Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
text
Languages:
English
Size:
10K - 100K
License:
"The evaluation consisted of two sessions (taking place one week apart) in which participants first created their passwords and then used them to sign in." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"The experiment compared BendyPass with standard PIN security feature on touchscreen devices." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"Such alternative design is similar to BendyPass along many dimensions (e.g., users need to carry an additional device, but offers a more familiar interface)." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"I reviewed the previous submission as R2." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"The paper doesn't even acknowledge that this lack of success could simply be due to a lower external validity than the authors hoped for" "['con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con']" "paper quality" | |
"Checking can also come up negative, and that is ok." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"In the example given in p. 1 (choosing between 5 or 7-mm circular icons), it is unclear why the designer would need a model, or to know by how much a 7-mm icon would improve accuracy" "['con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con']" "paper quality" | |
"The level of detail argued here seems quite artificial , e.g. ""If designers want a hyperlink to have a 77% success rate""." "['con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"CLARITY Removing tap points that are further than a fixed distance away from the target center will likely affect W levels differently." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"Looking at table 1 makes me think these instructions are quite clear on how to make these 3 patterns." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"This might have affected the metric, with no real impact on the perceived result." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"Second, I particularly appreciate the authors' use of different methods (focus group, interviews, and observation) but fail to see an understanding of the needed sensitivity towards participants with some form of a chronic condition" "['non', 'non', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con']" "paper quality" | |
"The authors perform three phases: An interview with providers to assess their needs, sessions with patients to gather their unique medical history and develop several visualizations for their data, and going back to providers with these visualizations to gather their ideas of how well these visualizations would assist them." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"I also think that the overall motivation of understanding whether interfaces with distinct visual and motor widths (to use the paper's terms) is interesting" "['non', 'non', 'non', 'non', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro']" "paper quality" | |
"Finally, I found the study results to be difficult to interpret , as many of the results subsections are ANOVA output with little interpretation and commentary to help the reader understand what was found" "['non', 'non', 'non', 'non', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'non', 'non', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con']" "paper quality" | |
"Based on the above, I feel the paper is marginally below the acceptance threshold." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"How likely are designers of 3D objects to include such ""internal faces""; is this common?" "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"The approach is interesting and the use cases described demonstrate the technique well" "['pro', 'pro', 'pro', 'pro', 'non', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro']" "paper quality" | |
"I had to re read the paper back and forward to finally tease out what I think is the way it works" "['con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con']" "paper quality" | |
"IN fact, the whole way the user draws the shape is poorly described" "['non', 'non', 'non', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con']" "paper quality" | |
"These critical areas of confusion around how the process actually unfolds from start to finish should have been more clearly described" "['con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con']" "paper quality" | |
"I found it odd that at the authors retained both metrics, delivering different results, without trying some blended version that might reduce complexity for the user" "['con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con']" "paper quality" | |
"It sounds like a classic case of theres nothing wrong with our system, just change the user" "['con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con']" "paper quality" | |
"Because of that last point, I am somewhat on the fence about this paper, but am willing to consider that it might be acceptable." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"Quality The methodology employed for conducting this research sources methods from diverse fields and is relevant" "['non', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro']" "paper quality" | |
"The passive voice of the sentence does not help to identify who posited this reason : the authors of the submission or Vieira et al. [36]?" "['con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"The choice for visualizing rotation schedules using an interval chart rather than a more space-consuming Gantt chart widespread in time/project management is smart" "['pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro']" "paper quality" | |
"I would suggest the following references to inform analysis of user logs : - H. Guo, S. R. Gomez, C. Ziemkiewicz and D. H. Laidlaw, ""A Case Study Using Visualization Interaction Logs and Insight Metrics to Understand How Analysts Arrive at Insights,"" in IEEE Transactions on Visualization and Computer Graphics, vol. 22, no. 1, pp. 51-60, 31 Jan." "['con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"LIMITATIONS AND FUTURE WORK The limitations are mainly focused on the specificity of project requirements to one University in Canada, the small sample size of participants to evaluations." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"Audio quality of the voice over could be improved with a proper microphone and recording settings." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"Experiments have shown that the convergence speed and results are improved, but not significant" "['con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con']" "paper quality" | |
"The contribution is minor, and the reasoning behind it could be better motivated" "['con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con']" "paper quality" | |
"The appendix includes some tests in this direction , but conclusions should not be based on material that is only available in the appendix" "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con']" "paper quality" | |
"The second point is the motivation of the split approach: it seems in direct contradiction with the ""disentangled"" and ""compact"" demands the authors pose" "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con']" "paper quality" | |
"Please indicate why these tasks are chosen." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"I realize that they were obtained with a simple network, however, showing improvements in this regime is not that convincing" "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con']" "paper quality" | |
"I would expect at least the following baselines : i) use normal large batch training and complicated data augmentation, train the model for same number of epochs ii) use normal large batch training and complicated data augmentation, train the model for same number of iterations ii) use normal large batch training and complicated data augmentation, scale the learning rate up as in Goyal et al. 2017 4." "['con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"Like the authors said, they did not propose new data augmentation method, and their contribution is how to combine data augmentation with large-batch training." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"However, I am not convinced by the experiments that the good performance is from the proposed method, not from the N times more augmented samples" "['non', 'non', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con']" "paper quality" | |
"However, the authors quote a previous paper that use different data augmentation and (potentially) other experimental settings." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"Please provide variance measures on your results (within model configuration, across scene examples)." "['con', 'con', 'con', 'con', 'con', 'con', 'con', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"Unified pragmatic models for generating and following instructions." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"Section 3.3 is confusing to me" "['con', 'con', 'con', 'con', 'con', 'con']" "paper quality" | |
"Although the concept of normalizing flow is simple, and it has been applied to other models such as VAE , there seems no work on applying it for policy optimization" "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro']" "paper quality" | |
"It is meant to generate overall images as image slice sequences with memory and computation economy by using a Multidimensional Upscaling method." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"Figure 5 is referenced in the main text after figure 6" "['con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con']" "paper quality" | |
"This paper proposes the deep reinforcement learning with ensembles of Q-functions." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"This paper is well-written" "['pro', 'pro', 'pro', 'pro', 'pro', 'pro']" "paper quality" | |
"I think more examples, such as in section 8.1, should be put in the main text" "['non', 'non', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con']" "paper quality" | |
"STRENGTHS + Decoupling instruction-to-action mapping by introducing goals as a learned intermediate representation has advantages, particularly for goal-directed instructions" "['non', 'non', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro']" "paper quality" | |
"Relevant to the discussion of learning from demonstration for language understanding is the following paper by Duvallet et al. Duvalet, Kollar, and Stentz, ""Imitation learning for natural language direction following through unknown environments,"" ICRA 2014 - The paper is overly verbose and redundant in places" "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con']" "paper quality" | |
"In this way, there's no need to store all past data and even the first learned batch keeps being refreshed and should not be forgotten." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"Previously, all studies of this sort had to be done with small-scale classifiers and simplistic datasets such as Gaussians." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"However, there are a few (in my opinion) critical concerns that currently bar me from strongly recommending acceptance of the paper" "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"For example, a few very closely related works are as follows: - Adversarial examples are not Bugs, they are Features (pseudo-url): Ilyas et al (2019) demonstrate that adversarial perturbations are not in meaningless directions with respect to the data distribution, and in fact a classifier can be recovered from a labeled dataset of adversarial examples." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"While I think the datasets presented in this work are much more interesting and certainly more realistic , this work should be put in context" "['pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'non', 'con', 'con', 'con', 'con', 'con', 'con', 'con']" "paper quality" | |
"I am concerned that these properties are what drive the Bayes-optimal classifier for the symmetric dataset to be robust (concretely, if 0.01 * Identity was not added to the covariance matrix of the symmetric model and the covariance was left to be low-rank, then any classifier which was Bayes-optimal along the positive-variance directions would be Bayes-optimal, and could behave arbitrarily poorly along the zero-variance directions, still being vulnerable)." "['con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"Finally, the localization task is challenging, especially when camera motion is introduced, with much space for improvement left for future work." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"Many design choices for the algorithms are not clearly explained" "['con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con']" "paper quality" | |
"thesis 2015; Christensen et. al. Computer Science Review 2017)." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"c) According to the problem formulation and the experiments, it seems that the authors are studying a restricted subclass of 2D/3D bin packing problems: there is only one bin, so (it seems that) the authors are dealing with geometric knapsack problems (with rotations)." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"For example, in Eq (1) what are the dimensions K and V" "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'con', 'con', 'con', 'con', 'con', 'con', 'con']" "paper quality" | |
"Etc. (f) Even if the aforementioned issues are fixed, it seems that the framework is using many hyper-parameters (\gamma, \beta, \alpha_t, etc.) which are left unspecified" "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con']" "paper quality" | |
"The structure of the paper is strange because it discusses attribution priors but then they are not used for the method" "['con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con']" "paper quality" | |
"Summary The authors apply MARL to principal-agent / mechanism design problems where selfish agents need to be incentivized to coordinate towards a leader's (collective) goal." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"The approach doubles down on the variational approach with variational approximations for both the positive phase and negative phase of the log likelihood objective function." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"In the current development, Theorem 1 only states that the optimization process will converge to the stationary points of the approximate ELBO objective (L1 in the paper's notation)." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"One this last point, it seems ironic to me that the proposed strategy for training the MRF is through the use of three separate directed graphical models (an encoder q(h | x), a decoder and a VAE to model the approximate prior over the latents h)." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"What is unique about the MRF formalism that -- for practical applications -- could not be effectively captured in a directed graphical model" "['con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con']" "paper quality" | |
"For larger scale domains, I fear this could become an important obstacle to effective model training" "['non', 'non', 'non', 'non', 'non', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con']" "paper quality" | |
"The authors mention that Feudal approaches ""employ different rewards for different levels of the hierarchy rather than optimizing a single objective for the entire model as we do.""" "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"The feeling I get is that the authors are trying to make their experiments less about what they are proposing in this paper and more about empirical insights about the nature of hierarchy overall" "['con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con']" "paper quality" | |
"The authors propose a method for learning models for discrete events happening in continuous time by modelling the process as a temporal point process." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"The paper is well written , tghe major issue of this paper is the lack of comparison with other previous methods" "['pro', 'pro', 'pro', 'pro', 'pro', 'non', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con']" "paper quality" | |
"In any case, the results in Figure 1 and the appendix are useful for showing that the baselines used in prior works were not as strong as they could be" "['non', 'non', 'non', 'non', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro']" "paper quality" | |
"Now, if internal matrices have more dimensions of the rank of the original matrix, the product of the internal matrices is exactly the original matrix." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"There are some possibilities, which have not been explored : 1) the performance improvement derives from the approximation induced by the representation of float or double in the matrices." "['con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"The product of a series of randomly initialized matrices can lead to a matrix that is initialized with a different distribution where, eventually, components are not i.i.d.. To show that this is not relevant, the authors should organize an experiment where the original matrix (in the small network) is initialized with the dot product of the composing matrices" "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con']" "paper quality" | |
"Some unsupervised network embedding baseline methods, such as DeepWalk and Node2Vec, should be included into the experiment section ." "['con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'non']" "paper quality" | |
"This is an important advantage for leveraging hundreds of recorded cases without having available segmentations." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"There are other existing data sets such as HRF (pseudo-url), CHASEDB1 (pseudo-url) and DR HAGIS (pseudo-url) with higher resolution images that are more representative of current imaging devices." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"It would be interesting to simulate such an experiment by taking an additional data set with vessel annotations (e.g., some of those that I suggested before, HRF, CHASEDB1 or DR HAGIS) and evaluate the performance there, without using any of their images for training" "['con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con']" "paper quality" | |
"It is not clear if the values for the existing methods in Table 2 correspond to the winning teams of the IDRID challenge" "['con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con']" "paper quality" | |
"Please, clarify that point in the text." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"The trained network is then fine tuned with a direct CRF loss, as in Tang et al. Evaluation is performed on two datasets in several configurations (with and without CRF loss, and variation on the labels used) ; showing the effects of the different parts of the method." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"How resilient is the method to ""forgotten"" nuclei ; i.e. nucleus without a point in the labels ?" "['con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'non']" "paper quality" | |
"Is using a pre-trained network really helping ?" "['con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'non']" "paper quality" | |
"They present an architecture making use of two network, a de-noise/de-speckle network (trained independently on one of the two types of CM images used in this work) followed by a generative network (cycle gan)." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"One issue, from a purely organizational standpoint, is the fact that information about previous work is either omitted or scattered around the text" "['con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con']" "paper quality" | |
"The choice de-speckle network architecture is somewhat not sound, with the multiplicative residual connection near the outputs of the network and the median filtering operation" "['con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con']" "paper quality" | |
"3- Please provide an evidence to support the positive effect of choosing an augmentation of size 512x512 after 50 epochs in Section 3.2." "['non', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'non', 'non']" "paper quality" | |
"The authors should provide support to these conclusions" "['con', 'con', 'con', 'con', 'con', 'con', 'con', 'con']" "paper quality" | |
"CNN-based shape modeling and latent space discovery and was realized for heart ventricle shapes with an auto-encoder, and integrated into Anatomically Constrained Neural Networks (ACNNs) [1]." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"Transfer learning and dealing with small datasets is an important area of research - The paper proposes a novel method, enabling pretraining on several different tasks instead of only one dataset (e.g. ImageNet) like done most of the times - Results show clear performance increase on small datasets - Proper experiment setup and validation - Clearly written and comprehensible - Code is openly available - Little comparison to other state-of-the-art methods for transfer learning" "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'non', 'pro', 'pro', 'pro', 'pro', 'pro', 'non', 'pro', 'pro', 'pro', 'pro', 'non', 'pro', 'pro', 'pro', 'pro', 'non', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con']" "paper quality" | |
"Only compared to IMM which is very similar to the proposed T-IMM" "['con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con']" "paper quality" | |
"Comparison to (unsupervised) domain adaptation methods would also have been interesting (e.g. gradient reversal (Ganin et al. 2014, Kamnitsas et al. 2016))." "['con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"When used on another dataset they do not show gains anymore." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"in section 5: ""Table 2 shows, that both IMM and T-IMM...""." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"I guess this should actually be table 4" "['non', 'non', 'con', 'con', 'con', 'con', 'con', 'con']" "paper quality" | |
"The methodological novelty seems insignificant" "['con', 'con', 'con', 'con', 'con']" "paper quality" | |
"A mior nitpick: You define all abbreviations except for UBar" "['non', 'non', 'non', 'non', 'con', 'con', 'con', 'con', 'con', 'con', 'con']" "paper quality" | |
"It is fine that you give your method a name (although I personally dislike it), but a bit weird not to explain it" "['con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con']" "paper quality" | |
"Moreover, is there is a reason you did not validate on all TUPAC16 tasks The is well written paper with a clear description of the state of the art and the reasoning behind the presented method" "['non', 'non', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro']" "paper quality" | |
"The method is well explained and the validation is strong with convincing results versus state of the art methods." "['pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro']" "paper quality" | |
"This paper proposes a pulmonary nodule malignancy classification based on the temporal evolution of 3D CT scans analyzed by 3D CNNs." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"obtained an F1-score of 0.68 -> 0.686?" "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"The method part is well-written and easy to understand" "['pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro']" "paper quality" | |
"Opposite to the Method part, it's hard to read the abstract and introduction" "['non', 'non', 'non', 'non', 'non', 'non', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con']" "paper quality" | |
"There can be more discussion here.The authors propose a framework to utilize one model under different acquisition context scenarios." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"But the writing needs to be improved" "['non', 'con', 'con', 'con', 'con', 'con', 'con']" "paper quality" | |
"The novelty of the proposed framework is to take the label structure into account and to learn label dependencies, based on the idea of conditional learning in (Chen et al., 2019) and the lung disease hierarchy of the CheXpert dataset (Irvin and al., 2019)." "['pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"The paper reads well and the methodology seems to be interesting" "['pro', 'pro', 'pro', 'pro', 'non', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro']" "paper quality" | |
"The proposed architecture connects the encoder and decoder with GRU to incorporate temporal information." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"Meanwhile, a few clarifications may be necessary: 1) in term of runtime, does the addition of GRUs take much more training time and memory comparing to the concatenation of 3D volumes?" "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con']" "paper quality" | |
"Maybe get rid of performing motions?" "['non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"Also, I would be convinced that the variance would increase for out of distribution test samples because you used a prior that enforced uncertainty of all labels" "['non', 'non', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con']" "paper quality" | |
"The main contribution of the work was adding a normalization step to the network, and learning the affine transformation parameters during the training." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"Contrast normalization yielded the best results for detecting meniscus tears, and layer normalization for detecting the remaining pathologies.The algorithm was explained very well" "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro']" "paper quality" | |
"The results are also very nice" "['pro', 'pro', 'pro', 'pro', 'pro', 'pro']" "paper quality" | |
"However, if different models were trained for predicting each parameter, not only training but also prediction would not be efficient" "['non', 'non', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con']" "paper quality" | |
"Assessing in-focus will even get rid of blurred frames and frames as discussed in the Appendix." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"Or discuss how it can be extended to more general learning problems" "['non', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con']" "paper quality" | |
"Seeing if these meta-learnt rules line up with previously characterized biological learning rules is particularly interesting" "['con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con']" "paper quality" | |
"Does PredNet outperform other user-submitted models?" "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"For this result to be convincing, I would like to see some reasons why the authors think PredNet is outperforming previous models." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"What precisely about predictive coding makes the similarity to brain data expected" "['con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con']" "paper quality" | |
"While the question of how neural networks may act over concept space is important , I dont think the approach used by the authors correctly adress this question" "['pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'non', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con']" "paper quality" | |
"The main point relies purely on a visual representation of the top PCs of the penultimate layer of a CNN, which I believe is insufficient" "['con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con']" "paper quality" | |
"The work has promising implications for computational psychiatry , but probably not for RL at this point" "['pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'non', 'non', 'con', 'con', 'con', 'con', 'con', 'con', 'con']" "paper quality" | |
"In the spirit of insight it would have been very nice to have a quantification of error with respect to parameters (priors on slow identity, fast form)." "['non', 'non', 'non', 'non', 'non', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"Does this mean previous methods learned the same transformation for all features." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"They have some qualitative evaluation in images of filters but they could explore the parameter space to understand what led to these features." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"One of their stated novel contribution was that their filters were convolutional but they do not discuss the potential connection convolutional filters have to transformation of features which seemed like a gap" "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con']" "paper quality" | |
"Use of the same spatial transformer model with an interchangeable bank of input features is elegant" "['pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro', 'pro']" "paper quality" | |
"However at present, adversarial attacks likely have much larger relevance to AI than neuro" "['non', 'non', 'non', 'non', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con']" "paper quality" | |
"Its an opinion piece." "['non', 'non', 'non', 'non', 'non']" "paper quality" | |
"Sure neuromorphic systems are coming, but not definitely not with moderate expenditure of resources and effort"" While it covers important ground , I think the arguments need more refinement and focus before they can inspire productive discussion" "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'pro', 'pro', 'pro', 'pro', 'non', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con']" "paper quality" | |
"For example ... ""A neuron simply sits and listens." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"The authors directly tried to associate biological learning rules with deep network learning rules in AI." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality" | |
"For instance, it is hard to see differences between the cue periods in the bottom two heatmaps, but differences may appear in some numerical measure of the average discriminability over these regions" "['non', 'non', 'non', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con', 'con']" "paper quality" | |