michaelnetbiz commited on
Commit
910be04
1 Parent(s): f4b3ee0

Update scripts/prep_push_to_hf.py

Browse files
Files changed (1) hide show
  1. scripts/prep_push_to_hf.py +22 -22
scripts/prep_push_to_hf.py CHANGED
@@ -1,5 +1,5 @@
1
  #!/usr/bin/env python3
2
- import os
3
  from pathlib import Path
4
 
5
  import huggingface_hub
@@ -8,38 +8,38 @@ from datasets import Audio, Dataset
8
  import pandas as pd
9
 
10
  MAX_DURATION_IN_SECONDS = 10.0
 
11
 
12
 
13
  def duration_filter(item):
14
  return item < MAX_DURATION_IN_SECONDS
15
 
16
 
 
 
 
 
17
  repo_dir = Path(__file__).resolve().parent.parent
18
- data_dir = os.path.join(repo_dir, "data")
19
- kendex_dir = os.path.join(data_dir, "Kendex")
20
- audio_dir = os.path.join(kendex_dir, "wavs")
21
- metadata = os.path.join(kendex_dir, "metadata.csv")
22
-
23
- df = pd.read_csv(metadata, delimiter="|", header=None)
24
- audio = pd.Series([os.path.join(audio_dir, f"{f}.wav") for f in df[0]])
25
-
26
- dataset = Dataset.from_pandas(
27
- pd.DataFrame(
28
- {
29
- "audio": audio,
30
- "text": df[1],
31
- "duration": [librosa.get_duration(path=a) for a in audio],
32
- }
33
- )
34
  )
35
 
 
36
  dataset = dataset.cast_column("audio", Audio(sampling_rate=16_000))
37
-
38
- dataset = dataset.filter(
39
- lambda x: False if len(x) >= 500 else True, input_columns=["text"]
40
- )
41
  dataset = dataset.filter(duration_filter, input_columns=["duration"])
42
-
43
  dataset = dataset.remove_columns(["duration"])
44
 
45
  huggingface_hub.login()
 
1
  #!/usr/bin/env python3
2
+ from os.path import join
3
  from pathlib import Path
4
 
5
  import huggingface_hub
 
8
  import pandas as pd
9
 
10
  MAX_DURATION_IN_SECONDS = 10.0
11
+ MAX_LEN = 500
12
 
13
 
14
  def duration_filter(item):
15
  return item < MAX_DURATION_IN_SECONDS
16
 
17
 
18
+ def text_filter(item):
19
+ return len(item) < MAX_LEN
20
+
21
+
22
  repo_dir = Path(__file__).resolve().parent.parent
23
+ data_dir = join(repo_dir, "data")
24
+ kendex_dir = join(data_dir, "Kendex")
25
+ audio_dir = join(kendex_dir, "wavs")
26
+
27
+ metadata = pd.read_csv(join(kendex_dir, "metadata.csv"), delimiter="|", header=None)
28
+ wavs = pd.Series([join(audio_dir, f"{f}.wav") for f in metadata[0]])
29
+
30
+ df = pd.DataFrame(
31
+ {
32
+ "audio": wavs,
33
+ "file": wavs,
34
+ "text": wavs[1],
35
+ "duration": [librosa.get_duration(path=a) for a in wavs],
36
+ }
 
 
37
  )
38
 
39
+ dataset = Dataset.from_pandas(df)
40
  dataset = dataset.cast_column("audio", Audio(sampling_rate=16_000))
41
+ dataset = dataset.filter(text_filter, input_columns=["text"])
 
 
 
42
  dataset = dataset.filter(duration_filter, input_columns=["duration"])
 
43
  dataset = dataset.remove_columns(["duration"])
44
 
45
  huggingface_hub.login()