Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
text
Languages:
English
Size:
10K - 100K
License:
"The results show that although it took longer for participants to create their passwords with BendyPass, they were able to recall and enter them quicker with BendyPass than with PIN." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"However, there are two main weaknesses: 1) the submission narrowly focuses on bend passwords, and 2) the evaluation compares BendyPass against only one baseline" "['non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality" | |
"Other designs exist (e.g., work by Das et al. (2017) is just one example." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"In particular, clarifications around the motivation behind the path tracing task, and additional related work that have utilized path tracing to determine endpoints (e.g., [17], [18]) and to mark or detect features along a path (e.g., [66]) were helpful in positioning the contributions of this work in relation to prior work" "['non', 'non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality" | |
"Through four studies, this paper proposes to lift a theoretical limitation in the application range of the Dual Gaussian Distribution Model, namely that it could also work when touch acquisition occurs from a touchscreen to that same touchscreen." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"I think this part needs to be drastically shortened or even removed, in favor of a more realistic discussion about generalization---and possible lack thereof" "['non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality" | |
"12), - and for some reason that makes it ok to consider that screen-to-screen pointing is compatible with Bi et al.'s model (which does not consider A)." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"DESIGN APPLICATIONS I am not sure that the possible applications of this model are well described or argued for in this paper" "['non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality" | |
"I assume that strong design guidelines already exist for this?" "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"p. 2) That seems quite a stretched ""contribution"", at least in the absence of actual data about how long designers do spend on testing width values today" "['non', 'non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality" | |
"Both studies compare the new mind mapping tool to digital options without computer assistance." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"The two studies are well-described and designed studies" "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality" | |
"The level of detail in the algorithm description is a particular strength, giving a clear picture of how it works and why those choices were made" "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality" | |
"One small point that could be clarified is why a between subjects design was chosen over a counterbalanced within subjects" "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality" | |
"This is overall an interesting idea of interactive system supporting skill acquisition" "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality" | |
"The system remains simple" "['arg', 'arg', 'arg', 'arg']" "paper quality" | |
"First of all I am unsure a pixel comparison metric is fair" "['non', 'non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality" | |
"The projection method inevitably show the precise spot for pouring syrup." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"But in the other condition, participants could have perform just as well, with a slight rotation or translation" "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality" | |
"This might have affected the metric, with no real impact on the perceived result." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"What is the objective : people's perception or a metric?" "['arg', 'arg', 'arg', 'arg', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"The results presented in appendix do not seem so different , and I think the result will be even more similar with a little practice" "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'non', 'non', 'non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality" | |
"What is missing is a clear articulation of the research problem and question within the literature provided" "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality" | |
"With a few grammatical typos, it reads as a thread of different perspective, with little grounding in HCI and related field" "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality" | |
"Lastly, in HCI, there is a movement towards ideas about participatory design, user-centred design, value-sensitive design and so on." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"This paper describes the exploration of designing data visualizations of daily medical records by patients, and what kinds of visualizations may assist providers in best keeping track with an patients medical status." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"Models are fit which account for these differences, on both new data gathered from 12 participants, and data sets gathered from several past studies." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"Finally, I found the study results to be difficult to interpret , as many of the results subsections are ANOVA output with little interpretation and commentary to help the reader understand what was found" "['non', 'non', 'non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality" | |
"Based on the above, I feel the paper is marginally below the acceptance threshold." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"With this, users can select part of a VR object, assign an animation behaviour, and preview it." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"The system requires that the virtual objects are implemented in a way that they do not only present an outside facade but also contain primitives of its components not displayed on the outside (i.e., ""internal faces"")." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"Some issues in the study reporting: - What was the scale range for the prior experience questions" "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality" | |
"The actual discussion of the results unfortunately is very limited (especially because large parts of it consist of qualitative reporting), and are mostly a summary, rather than a contextualization of the results within existing work, or statements on implications of the results" "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality" | |
"General minor issues: - ""users authoring process"" -> ""users' authoring process""" "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"The approach is interesting and the use cases described demonstrate the technique well" "['arg', 'arg', 'arg', 'arg', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality" | |
"However, the paper is weakened by several writing and organizational aspects, and by an odd off-hand report of user feedback" "['non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality" | |
"The basics of the technique are well-described : the user draws a shape that the system then selects matches for, based on two similarity metrics (one calculated by Pearson's coefficient and the other by a PCA algorithm)." "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"But this is not clear" "['non', 'arg', 'arg', 'arg', 'arg']" "paper quality" | |
"IN fact, the whole way the user draws the shape is poorly described" "['non', 'non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality" | |
"However, the video alludes to something not mentioned in the paper about directionality : only the Pearson algorithm identifies direction, and even from the video it was not clear how the user selected it" "['non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality" | |
"I found it odd that at the authors retained both metrics, delivering different results, without trying some blended version that might reduce complexity for the user" "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality" | |
"Why dont they include the feedback" "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality" | |
"Surely they found out useful information." "['non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"I would suggest to use active voice instead of passive to clarify who contributed what (""The system was developed"", ""...was installed"")" "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality" | |
"The passive voice of the sentence does not help to identify who posited this reason : the authors of the submission or Vieira et al. [36]?" "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"Data characterization is assorted with visibly clear understanding and explanation of the domain" "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality" | |
"I would suggest the following references to inform analysis of user logs : - H. Guo, S. R. Gomez, C. Ziemkiewicz and D. H. Laidlaw, ""A Case Study Using Visualization Interaction Logs and Insight Metrics to Understand How Analysts Arrive at Insights,"" in IEEE Transactions on Visualization and Computer Graphics, vol. 22, no. 1, pp. 51-60, 31 Jan." "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"Minor Example 2: ""A"" -> ""AI""" "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality" | |
"This paper discusses State Representation Learning for RL from camera images." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"Specifically, it proposes to use a state representation consisting of 2 (or 3) parts that are trained separately on different aspects of the relevant state: reward prediction, image reconstruction and (inverse) model learning." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"Because the parts of the state that are needed for multiple different prediction tasks (reconstruction, inverse model, etc.) need to be in the final state representation multiple times." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"Please provide some extra information on how it is calculated." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"The experiments are competent in the sense that the authors ran their model in four different environments (predator and prey, traffic junction, StarCraft explore, and StarCraft combat)." "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"Authors provide 3 baselines: 1) no communication, but IR 2) no communication, no IR 3) global communication, no IR (commNet) I think having a baseline that has global communication with IR can show the effect of selective communication better." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"A quite severe issue with this report is that the authors don't report relevant learning results from before (+-) 2009, and empirical comparisons are only given w.r.t. other recent heuristics" "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality" | |
"The analysis of the results is quite insightful" "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality" | |
"Weaknesses: - The experiments are done on CIFAR-10, CIFAR-100 and subsets of CIFAR-100." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"The results in Figure 3 are very far from the state of the art" "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality" | |
"In this case, I would expect the authors provide more intuitive explanations" "['non', 'non', 'non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality" | |
"If given more computing resources, and under same timing constraint, we have many other methods to improve performance." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"For example, a simple thing to do is t0 separately train networks with standard setting and then ensemble trained networks." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"The experiments are not strong" "['arg', 'arg', 'arg', 'arg', 'arg']" "paper quality" | |
"after rebuttal ==================== I appreciate the authors' response, but I do not think the rebuttal addressed my concerns" "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality" | |
"However, I am not convinced by the experiments that the good performance is from the proposed method, not from the N times more augmented samples" "['non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality" | |
"I have suggested the authors to compare with stronger baselines to demonstrate the benefits." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"This paper presents CoDraw, a grounded and goal-driven dialogue environment for collaborative drawing." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"The authors argue convincingly that an interactive and grounded evaluation environment helps us better measure how well NLG/NLU agents actually understand and use their language rather than evaluating against arbitrary ground-truth examples of what humans say, we can evaluate the objective end-to-end performance of a system in a well-specified nonlinguistic task." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"They collect a novel dataset in this grounded and goal-driven communication paradigm, define a success metric for the collaborative drawing task, and present models for maximizing that metric." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"This is a very interesting task and the dataset/models are a very useful contribution to the community" "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality" | |
"Have you tried baselines like these?" "['non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"Please provide variance measures on your results (within model configuration, across scene examples)." "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"Are the humans" "['arg', 'arg', 'arg']" "paper quality" | |
"You should link to this literature (mostly in NLP) and contrast your task/model with theirs" "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality" | |
"Instead of using a hold-out set they propose to randomly flip the labels of certain amounts of training data and inspect the corresponding 'accuracy vs. randomization curves." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"Foremost, the presented criteria are actually not real criteria (expect maybe C1) but rather general guidelines to visually inspect 'accuracy over randomization curves" "['non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality" | |
"Additionally, only one type of regularization was assumed, namely l1-regularization, though other types are arguably more common in the deep (convolutional) learning literature" "['non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality" | |
"You mention complexity of data and model several times in the paper but never define what you mean by that" "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality" | |
"Independent and identically distributed?" "['non', 'non', 'non', 'non', 'non']" "paper quality" | |
"Is that an assumption?" "['non', 'non', 'non', 'non', 'non']" "paper quality" | |
"Page 4, Monotony." "['non', 'non', 'non', 'non', 'non']" "paper quality" | |
"Section 3.3 is confusing to me" "['arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality" | |
"But you state it as if those measures are actually correct, which you didnt show yet" "['non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality" | |
"Thus although one can get the general idea on how the method works , it might be difficult to get a deeper understanding on some details" "['non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality" | |
"Also, in the experiments, it is said that one can combing normalizing flows with TRPO without describing the details" "['non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality" | |
"The experiments also talk about 2D bandit problem, and again, without any descriptions" "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality" | |
"It seems that the authors only use the basic normalizing flow structures studied in Rezende&Mohamed (2015) and Dinh et al (2016)" "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality" | |
"However, there are more powerful variants of normalizing flows such as the Multiplicative Normalizing Flows or the Glow" "['non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality" | |
"I wonder how good the results are if these more advanced versions are used." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"Update: I feel the idea of this paper is straightforward, and the contribution is incremental" "['non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality" | |
"To improve the paper, stronger experiments need to be performed ." "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'non']" "paper quality" | |
"This paper proposes the deep reinforcement learning with ensembles of Q-functions." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"Since the method requires updating multiple Q-functions, it may cost much more time for each RL time step, so Im not sure whether the ensemble method can outperform the non-ensemble one within the same time period" "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality" | |
"However, the authors didnt show these results in the paper" "['non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality" | |
"Such a modular approach has the advantage that the instruction-to-goal and goal-to-policy mappings can be trained separately and, in principle, allow for swapping in different modules." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"The paper evaluates the method in various simulated domains and compares against RL and IL baselines." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"The goal-policy mapping approach would presumably restrict the robot to goals experienced during training, preventing generalization to new goals" "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality" | |
"The domains considered for experimental evaluation are particularly simple" "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality" | |
"It would be better to evaluate on one of the few common benchmarks for robot language understanding, e.g., the SAIL corpus, which considers trajectory-oriented instructions" "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality" | |
"The paper initially states that this distance function is computed from learned embeddings of human demonstrations, however these are presumably instructions rather than demonstrations" "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality" | |
"Relevant to the discussion of learning from demonstration for language understanding is the following paper by Duvallet et al. Duvalet, Kollar, and Stentz, ""Imitation learning for natural language direction following through unknown environments,"" ICRA 2014 - The paper is overly verbose and redundant in places" "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality" | |
"Summary Authors present a decentralized policy, centralized value function approach (MAAC) to multi-agent learning." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"Authors compare their approach with COMA (discrete actions and counterfactual (semi-centralized) baseline) and MADDPG (also uses centralized value function and continuous actions) MAAC is evaluated on two 2d cooperative environments, Treasure Collection and Rover Tower." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"Pro - MAAC is a simple combination of attention and a centralized value function approach" "['non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality" | |
"The proposed method is evaluated on object classification and object alignment tasks." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"It would be better to provide discussions of recent neural architecture search methods solving the single-objective problem ." "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'non']" "paper quality" | |
"In this way, there's no need to store all past data and even the first learned batch keeps being refreshed and should not be forgotten." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"This is not true in a beta-VAE" "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality" | |
"A Weibull distribution is used to model the same data, again, in a different way." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"3) Experiments Finally, the experimental results do not look very compelling , it seems to be overall worse than the baselines in the two image datasets and slightly better in the audio dataset, so it's unclear that this approach is superior" "['non', 'non', 'non', 'non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality" | |
"They construct a pair of synthetic but somewhat realistic datasetsin one case, the Bayes-optimal classifier is *not* robust, demonstrating that the Bayes-optimal classifier may not be robust for real-world datasets." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"In the other case, the Bayes-optimal classifier is robust, but neural networks fail to learn the robust decision boundary." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"The contribution of the two datasets (the symmetric and asymetric CelebA) is, in my opinion, an extremely important contribution in studying adversarial robustness and on their own these datasets warrant further study" "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality" | |
"A Discussion of Adversarial Examples are not Bugs they are Features (pseudo-url): Nakkiran (2019) actually constructs a dataset (called adversarial squares) where the Bayes-optimal classifier is robust but neural networks learn a non-robust classifier due to label noise and overfitting." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"Adversarially robust generalization requires more data (pseudo-url): Schmidt et al show a setup where many more samples are required for adversarial robustness than for standard classification error." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"Discussion/interpretation of the results: - Sufficient vs necessary: While the experimental design and results are both of very high quality , I am slightly confused about the interpretation of the results" "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality" | |
"CNN vs Linear SVM: I am confused about why we would expect a CNN to be able to learn the Bayes-optimal decision boundary but not the Linear SVM" "['non', 'non', 'non', 'non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality" | |
"This concern does not make the contribution of the symmetric dataset less valuable , but a discussion of such caveats would help further elucidate the similarities and differences of this setup from real datasets" "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality" | |
"In particular, with such low-variance directions, at standard dataset sizes the distributions generated here are most likely statistically indistinguishable from their robust/non-robust counterparts (you can see hints of this in the fact that the CNN gets ." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"Overall, this paper is a very promising step in studying adversarial robustness , but concerns about discussion of prior work, discussion of experimental setup, and conclusions drawn, currently bar me from recommending acceptance" "['non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"The paper introduces CATER: a synthetically generated dataset for video understanding tasks." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"The compositional action classification task is harder and shows that incorporating LSTMs for temporal reasoning leads to non-trivial performance improvements over frame averaging." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"It is a well-argued, thoughtful dataset contribution that sets up a reasonable video understanding dataset" "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality" | |
"And it combines A* search with MCTS to improve the performance over the traditional MCTS approaches based on UCT or PUCT tree policies" "['non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality" | |
"For example, in line 8 of Algorithm 2, why only the top 3 child nodes are added to the queue" "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality" | |
"It is not clear whether such assumptions hold for practical problems" "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality" | |
"More convincing experimental comparison should be done under real environment such as Atari games (by using the simulator as the environment model as shown in [Guo et al 2014] Deep learning for real-time atari game play using offline monte-carlo tree search planning)." "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"In practice, this is not true because even at the leaf node the value could still be estimated by an inaccurate value network (e.g., AlphaGo or AlphaZero)." "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"b) In the related work section, very little is said about Bin Packing Problems" "['non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality" | |
"Moreover, BPPs have been extensively studied in theoretical computer science, with various approximation results." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"Note that the 2D Knapsack problem with rotations admits a 3/2 + \epsilon - approximation algorithm (Galvez et. al., FOCS 2017)." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"A. Khan has also found approximation algorithms for the 3D Knapsack problem with rotations." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"So, even if those results do not preclude the use of sophisticated DRL techniques for solving geometric knapsack problems, it would be legitimate to empirically compare these techniques with the polytime asymptotic approximation algorithms already found in the literature." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"We dont know if it is an episodic MDP (which is usually the case in DRL approaches to combinatorial optimization tasks)." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"For example, in Eq (1) what are the dimensions K and V" "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality" | |
"Etc. (f) Even if the aforementioned issues are fixed, it seems that the framework is using many hyper-parameters (\gamma, \beta, \alpha_t, etc.) which are left unspecified" "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality" | |
"Under such circumstances, it is quite impossible to reproduce experiments ." "['non', 'non', 'non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'non']" "paper quality" | |
"The structure of the paper is strange because it discusses attribution priors but then they are not used for the method" "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality" | |
"I think a few papers to have a look at are a survey article about graph based biasing pseudo-url as well as methods for using graph convolutions with biases based on graphs: pseudo-url and pseudo-url ." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"Is it just smoothing ?" "['arg', 'arg', 'arg', 'arg', 'non']" "paper quality" | |
"A `termination' menas that an agent should stop executing the previous selected action; the leader signals as such to the agent." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"This paper presents a black-box style learning algorithm for Markov Random Fields (MRF)." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"The approach doubles down on the variational approach with variational approximations for both the positive phase and negative phase of the log likelihood objective function." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"As others have found in the past, a variational approximation to the partition function contribution to the loss function (i.e. the negative phase) results in the loss of the variational lower bound on log likelihood and the connection between the resulting approximation and the log likelihood becomes unclear." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"To deal with this issue, the authors argue (in Lemma 1) that the gradient of their approximate objective is at least in the same direction as the ELBO (lower bound) objective." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"I have a minor issue with the discussion (in the last paragraph of sec. 3.2) stating that the theoretical statement of the proposed objective relies on a much weaker assumption than the nonparametric assumption made in the theoretical justification of GANs" "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality" | |
"While I agree with the statement as such , the GAN development makes a stronger statement about the nature of the learning trajectory" "['non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality" | |
"Relevance and Significance: This paper is highly relevant to the ICLR community and -- to the extent that one believes that training and inference in MRFs is important -- also significant" "['non', 'non', 'non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality" | |
"One this last point, it seems ironic to me that the proposed strategy for training the MRF is through the use of three separate directed graphical models (an encoder q(h | x), a decoder and a VAE to model the approximate prior over the latents h)." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"The comparison to PCD-1 in Fig. 3 seems a bit unfair in that the learning curve ends at 8000 iterations, while PCD-1 continues to improve NLL" "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality" | |
"It would be important to see if the proposed method is also beneficial with the state of the art neural networks on the two applications" "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality" | |
"To me the proposed approach does not seem particularly novel and the idea that hierarchy can be useful for multi-task learning is also not new" "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality" | |
"Why reward decomposition at the lower levels is a problem instead of a feature isn't totally clear, but this criticism does not apply to Option-Critic models" "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality" | |
"To further increase the expressive power of the normalizing flow, they propose using a VAE to learn the underlying input to the ""Flow Module""." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"They show by means of extensive experiments on real as well as synthetic data that their approach is able to attain and often surpass state of the art predictive models which rely on parametric modelling of the intensity function" "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality" | |
"In order to rationalize the existence of non-trivial exponents that can be independent of the specific kernel used, this paper introduces the Teacher-Student framework for kernels." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"Then, in Figure 2, human normalized scores are reported for varying amounts of experience for the variants of Rainbow, and compared against SiMPLe with 100k interactions, with the claim that the authors couldn't run the method for longer experiences." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"In any case, the results in Figure 1 and the appendix are useful for showing that the baselines used in prior works were not as strong as they could be" "['non', 'non', 'non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality" | |
"Can we get the same conclusions on a different domain where other model-based methods have been successful; e.g. continuous control tasks?" "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"As the title reports, expanding layers seems to be the key to obtain extremely interesting results." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"This paper can have a tremendous impact in the research in deep networks if results are well explained" "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality" | |
"In fact, the model presented in the paper has a major obscure point" "['non', 'non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality" | |
"Since the authors are using inner matrices with a number of dimensions higher than the number of dimensions of the original matrix, there is no approximation and, then, no selection of features or feature combinations." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"Hence, without non-linear functions, where is the added value of the method" "['non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality" | |
"There are some possibilities, which have not been explored : 1) the performance improvement derives from the approximation induced by the representation of float or double in the matrices." "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"In fact, each composing matrix is initialized randomly." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"If results are significantly different, then the authors can reject the hypothesis." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"Since the proposed method uses the multi-channel representation, how to set the number of channels pseudo-formula ?" "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'non']" "paper quality" | |
"This paper presents a method for the instrument recognition task from laparoscopic images, using two generators and two discriminators to generate images which are then presented to the network to classify surgical gestures." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"The different loss functions are all based on previously proposed approaches and exploited in this case for this dual background/foreground problem." "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"The authors present a deep learning method for fundus image analysis based on a fully convolutional neural network architecture trained with an adversarial loss." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"This is important when processing these images, where anatomical and pathological structures usually share similar visual properties and lead to false positive detections (e.g. red lesions and vessels, or bright lesions and the optic disc)." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"There are other existing data sets such as HRF (pseudo-url), CHASEDB1 (pseudo-url) and DR HAGIS (pseudo-url) with higher resolution images that are more representative of current imaging devices." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"To the best of my knowledge, it has the highest performance in the DRIVE data set compared to several other techniques." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"It would also be interesting to analyze the differences in a qualitative way , as in Fig. 3 (b)." "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"Please, clarify that point in the text." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"I would suggest reorganizing these first line by following something like: (i) Despite the fact that there are several available data sets of fundus pictures, none of them contains labels for all the structures of interest for retinal image analysis, either anatomical or pathological." "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"International Conference on Medical Image Computing and Computer-Assisted Intervention." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"The paper is well written and describes an interesting and relatively novel approach to solving multi-class classification in a clinical domain where overlap between classes is frequently a possibility" "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality" | |
"The paper is well-written, and easy to read and understand" "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality" | |
"The authors consider the problem of nuclei detection, and propose to decompose the task into three subtasks, trying to predict the confidence map, localization map and a weight map." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"I think the effort of disentangling a complicated task into simpler ones makes sense , and the experiments have shown promising results" "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality" | |
"Is using a pre-trained network really helping ?" "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'non']" "paper quality" | |
"Since there is so much dissimilarity between ImageNet and the target domains, I expect it to be mostly a glorified edge detector." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"Clustering of aortic value prosthesis shapes has a high contribution to personalized medicine" "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality" | |
"The authors emphasize that the objective is to cluster the geometric shape of leaflets, and it is hard to represent the shapes in high-dimensional space (last paragraph of introduction)." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"One major concern is whether the results are reliable : 1." "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'non', 'non', 'non']" "paper quality" | |
"The experiments measure the recon accuracy." "['non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"The hyper-parameters of autoencoder and the recon decoder should be more clearly stated for reproducibility" "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality" | |
"It has the potential to improve pathology and cancer diagnosis by making it simpler and quicker The results of this work look visually convincing" "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality" | |
"The quantitative results delivered by the de-speckling images, which seem to be computed using simulated realization of random speckle noise, look also convincing" "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality" | |
"I think this joint training might result in even better outcomes." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"One issue, from a purely organizational standpoint, is the fact that information about previous work is either omitted or scattered around the text" "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality" | |
"I understand that the available space is limited and therefore it's difficult to bring in the paper all the information that would be necessary, but the introduction should be extended to include previous work both in terms of DL and medical research" "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality" | |
"This doesn't mean that cycle-GAN type of techniques are not suited for medical imaging since they might wipe out their diagnostic value, but it means that every study around this topic needs to prove that the diagnostic value is indeed kept!" "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"The authors combine DL and computer vision methods to digitally stain confocal microscopy images to generate H&E like images." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"3- Qualitative stained image results look promising Cons: 1- Median filter is used after the despeckling network, however it is not clear the added benefit of using median filter in despeckling process" "['non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'non', 'non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality" | |
"Even though it is mentioned by the authors that these images resemble to noisy RCM, this should be either referenced or shown" "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality" | |
"3- Please provide an evidence to support the positive effect of choosing an augmentation of size 512x512 after 50 epochs in Section 3.2." "['non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'non', 'non']" "paper quality" | |
"The authors should provide support to these conclusions" "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality" | |
"5- Obtaining quantitative comparison results for staining accuracy is not feasible due to the reasons clearly defined by the authors" "['non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality" | |
"It is necessary to provide more qualitative information regarding the staining results in addition to confirmation from two expert pathologists" "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality" | |
"Please provide results of the inter-rater reliability of two pathologists using a point scale on the quality of image digital staining" "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality" | |
"2- The extensive tests on a real dataset instead of phantom cases is definitely a strength of the paper" "['non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality" | |
"5- How is the complex component of the signal concatenated into a channel ?" "['non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'non']" "paper quality" | |
"The reason for high performance of the proposed method can be explained with the required number of parameters to train the method." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"However, no quantitative comparisons are provided" "['non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality" | |
"Minor suggestions a- Some recent work on using the complex-valued neural networks (Virtue Patrick et al., arxiv), geometry of deep learning (Golbabaee et al., arxiv)and recurrent neural networks (Oksuz et al.,arxiv) for MRF dictionary matching can be mentioned in the literature review with their strengths and weakneses." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"term in Fig.2." "['non', 'non', 'non', 'non']" "paper quality" | |
"Summary: Authors present AnatomyGen, a CNN-based approach for mapping from low-dimensional anatomical landmark coordinates to a dense voxel representation and back, via separately trained decoder and encoder networks." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"The paper is written clearly" "['arg', 'arg', 'arg', 'arg', 'arg']" "paper quality" | |
"In contrast, ACNN auto-encoders train their encoder and decoder in conjunction." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"How do authors suggest to apply their approach to anatomies where it is impossible (in terms of feasibility and manual effort) to place a sufficiently large number of unique landmarks on the anatomy (e.g. smooth shapes, such as left ventricle in ACNN)?" "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality" | |
"Method only evaluated on one dataset (BRATS)." "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'non', 'non', 'non', 'non']" "paper quality" | |
"Often new methods are manually ""overfitted"" to one dataset." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"When used on another dataset they do not show gains anymore." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"How is training till ""convergence"" (section 4.3) defined?" "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"Not 100% clear if the IMM method used in the experiments is the method described in section 3.2 (alpha=1/T) ?" "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"The method is compared to five embryologists and results clearly shows that learning directly from the clinical outcome outperfoms embryologists by a large margin" "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality" | |
"The main weakness of the paper is in the methods section" "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality" | |
"The methods section lacks details for reproducing the work" "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality" | |
"As I read it, UBar is the same LSTM just trained on clinical outcomes." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"If you dont use it, remove it from the section" "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality" | |
"In your case, you train on data that has already been filtered to only include positive decisions by embryologists, otherwise the eggs would not have been implanted." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"It is not obvious how to best get around this issue, since the first embryologist screening probably has false negatives, but you need to take it into account" "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality" | |
"Your statement about AUCs and training sizes is either obviously correct or obviously wrong, depending on interpretation." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"The only way training size can influence AUC is by influencing the training of the model." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"This holds for all the popular performance measures" "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality" | |
"Maybe you meant the size of the test set?" "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"A mior nitpick: You define all abbreviations except for UBar" "['non', 'non', 'non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality" | |
"I am aware of the page limitation, so maybe MIDL should allow an extra page solely for an image of the raw data." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"The experiments are clearly explained and the results are well presented." "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality" | |
"Multi-task learning can extract a shared representation that is generalisable and this is evidenced in the results in the TUPAC16 set." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"The work also raises some interesting points regarding multi-task training for pathology and with further work could be a good paper" "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality" | |
"This paper proposes to add a self-expressiveness regularization term to learn a union of subspaces for image-to-image translation in medical domain." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"This will provide more insights or explanations." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"If a sonographer is able to acquire these images, they are also able to perform these measurements" "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality" | |
"The boxplot shows that six outliers are resolved by the AF-Net, so it can be debated if that is clinically relevant to reduce (6/435=)1.4% of the errors" "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality" | |
"It is an interesting idea and the quality is overall rather good for an abstract paper" "['arg', 'arg', 'arg', 'arg', 'arg', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality" | |
"Some points to address are listed in the following: The early stopping is not clear" "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality" | |
"Can you comment?" "['non', 'non', 'non', 'non']" "paper quality" | |
"The idea of learning convolution weights for different input image quality is novel" "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality" | |
"In Table 3., the result of the proposed method is slightly higher than the CSM." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"Therefore I recommend the weak accept." "['non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"Overall, the problem the paper tackles is critical, and the proposed network component is effective to some extent" "['non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality" | |
"Other specific suggestions: Section 2: region of interest (ROI) performing motions does not make sense to me" "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality" | |
"Section 3: combing should be combining" "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality" | |
"However, I have following concerns: 1." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"Also, I would be convinced that the variance would increase for out of distribution test samples because you used a prior that enforced uncertainty of all labels" "['non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality" | |
"The main contribution of the work was adding a normalization step to the network, and learning the affine transformation parameters during the training." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"The results of the model was compared also to the state of the art.From the following sentence, I understand that for each pathology, a different model was trained." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"If this is true, the model is not efficient" "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality" | |
"Do we really need a labelled ground truth here" "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality" | |
"There will be domain shift problems for the simple methods but same is true for the presented method." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"The motivation needs to be a bit clearer" "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality" | |
"The efficiency of backprop should be mentioned in the intro if it is something this work is aiming to address" "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality" | |
"Define the model more explicitly" "['arg', 'arg', 'arg', 'arg', 'arg']" "paper quality" | |
"For example, is there something different about the feature maps that support this" "['non', 'non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality" | |
"Also perhaps report results from one of the 2 (mentioned) more complex benchmarks" "['non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality" | |
"Only real point for improvement is more earnest bench marking/model comparison" "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality" | |
"This model allows for more flexibility in modelling human behaviors in normal and pathological states" "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality" | |
"No comparison with human data" "['arg', 'arg', 'arg', 'arg', 'arg']" "paper quality" | |
"The work has promising implications for computational psychiatry , but probably not for RL at this point" "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality" | |
"Very well written" "['arg', 'arg', 'arg']" "paper quality" | |
"I'm not a big fan of the asterisks in Figures 3A and 3B used to indicate the best layers in various model tests" "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality" | |
"Adversarial attacks are artificial: attacker has access to gradient of the loss function." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"The premise of the work must be clarified" "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality" | |
"Its an opinion piece." "['non', 'non', 'non', 'non', 'non']" "paper quality" | |
"The paper opens ""In recent years we have made significant progress identifying computational principles that underlie neural function." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"While not yet complete, we have sufficient evidence that a synthesis of these ideas could result in an understanding of how neural computation emerges from a combination of innate dynamics and plasticity"" What follows is a useful survey of a selection of ideas , by far not complete" "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'arg', 'arg', 'arg', 'arg']" "paper quality" | |
"For example, many of the interactions between myriad excitatory and inhibitory types across brains regions and neuromodulators, of which dopamine is just one of several, is largely unknown" "['non', 'non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality" | |
"Which leads me to a few concerns" "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality" | |
"A major draw-back of spiking models is that they are much more costly than ANNs, because of the small time-steps required." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"Sure neuromorphic systems are coming, but not definitely not with moderate expenditure of resources and effort"" While it covers important ground , I think the arguments need more refinement and focus before they can inspire productive discussion" "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'arg', 'arg', 'arg', 'arg', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality" | |
"I feel this statement: ""Our challenge is to understand how this occurs." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"It would have been nice to present a figure showing how e-prop yields eligibility traces resembling STDP, as this is one of the key connections of this work to biology" "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality" | |
"One part that would have been nice to clarify is the relative role of random feedback vs eligibility traces in successful network performance" "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality" | |
"The flow/high-level organization of the paper works well" "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality" | |
"The question of how networks maintain memory over long timescales is a longstanding and important one, and to my knowledge this question hasn't been thoroughly explored in spiking, trained recurrent neural networks (RNN)." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"A comparison with Bellec et al. 2018, which looks at working memory tasks in spiking networks, would also have been appropriate" "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality" | |
"The paper in the process reveals some (expected) results about how spiking RNNs behave on a working memory task" "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality" | |
"The proof-of-concept work (among others) that this can be done with spiking RNN may inspire more work in this area" "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality" | |