idx], |
|
"number" : num_list[idx], |
|
"label": label_list[idx] |
|
} |
|
|
|
|
|
|