Datasets:
michaelnetbiz
commited on
Commit
•
230f31f
1
Parent(s):
d20c778
More text cleaning stuff
Browse files- kendex/leviticus.py +55 -56
- kendex/prep_push_to_hf.py +28 -13
kendex/leviticus.py
CHANGED
@@ -1,72 +1,69 @@
|
|
1 |
-
"""
|
2 |
-
text normalization functions
|
3 |
-
"""
|
4 |
-
|
5 |
from unidecode import unidecode
|
6 |
import inflect
|
7 |
import re
|
8 |
|
9 |
_inflect = inflect.engine()
|
10 |
-
_comma_number_re = re.compile(r
|
11 |
-
_decimal_number_re = re.compile(r
|
12 |
-
_pounds_re = re.compile(r
|
13 |
-
_dollars_re = re.compile(r
|
14 |
-
_ordinal_re = re.compile(r
|
15 |
-
_number_re = re.compile(r
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
]
|
41 |
|
42 |
|
43 |
def _remove_commas(m):
|
44 |
-
return m.group(1).replace(
|
45 |
|
46 |
|
47 |
def _expand_decimal_point(m):
|
48 |
-
return m.group(1).replace(
|
49 |
|
50 |
|
51 |
def _expand_dollars(m):
|
52 |
match = m.group(1)
|
53 |
-
parts = match.split(
|
54 |
if len(parts) > 2:
|
55 |
-
return match +
|
|
|
56 |
dollars = int(parts[0]) if parts[0] else 0
|
57 |
cents = int(parts[1]) if len(parts) > 1 and parts[1] else 0
|
58 |
if dollars and cents:
|
59 |
-
dollar_unit =
|
60 |
-
cent_unit =
|
61 |
-
return
|
62 |
elif dollars:
|
63 |
-
dollar_unit =
|
64 |
-
return
|
65 |
elif cents:
|
66 |
-
cent_unit =
|
67 |
-
return
|
68 |
else:
|
69 |
-
return
|
70 |
|
71 |
|
72 |
def _expand_ordinal(m):
|
@@ -75,22 +72,24 @@ def _expand_ordinal(m):
|
|
75 |
|
76 |
def _expand_number(m):
|
77 |
num = int(m.group(0))
|
78 |
-
if
|
79 |
if num == 2000:
|
80 |
-
return
|
81 |
-
elif
|
82 |
-
return
|
83 |
elif num % 100 == 0:
|
84 |
-
return _inflect.number_to_words(num // 100) +
|
85 |
else:
|
86 |
-
return _inflect.number_to_words(
|
|
|
|
|
87 |
else:
|
88 |
-
return _inflect.number_to_words(num, andword=
|
89 |
|
90 |
|
91 |
def normalize_numbers(text):
|
92 |
text = re.sub(_comma_number_re, _remove_commas, text)
|
93 |
-
text = re.sub(_pounds_re, r
|
94 |
text = re.sub(_dollars_re, _expand_dollars, text)
|
95 |
text = re.sub(_decimal_number_re, _expand_decimal_point, text)
|
96 |
text = re.sub(_ordinal_re, _expand_ordinal, text)
|
@@ -109,7 +108,7 @@ def expand_numbers(text):
|
|
109 |
|
110 |
|
111 |
def collapse_whitespace(text):
|
112 |
-
return re.sub(_whitespace_re,
|
113 |
|
114 |
|
115 |
def convert_to_ascii(text):
|
|
|
|
|
|
|
|
|
|
|
1 |
from unidecode import unidecode
|
2 |
import inflect
|
3 |
import re
|
4 |
|
5 |
_inflect = inflect.engine()
|
6 |
+
_comma_number_re = re.compile(r"([0-9][0-9\,]+[0-9])")
|
7 |
+
_decimal_number_re = re.compile(r"([0-9]+\.[0-9]+)")
|
8 |
+
_pounds_re = re.compile(r"£([0-9\,]*[0-9]+)")
|
9 |
+
_dollars_re = re.compile(r"\$([0-9\.\,]*[0-9]+)")
|
10 |
+
_ordinal_re = re.compile(r"[0-9]+(st|nd|rd|th)")
|
11 |
+
_number_re = re.compile(r"[0-9]+")
|
12 |
+
|
13 |
+
_whitespace_re = re.compile(r"\s+")
|
14 |
+
_abbreviations = [
|
15 |
+
(re.compile("\\b%s\\." % x[0], re.IGNORECASE), x[1])
|
16 |
+
for x in [
|
17 |
+
("mrs", "misess"),
|
18 |
+
("mr", "mister"),
|
19 |
+
("dr", "doctor"),
|
20 |
+
("st", "saint"),
|
21 |
+
("co", "company"),
|
22 |
+
("jr", "junior"),
|
23 |
+
("maj", "major"),
|
24 |
+
("gen", "general"),
|
25 |
+
("drs", "doctors"),
|
26 |
+
("rev", "reverend"),
|
27 |
+
("lt", "lieutenant"),
|
28 |
+
("hon", "honorable"),
|
29 |
+
("sgt", "sergeant"),
|
30 |
+
("capt", "captain"),
|
31 |
+
("esq", "esquire"),
|
32 |
+
("ltd", "limited"),
|
33 |
+
("col", "colonel"),
|
34 |
+
("ft", "fort"),
|
35 |
+
]
|
36 |
+
]
|
37 |
|
38 |
|
39 |
def _remove_commas(m):
|
40 |
+
return m.group(1).replace(",", "")
|
41 |
|
42 |
|
43 |
def _expand_decimal_point(m):
|
44 |
+
return m.group(1).replace(".", " point ")
|
45 |
|
46 |
|
47 |
def _expand_dollars(m):
|
48 |
match = m.group(1)
|
49 |
+
parts = match.split(".")
|
50 |
if len(parts) > 2:
|
51 |
+
return match + " dollars" # Unexpected format
|
52 |
+
|
53 |
dollars = int(parts[0]) if parts[0] else 0
|
54 |
cents = int(parts[1]) if len(parts) > 1 and parts[1] else 0
|
55 |
if dollars and cents:
|
56 |
+
dollar_unit = "dollar" if dollars == 1 else "dollars"
|
57 |
+
cent_unit = "cent" if cents == 1 else "cents"
|
58 |
+
return "%s %s, %s %s" % (dollars, dollar_unit, cents, cent_unit)
|
59 |
elif dollars:
|
60 |
+
dollar_unit = "dollar" if dollars == 1 else "dollars"
|
61 |
+
return "%s %s" % (dollars, dollar_unit)
|
62 |
elif cents:
|
63 |
+
cent_unit = "cent" if cents == 1 else "cents"
|
64 |
+
return "%s %s" % (cents, cent_unit)
|
65 |
else:
|
66 |
+
return "zero dollars"
|
67 |
|
68 |
|
69 |
def _expand_ordinal(m):
|
|
|
72 |
|
73 |
def _expand_number(m):
|
74 |
num = int(m.group(0))
|
75 |
+
if 1000 < num < 3000:
|
76 |
if num == 2000:
|
77 |
+
return "two thousand"
|
78 |
+
elif 2000 < num < 2010:
|
79 |
+
return "two thousand " + _inflect.number_to_words(num % 100)
|
80 |
elif num % 100 == 0:
|
81 |
+
return _inflect.number_to_words(num // 100) + " hundred"
|
82 |
else:
|
83 |
+
return _inflect.number_to_words(
|
84 |
+
num, andword="", zero="oh", group=2
|
85 |
+
).replace(", ", " ")
|
86 |
else:
|
87 |
+
return _inflect.number_to_words(num, andword="")
|
88 |
|
89 |
|
90 |
def normalize_numbers(text):
|
91 |
text = re.sub(_comma_number_re, _remove_commas, text)
|
92 |
+
text = re.sub(_pounds_re, r"\1 pounds", text)
|
93 |
text = re.sub(_dollars_re, _expand_dollars, text)
|
94 |
text = re.sub(_decimal_number_re, _expand_decimal_point, text)
|
95 |
text = re.sub(_ordinal_re, _expand_ordinal, text)
|
|
|
108 |
|
109 |
|
110 |
def collapse_whitespace(text):
|
111 |
+
return re.sub(_whitespace_re, " ", text)
|
112 |
|
113 |
|
114 |
def convert_to_ascii(text):
|
kendex/prep_push_to_hf.py
CHANGED
@@ -5,6 +5,7 @@ import librosa
|
|
5 |
import numpy as np
|
6 |
import pandas as pd
|
7 |
from datasets import Audio, Dataset, DatasetDict
|
|
|
8 |
|
9 |
from leviticus import normalize
|
10 |
|
@@ -12,6 +13,10 @@ MAX_DURATION_IN_SECONDS = 10.0
|
|
12 |
MIN_DURATION_IN_SECONDS = 1.0
|
13 |
MAX_LEN = 50
|
14 |
MIN_LEN = 5
|
|
|
|
|
|
|
|
|
15 |
|
16 |
|
17 |
def duration_filter(item):
|
@@ -28,12 +33,25 @@ def text_mapper(item):
|
|
28 |
return item
|
29 |
|
30 |
|
31 |
-
def
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
|
39 |
def main():
|
@@ -53,15 +71,12 @@ def main():
|
|
53 |
|
54 |
df = pd.DataFrame(data).sample(frac=1, random_state=666).reset_index(drop=True)
|
55 |
|
56 |
-
train, test =
|
57 |
|
58 |
-
|
59 |
-
train_dataset = train_dataset.map(text_mapper)
|
60 |
-
test_dataset = create_dataset(test)
|
61 |
-
test_dataset = test_dataset.map(text_mapper)
|
62 |
|
63 |
-
full_dataset
|
64 |
-
full_dataset.push_to_hub("michaelnetbiz/Kendex")
|
65 |
|
66 |
|
67 |
if __name__ == "__main__":
|
|
|
5 |
import numpy as np
|
6 |
import pandas as pd
|
7 |
from datasets import Audio, Dataset, DatasetDict
|
8 |
+
from transformers import AutoTokenizer
|
9 |
|
10 |
from leviticus import normalize
|
11 |
|
|
|
13 |
MIN_DURATION_IN_SECONDS = 1.0
|
14 |
MAX_LEN = 50
|
15 |
MIN_LEN = 5
|
16 |
+
SR = 16_000
|
17 |
+
TOKENIZER_CHECKPOINT = "distilbert-base-uncased-finetuned-sst-2-english"
|
18 |
+
|
19 |
+
tokenizer = AutoTokenizer.from_pretrained(TOKENIZER_CHECKPOINT)
|
20 |
|
21 |
|
22 |
def duration_filter(item):
|
|
|
33 |
return item
|
34 |
|
35 |
|
36 |
+
def create_datasets(df):
|
37 |
+
def create_dataset(df_slice):
|
38 |
+
audio_column = "audio"
|
39 |
+
text_column = "text"
|
40 |
+
duration_column = "duration"
|
41 |
+
|
42 |
+
dataset = Dataset.from_pandas(df_slice)
|
43 |
+
dataset = dataset.cast_column(audio_column, Audio(sampling_rate=SR))
|
44 |
+
dataset = dataset.filter(text_filter, input_columns=[text_column])
|
45 |
+
dataset = dataset.filter(duration_filter, input_columns=[duration_column])
|
46 |
+
dataset = dataset.map(text_mapper, batched=False)
|
47 |
+
|
48 |
+
return dataset
|
49 |
+
|
50 |
+
train, test = np.split(df, [int(0.9 * len(df))])
|
51 |
+
train_dataset = create_dataset(train)
|
52 |
+
test_dataset = create_dataset(test)
|
53 |
+
|
54 |
+
return train_dataset, test_dataset
|
55 |
|
56 |
|
57 |
def main():
|
|
|
71 |
|
72 |
df = pd.DataFrame(data).sample(frac=1, random_state=666).reset_index(drop=True)
|
73 |
|
74 |
+
train, test = create_datasets(df)
|
75 |
|
76 |
+
full_dataset = DatasetDict({"train": train, "test": test})
|
|
|
|
|
|
|
77 |
|
78 |
+
print(full_dataset)
|
79 |
+
# full_dataset.push_to_hub("michaelnetbiz/Kendex")
|
80 |
|
81 |
|
82 |
if __name__ == "__main__":
|