mevol's picture
Upload 47 files
670dfc0
Biochemical B-experimental_method
analysis I-experimental_method
reveals O
that O
these O
outer B-protein_type
membrane I-protein_type
- I-protein_type
anchored I-protein_type
proteins I-protein_type
are O
in O
fact O
exquisitely O
specific O
for O
the O
highly O
branched O
xyloglucan B-chemical
( O
XyG B-chemical
) O
polysaccharide B-chemical
. O
Here O
, O
we O
provide O
the O
first O
biochemical B-experimental_method
, I-experimental_method
crystallographic I-experimental_method
, I-experimental_method
and I-experimental_method
genetic I-experimental_method
insight I-experimental_method
into O
how O
two O
surface B-protein_type
glycan I-protein_type
- I-protein_type
binding I-protein_type
proteins I-protein_type
from O
the O
complex O
Bacteroides B-species
ovatus I-species
xyloglucan B-gene
utilization I-gene
locus I-gene
( O
XyGUL B-gene
) O
enable O
recognition O
and O
uptake O
of O
this O
ubiquitous O
vegetable B-taxonomy_domain
polysaccharide B-chemical
. O
This O
microbial B-taxonomy_domain
community O
is O
largely O
bacterial B-taxonomy_domain
, O
with O
the O
Bacteroidetes B-taxonomy_domain
, O
Firmicutes B-taxonomy_domain
, O
and O
Actinobacteria B-taxonomy_domain
comprising O
the O
dominant O
phyla O
. O
In O
the O
archetypal O
starch B-complex_assembly
utilization I-complex_assembly
system I-complex_assembly
of O
B B-species
. I-species
thetaiotaomicron I-species
, O
starch O
binding O
to O
the O
cell O
surface O
is O
mediated O
at O
eight O
distinct O
starch B-site
- I-site
binding I-site
sites I-site
distributed O
among O
four O
surface B-protein_type
glycan I-protein_type
- I-protein_type
binding I-protein_type
proteins I-protein_type
( O
SGBPs B-protein_type
): O
two O
within O
the O
amylase B-protein_type
SusG B-protein
, O
one O
within O
SusD B-protein
, O
two O
within O
SusE B-protein
, O
and O
three O
within O
SusF B-protein
. O
The O
functional O
redundancy O
of O
many O
of O
these O
sites O
is O
high O
: O
whereas O
SusD B-protein
is O
essential O
for O
growth O
on O
starch B-chemical
, O
combined O
mutations O
of O
the O
SusE B-protein
, O
SusF B-protein
, O
and O
SusG B-protein
binding B-site
sites I-site
are O
required O
to O
impair O
growth O
on O
the O
polysaccharide B-chemical
. O
Combined O
biochemical B-experimental_method
, I-experimental_method
structural I-experimental_method
, I-experimental_method
and I-experimental_method
reverse I-experimental_method
- I-experimental_method
genetic I-experimental_method
approaches I-experimental_method
clearly O
illuminate O
the O
distinct O
, O
yet O
complementary O
, O
functions O
that O
these O
two O
proteins O
play O
in O
XyG B-chemical
recognition O
as O
it O
impacts O
the O
physiology O
of O
B B-species
. I-species
ovatus I-species
. O
Hence O
, O
there O
is O
a O
critical O
need O
for O
the O
elucidation O
of O
detailed O
structure O
- O
function O
relationships O
among O
PUL B-gene
SGBPs B-protein_type
, O
in O
light O
of O
the O
manifold O
glycan B-chemical
structures O
in O
nature O
. O
Formalin O
- O
fixed O
, O
nonpermeabilized O
B B-species
. I-species
ovatus I-species
cells O
were O
grown O
in O
minimal O
medium O
plus O
XyG B-chemical
, O
probed O
with O
custom O
rabbit O
antibodies O
to O
SGBP B-protein
- I-protein
A I-protein
or O
SGBP B-protein
- I-protein
B I-protein
, O
and O
then O
stained O
with O
Alexa O
Fluor O
488 O
goat O
anti O
- O
rabbit O
IgG O
. O
( O
A O
) O
Overlay B-experimental_method
of O
bright B-evidence
- I-evidence
field I-evidence
and I-evidence
FITC I-evidence
images I-evidence
of O
B B-species
. I-species
ovatus I-species
cells O
labeled O
with O
anti O
- O
SGBP O
- O
A O
. O
( O
B O
) O
Overlay B-experimental_method
of O
bright B-evidence
- I-evidence
field I-evidence
and I-evidence
FITC I-evidence
images I-evidence
of O
B B-species
. I-species
ovatus I-species
cells O
labeled O
with O
anti O
- O
SGBP O
- O
B O
. O
( O
C O
) O
Bright B-evidence
- I-evidence
field I-evidence
image I-evidence
of O
ΔSGBP B-mutant
- I-mutant
B I-mutant
cells O
labeled O
with O
anti O
- O
SGBP O
- O
B O
antibodies O
. O
In O
our O
initial O
study O
focused O
on O
the O
functional O
characterization O
of O
the O
glycoside B-protein_type
hydrolases I-protein_type
of O
the O
XyGUL B-gene
, O
we O
reported O
preliminary O
affinity B-experimental_method
PAGE I-experimental_method
and O
isothermal B-experimental_method
titration I-experimental_method
calorimetry I-experimental_method
( O
ITC B-experimental_method
) O
data O
indicating O
that O
both O
SGBP B-protein
- I-protein
A I-protein
and O
SGBP B-protein
- I-protein
B I-protein
are O
competent O
xyloglucan B-protein_type
- I-protein_type
binding I-protein_type
proteins I-protein_type
( O
affinity B-evidence
constant I-evidence
[ O
Ka B-evidence
] O
values O
of O
3 O
. O
74 O
× O
105 O
M O
O
1 O
and O
4 O
. O
98 O
× O
104 O
M O
O
1 O
, O
respectively O
[ O
23 O
]). O
Cocrystallization B-experimental_method
of O
SGBP B-protein
- I-protein
A I-protein
with O
XyGO2 B-chemical
generated O
a O
substrate B-complex_assembly
complex I-complex_assembly
structure B-evidence
( O
2 O
. O
3 O
Å O
, O
Rwork B-evidence
= O
21 O
. O
8 O
%, O
Rfree B-evidence
= O
24 O
. O
8 O
%, O
residues O
36 B-residue_range
to I-residue_range
546 I-residue_range
) O
( O
Fig O
. O
4A O
and O
B O
; O
Table O
2 O
) O
that O
revealed O
the O
distinct O
binding B-site
- I-site
site I-site
architecture O
of O
the O
XyG B-protein_type
binding I-protein_type
protein I-protein_type
. O
Molecular O
structure B-evidence
of O
SGBP B-protein
- I-protein
A I-protein
( O
Bacova_02651 B-gene
). O
( O
A O
) O
Overlay B-experimental_method
of O
SGBP B-protein
- I-protein
A I-protein
from O
the O
apo B-protein_state
( O
rainbow O
) O
and O
XyGO2 B-chemical
( O
gray O
) O
structures B-evidence
. O
The O
backbone O
glucose B-chemical
residues O
are O
numbered O
from O
the O
nonreducing O
end O
; O
xylose B-chemical
residues O
are O
labeled O
X1 B-residue_name_number
and O
X2 B-residue_name_number
. O
Most O
surprising O
in O
light O
of O
the O
saccharide B-evidence
- I-evidence
binding I-evidence
data I-evidence
, O
however O
, O
was O
a O
lack O
of O
extensive O
recognition O
of O
the O
XyG B-chemical
side O
chains O
; O
only O
Y84 B-residue_name_number
appeared O
to O
provide O
a O
hydrophobic B-site
interface I-site
for O
a O
xylosyl B-chemical
residue O
( O
Xyl1 B-residue_name_number
). O
Protein O
name O
Ka B-evidence
ΔG O
( O
kcal O
O
mol O
O
1 O
) O
ΔH B-evidence
( O
kcal O
O
mol O
O
1 O
) O
TΔS B-evidence
( O
kcal O
O
mol O
O
1 O
) O
Fold O
changeb O
M O
O
1 O
SGBP B-protein
- I-protein
A I-protein
( O
W82A B-mutant
W283A B-mutant
W306A B-mutant
) O
ND O
NB O
NB O
NB O
NB O
SGBP B-protein
- I-protein
A I-protein
( O
W82A B-mutant
) O
c O
4 O
. O
9 O
9 O
. O
1 O
× O
104 O
O
6 O
. O
8 O
O
6 O
. O
3 O
0 O
. O
5 O
SGBP B-protein
- I-protein
A I-protein
( O
W306 B-residue_name_number
) O
ND O
NB O
NB O
NB O
NB O
SGBP B-protein
- I-protein
B I-protein
( O
230 B-residue_range
I-residue_range
489 I-residue_range
) O
0 O
. O
7 O
( O
8 O
. O
6 O
± O
0 O
. O
20 O
) O
× O
104 O
O
6 O
. O
7 O
O
14 O
. O
9 O
± O
0 O
. O
1 O
O
8 O
. O
2 O
SGBP B-protein
- I-protein
B I-protein
( O
Y363A B-mutant
) O
19 O
. O
7 O
( O
2 O
. O
9 O
± O
0 O
. O
10 O
) O
× O
103 O
O
4 O
. O
7 O
O
18 O
. O
1 O
± O
0 O
. O
1 O
O
13 O
. O
3 O
SGBP B-protein
- I-protein
B I-protein
( O
W364A B-mutant
) O
ND O
Weak O
Weak O
Weak O
Weak O
SGBP B-protein
- I-protein
B I-protein
( O
F414A B-mutant
) O
3 O
. O
2 O
( O
1 O
. O
80 O
± O
0 O
. O
03 O
) O
× O
104 O
O
5 O
. O
8 O
O
11 O
. O
4 O
± O
0 O
. O
1 O
O
5 O
. O
6 O
Weak O
binding O
represents O
a O
Ka B-evidence
of O
< O
500 O
M O
O
1 O
. O
SGBP B-protein
- I-protein
B I-protein
has O
a O
multimodular O
structure O
with O
a O
single O
, O
C O
- O
terminal O
glycan B-structure_element
- I-structure_element
binding I-structure_element
domain I-structure_element
. O
The O
crystal B-evidence
structure I-evidence
of O
full B-protein_state
- I-protein_state
length I-protein_state
SGBP B-protein
- I-protein
B I-protein
in B-protein_state
complex I-protein_state
with I-protein_state
XyGO2 B-chemical
( O
2 O
. O
37 O
Å O
, O
Rwork B-evidence
= O
19 O
. O
9 O
%, O
Rfree B-evidence
= O
23 O
. O
9 O
%, O
residues O
34 B-residue_range
to I-residue_range
489 I-residue_range
) O
( O
Table O
2 O
) O
revealed O
an O
extended O
structure B-evidence
composed O
of O
three O
tandem B-structure_element
immunoglobulin I-structure_element
( I-structure_element
Ig I-structure_element
)- I-structure_element
like I-structure_element
domains I-structure_element
( O
domains O
A B-structure_element
, O
B B-structure_element
, O
and O
C B-structure_element
) O
followed O
at O
the O
C O
terminus O
by O
a O
novel O
xyloglucan B-structure_element
- I-structure_element
binding I-structure_element
domain I-structure_element
( O
domain O
D B-structure_element
) O
( O
Fig O
. O
5A O
). O
Analogously O
, O
the O
outer B-protein_state
membrane I-protein_state
- I-protein_state
anchored I-protein_state
endo B-protein_type
- I-protein_type
xyloglucanase I-protein_type
BoGH5 B-protein
of O
the O
XyGUL B-gene
contains O
a O
100 B-structure_element
- I-structure_element
amino I-structure_element
- I-structure_element
acid I-structure_element
, I-structure_element
all I-structure_element
- I-structure_element
β I-structure_element
- I-structure_element
strand I-structure_element
, O
N B-structure_element
- I-structure_element
terminal I-structure_element
module I-structure_element
and O
flexible B-structure_element
linker I-structure_element
that O
imparts O
conformational O
flexibility O
and O
distances O
the O
catalytic B-structure_element
module I-structure_element
from O
the O
cell O
surface O
. O
The O
Y363A B-mutant
site B-experimental_method
- I-experimental_method
directed I-experimental_method
mutant I-experimental_method
of O
SGBP B-protein
- I-protein
B I-protein
displays O
a O
20 O
- O
fold O
decrease O
in O
the O
Ka B-evidence
for O
XyG B-chemical
, O
while O
the O
W364A B-mutant
mutant B-protein_state
lacks B-protein_state
XyG I-protein_state
binding I-protein_state
( O
Table O
3 O
; O
see O
Fig O
. O
S6 O
in O
the O
supplemental O
material O
). O
Hoping O
to O
achieve O
a O
higher O
- O
resolution O
view O
of O
the O
SGBP B-protein
- I-protein
B I-protein
O
xyloglucan B-chemical
interaction O
, O
we O
solved B-experimental_method
the O
crystal B-evidence
structure I-evidence
of O
the O
fused B-mutant
CD I-mutant
domains I-mutant
in B-protein_state
complex I-protein_state
with I-protein_state
XyGO2 B-chemical
( O
1 O
. O
57 O
Å O
, O
Rwork B-evidence
= O
15 O
. O
6 O
%, O
Rfree B-evidence
= O
17 O
. O
1 O
%, O
residues O
230 B-residue_range
to I-residue_range
489 I-residue_range
) O
( O
Table O
2 O
). O
Growth O
on O
glucose B-chemical
displayed O
the O
shortest O
lag B-evidence
time I-evidence
for O
each O
strain O
, O
and O
so O
lag B-evidence
times I-evidence
were O
normalized O
for O
each O
carbohydrate B-chemical
by O
subtracting O
the O
lag B-evidence
time I-evidence
of O
that O
strain O
in O
glucose B-chemical
( O
Fig O
. O
6 O
; O
see O
Fig O
. O
S8 O
in O
the O
supplemental O
material O
). O
Complementation B-experimental_method
of O
the O
ΔSGBP B-mutant
- I-mutant
A I-mutant
strain O
( O
ΔSGBP B-mutant
- I-mutant
A I-mutant
:: O
SGBP B-protein
- I-protein
A I-protein
) O
restores O
growth O
to O
wild B-protein_state
- I-protein_state
type I-protein_state
rates O
on O
xyloglucan B-chemical
and O
XyGO1 B-chemical
, O
yet O
the O
calculated O
rate O
of O
the O
complemented O
strain O
is O
~ O
72 O
% O
that O
of O
the O
WT B-protein_state
Δtdk B-mutant
strain O
on O
XyGO2 B-chemical
; O
similar O
results O
were O
obtained O
for O
the O
SGBP B-protein
- I-protein
B I-protein
complemented O
strain O
despite O
the O
fact O
that O
the O
growth O
curves O
do O
not O
appear O
much O
different O
( O
see O
Fig O
. O
S8C O
and O
F O
). O
Fig O
. O
1B O
) O
was O
completely O
incapable O
of O
growth O
on O
XyG B-chemical
, O
XyGO1 B-chemical
, O
and O
XyGO2 B-chemical
, O
indicating O
that O
SGBP B-protein
- I-protein
A I-protein
is O
essential O
for O
XyG B-chemical
utilization O
( O
Fig O
. O
6 O
). O
Intriguingly O
, O
the O
ΔSGBP B-mutant
- I-mutant
B I-mutant
strain O
( O
ΔBacova_02650 B-mutant
) O
( O
cf O
. O
In O
the O
BtSus B-gene
, O
SusD B-protein
and O
the O
TBDT B-protein_type
SusC B-protein
interact O
, O
and O
we O
speculate O
that O
this O
interaction O
is O
necessary O
for O
glycan B-chemical
uptake O
, O
as O
suggested O
by O
the O
fact O
that O
a O
ΔsusD B-mutant
mutant B-protein_state
cannot O
grow O
on O
starch B-chemical
, O
but O
a O
ΔsusD B-mutant
:: O
SusD B-mutant
* I-mutant
strain O
regains O
this O
ability O
if O
a O
transcriptional B-protein_type
activator I-protein_type
of O
the O
sus B-gene
operon I-gene
is O
supplied O
. O
Recent O
work O
has O
elucidated O
that O
Bacteroidetes B-taxonomy_domain
cross O
- O
feed O
during O
growth O
on O
many O
glycans B-chemical
; O
the O
glycoside B-protein_type
hydrolases I-protein_type
expressed O
by O
one O
species O
liberate O
oligosaccharides B-chemical
for O
consumption O
by O
other O
members O
of O
the O
community O
. O
In O
this O
instance O
, O
coexpression O
of O
the O
susD B-gene
- O
like O
gene O
nanU B-gene
was O
not O
required O
, O
nor O
did O
the O
expression O
of O
the O
nanU B-gene
gene O
enhance O
growth O
kinetics O
. O
However O
, O
the O
natural O
diversity O
of O
these O
proteins O
represents O
a O
rich O
source O
for O
the O
discovery O
of O
unique O
carbohydrate B-structure_element
- I-structure_element
binding I-structure_element
motifs I-structure_element
to O
both O
inform O
gut O
microbiology O
and O
generate O
new O
, O
specific O
carbohydrate B-chemical
analytical O
reagents O
. O
The O
ability O
of O
our O
resident O
gut O
bacteria B-taxonomy_domain
to O
recognize O
polysaccharides B-chemical
is O
the O
first O
committed O
step O
of O
glycan B-chemical
consumption O
by O
these O
organisms O
, O
a O
critical O
process O
that O
influences O
the O
community O
structure O
and O
thus O
the O
metabolic O
output O
( O
i O
. O
e O
., O
short O
- O
chain O
fatty O
acid O
and O
metabolite O
profile O
) O
of O
these O
organisms O
. O
Mucosal O
glycan B-chemical
foraging O
enhances O
fitness O
and O
transmission O
of O
a O
saccharolytic O
human O
gut O
bacterial O
symbiont O
Neisseria B-protein
adhesin I-protein
A I-protein
( O
NadA B-protein
) O
present O
on O
the O
meningococcal B-taxonomy_domain
surface O
can O
mediate O
binding O
to O
human B-species
cells O
and O
is O
one O
of O
the O
three O
MenB B-species
vaccine O
protein O
antigens O
. O
MarR B-protein_type
family O
proteins O
can O
promote O
bacterial B-taxonomy_domain
survival O
in O
the O
presence O
of O
antibiotics O
, O
toxic O
chemicals O
, O
organic O
solvents O
or O
reactive O
oxygen O
species O
and O
can O
regulate O
virulence O
factor O
expression O
. O
MarR B-protein_type
homologues O
can O
act O
either O
as O
transcriptional O
repressors O
or O
as O
activators O
. O
A O
potentially O
interesting O
exception O
comes O
from O
the O
ligand B-protein_state
- I-protein_state
free I-protein_state
and O
salicylate B-protein_state
- I-protein_state
bound I-protein_state
forms O
of O
the O
Methanobacterium B-species
thermoautotrophicum I-species
protein O
MTH313 B-protein
which O
revealed O
that O
two O
salicylate B-chemical
molecules O
bind O
to O
one O
MTH313 B-protein
dimer B-oligomeric_state
and O
induce O
large O
conformational O
changes O
, O
apparently O
sufficient O
to O
prevent O
DNA O
binding O
. O
We O
obtained O
detailed O
new O
insights O
into O
ligand O
specificity O
, O
how O
the O
ligand O
allosterically O
influences O
the O
DNA O
- O
binding O
ability O
of O
NadR B-protein
, O
and O
the O
regulation O
of O
nadA B-gene
expression O
, O
thus O
also O
providing O
a O
deeper O
structural O
understanding O
of O
the O
ligand O
- O
responsive O
MarR B-protein_type
super O
- O
family O
. O
Since O
ligand O
- O
binding O
often O
increases O
protein O
stability O
, O
we O
also O
investigated O
the O
effect O
of O
various O
HPAs B-chemical
( O
Fig O
1A O
) O
on O
the O
melting B-evidence
temperature I-evidence
( O
Tm B-evidence
) O
of O
NadR B-protein
. O
As O
a O
control O
of O
specificity O
, O
we O
also O
tested O
salicylate B-chemical
, O
a O
known O
ligand O
of O
some O
MarR B-protein_type
proteins O
previously O
reported O
to O
increase O
the O
Tm B-evidence
of O
ST1710 B-protein
and O
MTH313 B-protein
. O
However O
, O
an O
increased O
thermal O
stability O
was O
induced O
by O
4 B-chemical
- I-chemical
HPA I-chemical
and O
, O
to O
a O
lesser O
extent O
, O
by O
3 B-chemical
- I-chemical
HPA I-chemical
. O
( O
A O
) O
Molecular O
structures O
of O
3 B-chemical
- I-chemical
HPA I-chemical
( O
MW O
152 O
. O
2 O
), O
4 B-chemical
- I-chemical
HPA I-chemical
( O
MW O
152 O
. O
2 O
), O
3Cl B-chemical
, I-chemical
4 I-chemical
- I-chemical
HPA I-chemical
( O
MW O
186 O
. O
6 O
) O
and O
salicylic B-chemical
acid I-chemical
( O
MW O
160 O
. O
1 O
). O
( O
B O
) O
DSC B-experimental_method
profiles B-evidence
, O
colored O
as O
follows O
: O
apo B-protein_state
- O
NadR B-protein
( O
violet O
), O
NadR B-complex_assembly
+ I-complex_assembly
salicylate I-complex_assembly
( O
red O
), O
NadR B-complex_assembly
+ I-complex_assembly
3 I-complex_assembly
- I-complex_assembly
HPA I-complex_assembly
( O
green O
), O
NadR B-complex_assembly
+ I-complex_assembly
4 I-complex_assembly
- I-complex_assembly
HPA I-complex_assembly
( O
blue O
), O
NadR B-complex_assembly
+ I-complex_assembly
3Cl I-complex_assembly
, I-complex_assembly
4 I-complex_assembly
- I-complex_assembly
HPA I-complex_assembly
( O
pink O
). O
NadR B-protein
displays O
distinct O
binding B-evidence
affinities I-evidence
for O
hydroxyphenylacetate B-chemical
ligands O
To O
fully O
characterize O
the O
NadR B-protein
/ O
HPA B-chemical
interactions O
, O
we O
sought O
to O
determine O
crystal B-evidence
structures I-evidence
of O
NadR B-protein
in O
ligand B-protein_state
- I-protein_state
bound I-protein_state
( O
holo B-protein_state
) O
and O
ligand B-protein_state
- I-protein_state
free I-protein_state
( O
apo B-protein_state
) O
forms O
. O
First O
, O
we O
crystallized B-experimental_method
NadR B-protein
( O
a O
selenomethionine B-experimental_method
- I-experimental_method
labelled I-experimental_method
derivative I-experimental_method
) O
in O
the O
presence O
of O
a O
200 O
- O
fold O
molar O
excess O
of O
4 B-chemical
- I-chemical
HPA I-chemical
. O
A O
single O
conserved B-protein_state
leucine B-residue_name
residue O
( O
L130 B-residue_name_number
) O
is O
crucial O
for O
dimerization O
The O
NadR B-protein
dimer B-site
interface I-site
is O
formed O
by O
at O
least O
32 O
residues O
, O
which O
establish O
numerous O
inter O
- O
chain O
salt O
bridges O
or O
hydrogen O
bonds O
, O
and O
many O
hydrophobic O
packing O
interactions O
( O
Fig O
3A O
and O
3B O
). O
Only O
the O
L130K B-mutant
mutation O
induced O
a O
notable O
change O
in O
the O
oligomeric O
state O
of O
NadR B-protein
( O
Fig O
3C O
). O
Chain B-structure_element
B I-structure_element
, O
grey O
surface O
, O
is O
marked O
blue O
to O
highlight O
residues O
probed O
by O
site B-experimental_method
- I-experimental_method
directed I-experimental_method
mutagenesis I-experimental_method
( O
E136 B-residue_name_number
only O
makes O
a O
salt O
bridge O
with O
K126 B-residue_name_number
, O
therefore O
it O
was O
sufficient O
to O
make O
the O
K126A B-mutant
mutation O
to O
assess O
the O
importance O
of O
this O
ionic O
interaction O
; O
the O
H7 B-residue_name_number
position O
is O
labelled O
for O
monomer B-oligomeric_state
A B-structure_element
, O
since O
electron B-evidence
density I-evidence
was O
lacking O
for O
monomer B-oligomeric_state
B B-structure_element
). O
( O
B O
) O
A O
zoom O
into O
the O
environment O
of O
helix B-structure_element
α6 B-structure_element
to O
show O
how O
residue O
L130 B-residue_name_number
chain B-structure_element
B I-structure_element
( O
blue O
side O
chain O
) O
is O
a O
focus O
of O
hydrophobic O
packing O
interactions O
with O
L130 B-residue_name_number
, O
L133 B-residue_name_number
, O
L134 B-residue_name_number
and O
L137 B-residue_name_number
of O
chain B-structure_element
A I-structure_element
( O
red O
side O
chains O
). O
* O
Bond O
distance O
between O
the O
ligand O
carboxylate O
group O
and O
the O
water B-chemical
molecule O
, O
which O
in O
turn O
makes O
H O
- O
bond O
to O
the O
SerA9 B-residue_name_number
and O
AsnA11 B-residue_name_number
side O
chains O
. O
Consequently O
, O
residues O
in O
the O
4 B-site
- I-site
HPA I-site
binding I-site
pocket I-site
are O
mostly O
contributed O
by O
NadR B-protein
chain B-structure_element
B I-structure_element
, O
and O
effectively O
created O
a O
polar O
O
floor O
O
and O
a O
hydrophobic O
O
ceiling O
, O
which O
house O
the O
ligand O
. O
Collectively O
, O
this O
mixed O
network O
of O
polar O
and O
hydrophobic O
interactions O
endows O
NadR B-protein
with O
a O
strong O
recognition O
pattern O
for O
HPAs B-chemical
, O
with O
additional O
medium O
- O
range O
interactions O
potentially O
established O
with O
the O
hydroxyl O
group O
at O
the O
4 O
- O
position O
. O
Structure O
- O
activity O
relationships O
: O
molecular O
basis O
of O
enhanced O
stabilization O
by O
3Cl B-chemical
, I-chemical
4 I-chemical
- I-chemical
HPA I-chemical
We O
modelled B-experimental_method
the O
binding O
of O
other O
HPAs B-chemical
by O
in B-experimental_method
silico I-experimental_method
superposition I-experimental_method
onto O
4 B-chemical
- I-chemical
HPA I-chemical
in O
the O
holo B-protein_state
- O
NadR B-protein
structure B-evidence
, O
and O
thereby O
obtained O
molecular O
explanations O
for O
the O
binding O
specificities O
of O
diverse O
ligands O
. O
For O
example O
, O
similar O
to O
4 B-chemical
- I-chemical
HPA I-chemical
, O
the O
binding O
of O
3Cl B-chemical
, I-chemical
4 I-chemical
- I-chemical
HPA I-chemical
could O
involve O
multiple O
bonds O
towards O
the O
carboxylate O
group O
of O
the O
ligand O
and O
some O
to O
the O
4 O
- O
hydroxyl O
group O
. O
Finally O
, O
salicylate B-chemical
is O
presumably O
unable O
to O
specifically O
bind O
NadR B-protein
due O
to O
the O
2 O
- O
hydroxyl O
substitution O
and O
the O
shorter O
aliphatic O
chain O
connecting O
its O
carboxylate O
group O
( O
Fig O
1A O
): O
the O
compound O
simply O
seems O
too O
small O
to O
simultaneously O
establish O
the O
network O
of O
beneficial O
bonds O
observed O
in O
the O
NadR B-protein
/ O
HPA B-chemical
interactions O
. O
The O
stoichiometry O
of O
the O
NadR B-complex_assembly
- I-complex_assembly
HPA I-complex_assembly
interactions O
was O
determined O
using O
Eq O
1 O
( O
see O
Materials O
and O
Methods O
), O
and O
revealed O
stoichiometries B-evidence
of O
1 O
. O
13 O
for O
4 B-chemical
- I-chemical
HPA I-chemical
, O
1 O
. O
02 O
for O
3 B-chemical
- I-chemical
HPA I-chemical
, O
and O
1 O
. O
21 O
for O
3Cl B-chemical
, I-chemical
4 I-chemical
- I-chemical
HPA I-chemical
, O
strongly O
suggesting O
that O
one O
NadR B-protein
dimer B-oligomeric_state
bound B-protein_state
to I-protein_state
1 O
HPA B-chemical
analyte O
molecule O
. O
The O
crystallographic B-evidence
data I-evidence
, O
supported O
by O
the O
SPR B-experimental_method
studies O
of O
binding B-evidence
stoichiometry I-evidence
, O
revealed O
the O
lack O
of O
a O
second O
4 B-chemical
- I-chemical
HPA I-chemical
molecule O
in O
the O
homodimer B-oligomeric_state
, O
suggesting O
negative O
co O
- O
operativity O
, O
a O
phenomenon O
previously O
described O
for O
the O
MTH313 B-protein
/ O
salicylate B-chemical
interaction O
and O
for O
other O
MarR B-protein_type
family O
proteins O
. O
However O
, O
since O
residues O
of O
helix B-structure_element
α6 B-structure_element
were O
not O
directly O
involved O
in O
ligand O
binding O
, O
an O
explanation O
for O
the O
lack O
of O
4 B-chemical
- I-chemical
HPA I-chemical
in O
monomer B-oligomeric_state
A B-structure_element
did O
not O
emerge O
by O
analyzing O
only O
these O
backbone O
atom O
positions O
, O
suggesting O
that O
a O
more O
complex O
series O
of O
allosteric O
events O
may O
occur O
. O
The O
broad O
spectral O
dispersion O
and O
the O
number O
of O
peaks O
observed O
, O
which O
is O
close O
to O
the O
number O
of O
expected O
backbone O
amide O
N O
- O
H O
groups O
for O
this O
polypeptide O
, O
confirmed O
that O
apo B-protein_state
- O
NadR B-protein
is O
well B-protein_state
- I-protein_state
folded I-protein_state
under O
these O
conditions O
and O
exhibits O
one O
conformation O
appreciable O
on O
the O
NMR B-experimental_method
timescale O
, O
i O
. O
e O
. O
in O
the O
NMR B-experimental_method
experiments O
at O
25 O
° O
C O
, O
two O
or O
more O
distinct O
conformations O
of O
apo B-protein_state
- O
NadR B-protein
monomers B-oligomeric_state
were O
not O
readily O
apparent O
. O
( O
A O
) O
Superposition B-experimental_method
of O
two O
1H B-experimental_method
- I-experimental_method
15N I-experimental_method
TROSY I-experimental_method
- I-experimental_method
HSQC I-experimental_method
spectra B-evidence
recorded O
at O
25 O
° O
C O
on O
apo B-protein_state
- O
NadR B-protein
( O
cyan O
) O
and O
on O
NadR B-protein
in O
the O
presence B-protein_state
of I-protein_state
4 B-chemical
- I-chemical
HPA I-chemical
( O
red O
). O
Considering O
the O
small O
size O
, O
fast O
diffusion O
and O
relatively O
low O
binding B-evidence
affinity I-evidence
of O
4 B-chemical
- I-chemical
HPA I-chemical
, O
it O
would O
not O
be O
surprising O
if O
the O
ligand O
associates O
and O
dissociates O
rapidly O
on O
the O
NMR B-experimental_method
time O
scale O
, O
resulting O
in O
only O
one O
set O
of O
peaks O
whose O
chemical O
shifts O
represent O
the O
average O
environment O
of O
the O
bound B-protein_state
and O
unbound B-protein_state
states O
. O
Overall O
apo B-protein_state
- O
and O
holo B-protein_state
- O
NadR B-protein
structures B-evidence
are O
similar O
. O
To O
further O
investigate O
the O
conformational O
rearrangements O
of O
NadR B-protein
, O
we O
performed O
local B-experimental_method
structural I-experimental_method
alignments I-experimental_method
using O
only O
a O
subset O
of O
residues O
in O
the O
DNA B-structure_element
- I-structure_element
binding I-structure_element
helix I-structure_element
( O
α4 B-structure_element
). O
By O
selecting B-experimental_method
and O
aligning B-experimental_method
residues O
Arg64 B-residue_range
- I-residue_range
Ala77 I-residue_range
of O
one O
α4 B-structure_element
helix I-structure_element
per O
dimer B-oligomeric_state
, O
superposition B-experimental_method
of O
the O
holo B-protein_state
- O
homodimer B-oligomeric_state
onto O
the O
two O
apo B-protein_state
- O
homodimers B-oligomeric_state
revealed O
differences O
in O
the O
monomer B-oligomeric_state
conformations O
of O
each O
structure B-evidence
. O
The O
three O
homodimers B-oligomeric_state
( O
chains O
AB B-structure_element
holo B-protein_state
, O
AB B-structure_element
apo B-protein_state
, O
and O
CD B-structure_element
apo B-protein_state
) O
were O
overlaid B-experimental_method
by O
structural B-experimental_method
alignment I-experimental_method
exclusively O
of O
all O
heavy O
atoms O
in O
residues O
R64 B-residue_range
- I-residue_range
A77 I-residue_range
( O
shown O
in O
red O
, O
with O
side O
chain O
sticks O
) O
of O
chains O
A B-structure_element
holo B-protein_state
, O
A B-structure_element
apo B-protein_state
, O
and O
C B-structure_element
apo B-protein_state
, O
belonging O
to O
helix B-structure_element
α4 B-structure_element
( O
left O
). O
However O
, O
structural B-experimental_method
comparisons I-experimental_method
revealed O
that O
the O
shift O
of O
holo B-protein_state
- O
NadR B-protein
helix B-structure_element
α4 B-structure_element
induced O
by O
the O
presence B-protein_state
of I-protein_state
4 B-chemical
- I-chemical
HPA I-chemical
was O
also O
accompanied O
by O
several O
changes O
at O
the O
holo B-protein_state
dimer B-site
interface I-site
, O
while O
such O
extensive O
structural O
differences O
were O
not O
observed O
in O
the O
apo B-protein_state
dimer B-site
interfaces I-site
, O
particularly O
notable O
when O
comparing O
the O
α6 B-structure_element
helices I-structure_element
( O
S3 O
Fig O
). O
Pairwise B-experimental_method
superpositions I-experimental_method
showed O
that O
the O
NadR B-protein
apo B-protein_state
- O
homodimer B-oligomeric_state
AB B-structure_element
was O
the O
most O
similar O
to O
OhrR B-protein
( O
rmsd B-evidence
2 O
. O
6 O
Å O
), O
while O
the O
holo B-protein_state
- O
homodimer B-oligomeric_state
was O
the O
most O
divergent O
( O
rmsd B-evidence
3 O
. O
3 O
Å O
) O
( O
Fig O
8C O
). O
Interestingly O
, O
and O
on O
the O
contrary O
, O
the O
nadR B-gene
N11A B-mutant
complemented O
strain O
showed O
hypo O
- O
repression O
( O
i O
. O
e O
. O
exhibited O
high O
expression O
of O
nadA B-gene
both O
in O
absence O
and O
presence O
of O
4 B-chemical
- I-chemical
HPA I-chemical
). O
Western B-experimental_method
blot I-experimental_method
analyses O
of O
wild B-protein_state
- I-protein_state
type I-protein_state
( O
WT B-protein_state
) O
strain O
( O
lanes O
1 O
O
2 O
) O
or O
isogenic O
nadR B-gene
knockout O
strains O
( O
ΔNadR B-mutant
) O
complemented O
to O
express O
the O
indicated O
NadR B-protein
WT B-protein_state
or O
mutant B-protein_state
proteins O
( O
lanes O
3 O
O
12 O
) O
or O
not O
complemented O
( O
lanes O
13 O
O
14 O
), O
grown O
in O
the O
presence O
( O
even O
lanes O
) O
or O
absence O
( O
odd O
lanes O
) O
of O
5mM O
4 B-chemical
- I-chemical
HPA I-chemical
, O
showing O
NadA B-protein
and O
NadR B-protein
expression O
. O
Complementation O
of O
ΔNadR B-mutant
with O
WT B-protein_state
NadR B-protein
enables O
induction O
of O
nadA B-gene
expression O
by O
4 B-chemical
- I-chemical
HPA I-chemical
. O
Here O
, O
we O
determined O
the O
first O
crystal B-evidence
structures I-evidence
of O
apo B-protein_state
- O
NadR B-protein
and O
holo B-protein_state
- O
NadR B-protein
. O
These O
experimentally O
- O
determined O
structures B-evidence
enabled O
a O
new O
detailed O
characterization O
of O
the O
ligand B-site
- I-site
binding I-site
pocket I-site
. O
Subsequently O
, O
we O
established O
the O
functional O
importance O
of O
His7 B-residue_name_number
, O
Ser9 B-residue_name_number
, O
Asn11 B-residue_name_number
and O
Phe25 B-residue_name_number
in O
the O
in O
vitro O
response O
of O
meningococcus B-taxonomy_domain
to O
4 B-chemical
- I-chemical
HPA I-chemical
, O
via O
site B-experimental_method
- I-experimental_method
directed I-experimental_method
mutagenesis I-experimental_method
. O
( O
B O
) O
A O
structural B-experimental_method
alignment I-experimental_method
of O
MTH313 B-protein
chain B-structure_element
A I-structure_element
and O
ST1710 B-protein
( O
pink O
) O
( O
Cα O
rmsd B-evidence
2 O
. O
3Å O
), O
shows O
that O
they O
bind O
salicylate B-chemical
in O
equivalent O
sites O
( O
differing O
by O
only O
~ O
3Å O
) O
and O
with O
the O
same O
orientation O
. O
In O
an O
alternative O
and O
less O
extensive O
manner O
, O
the O
binding O
of O
two O
salicylate B-chemical
molecules O
to O
the O
M B-species
. I-species
thermoautotrophicum I-species
protein O
MTH313 B-protein
appeared O
to O
induce O
large O
changes O
in O
the O
wHTH B-structure_element
domain I-structure_element
, O
which O
was O
associated O
with O
reduced O
DNA O
- O
binding O
activity O
. O
Here O
, O
we O
report O
two O
high O
- O
resolution O
PduL B-protein_type
crystal B-evidence
structures I-evidence
with B-protein_state
bound I-protein_state
substrates I-protein_state
. O
This O
reaction O
directly O
links O
an O
acyl B-chemical
- I-chemical
CoA I-chemical
with O
ATP B-chemical
generation O
via O
substrate O
- O
level O
phosphorylation O
, O
producing O
short B-chemical
- I-chemical
chain I-chemical
fatty I-chemical
acids I-chemical
( O
e O
. O
g O
., O
acetate B-chemical
), O
and O
also O
provides O
a O
path O
for O
short B-chemical
- I-chemical
chain I-chemical
fatty I-chemical
acids I-chemical
to O
enter O
central O
metabolism O
. O
Not O
only O
does O
PduL B-protein_type
facilitate O
substrate O
level O
phosphorylation O
, O
but O
it O
also O
is O
critical O
for O
cofactor O
recycling O
within O
, O
and O
product O
efflux O
from O
, O
the O
organelle O
. O
More O
recently O
, O
bioinformatic B-experimental_method
studies I-experimental_method
have O
demonstrated O
the O
widespread O
distribution O
of O
BMCs B-complex_assembly
among O
diverse O
bacterial B-taxonomy_domain
phyla I-taxonomy_domain
and O
grouped O
them O
into O
23 O
different O
functional O
types O
. O
They O
can O
also O
work O
in O
the O
reverse O
direction O
to O
activate O
acetate B-chemical
to O
the O
CoA B-chemical
- I-chemical
thioester I-chemical
. O
Another O
distinctive O
feature O
of O
BMC B-protein_state
- I-protein_state
associated I-protein_state
PduL B-protein_type
homologs O
is O
an O
N O
- O
terminal O
encapsulation B-structure_element
peptide I-structure_element
( O
EP B-structure_element
) O
that O
is O
thought O
to O
O
target O
O
proteins O
for O
encapsulation O
by O
the O
BMC B-complex_assembly
shell B-structure_element
. O
The O
primary O
structure O
of O
PduL B-protein_type
homologs O
is O
subdivided O
into O
two O
PF06130 B-structure_element
domains O
, O
each O
roughly O
80 B-residue_range
residues I-residue_range
in I-residue_range
length I-residue_range
. O
Structure B-experimental_method
Determination I-experimental_method
of O
PduL B-protein_type
While O
purifying O
full B-protein_state
- I-protein_state
length I-protein_state
sPduL B-protein
, O
we O
observed O
a O
tendency O
to O
aggregation O
as O
described O
previously O
, O
with O
a O
large O
fraction O
of O
the O
expressed O
protein O
found O
in O
the O
insoluble O
fraction O
in O
a O
white O
, O
cake O
- O
like O
pellet O
. O
( O
a O
) O
Primary O
and O
secondary O
structure O
of O
rPduL B-protein
( O
tubes O
represent O
α B-structure_element
- I-structure_element
helices I-structure_element
, O
arrows O
β B-structure_element
- I-structure_element
sheets I-structure_element
and O
dashed O
line O
residues O
disordered O
in O
the O
structure B-evidence
. O
The O
first B-residue_range
33 I-residue_range
amino I-residue_range
acids I-residue_range
are O
present O
only O
in O
the O
wildtype O
construct O
and O
contains O
the O
predicted O
EP B-structure_element
alpha B-structure_element
helix I-structure_element
, O
α0 B-structure_element
); O
the O
truncated B-protein_state
rPduLΔEP B-mutant
that O
was O
crystallized B-experimental_method
begins O
with O
M B-residue_name
- O
G B-residue_name
- O
V B-residue_name
. O
Coloring O
is O
according O
to O
structural O
domains O
( O
domain B-structure_element
1 I-structure_element
D36 B-residue_range
- I-residue_range
N46 I-residue_range
/ O
Q155 B-residue_range
- I-residue_range
C224 I-residue_range
, O
blue O
; O
loop B-structure_element
insertion I-structure_element
G61 B-residue_range
- I-residue_range
E81 I-residue_range
, O
grey O
; O
domain B-structure_element
2 I-structure_element
R47 B-residue_range
- I-residue_range
F60 I-residue_range
/ O
E82 B-residue_range
- I-residue_range
A154 I-residue_range
, O
red O
). O
Using O
a O
mercury B-experimental_method
- I-experimental_method
derivative I-experimental_method
crystal I-experimental_method
form O
diffracting O
to O
1 O
. O
99 O
Å O
( O
Table O
2 O
), O
we O
obtained O
high O
quality O
electron B-evidence
density I-evidence
for O
model O
building O
and O
used O
the O
initial O
model O
to O
refine O
against O
the O
native O
data O
to O
Rwork B-evidence
/ O
Rfree B-evidence
values O
of O
18 O
. O
9 O
/ O
22 O
. O
1 O
%. O
There O
are O
two O
PduL B-protein_type
molecules O
in O
the O
asymmetric O
unit O
of O
the O
P212121 O
unit O
cell O
. O
Structurally O
, O
PduL B-protein_type
consists O
of O
two O
domains B-structure_element
( O
Fig O
2 O
, O
blue O
/ O
red O
), O
each O
a O
beta B-structure_element
- I-structure_element
barrel I-structure_element
that O
is O
capped O
on O
both O
ends O
by O
short O
α B-structure_element
- I-structure_element
helices I-structure_element
. O
Consistent O
with O
this O
, O
results O
from O
size B-experimental_method
exclusion I-experimental_method
chromatography I-experimental_method
of O
rPduLΔEP B-mutant
suggest O
that O
it O
is O
a O
dimer B-oligomeric_state
in O
solution O
( O
Fig O
5e O
). O
The O
asterisk O
and O
double O
arrow O
marks O
the O
location O
of O
the O
π O
O
π O
interaction O
between O
F116 B-residue_name_number
and O
the O
CoA B-chemical
base O
of O
the O
other O
dimer B-oligomeric_state
chain O
. O
CoA B-chemical
and O
the O
metal O
ions O
bind O
between O
the O
two O
domains O
, O
presumably O
in O
the O
active B-site
site I-site
( O
Figs O
2b O
and O
4a O
). O
The O
large O
differences O
between O
the O
anomalous O
signals O
confirm O
the O
presence O
of O
zinc B-chemical
at O
both O
metal O
sites O
( O
S3 O
Fig O
). O
The O
first O
zinc B-chemical
ion O
( O
Zn1 B-chemical
) O
is O
in O
a O
tetrahedral O
coordination O
state O
with O
His48 B-residue_name_number
, O
His50 B-residue_name_number
, O
Glu109 B-residue_name_number
, O
and O
the O
CoA B-chemical
sulfur B-chemical
( O
Fig O
4a O
). O
Oligomeric O
States O
of O
PduL B-protein_type
Orthologs O
Are O
Influenced O
by O
the O
EP B-structure_element
In O
contrast O
, O
both O
full B-protein_state
- I-protein_state
length I-protein_state
rPduL B-protein
and O
pPduL B-protein
appeared O
to O
exist O
in O
two O
distinct O
oligomeric O
states O
( O
Fig O
5b O
and O
5c O
respectively O
, O
orange O
curves O
), O
one O
form O
of O
the O
approximate O
size O
of O
a O
dimer B-oligomeric_state
and O
the O
second O
, O
a O
higher O
molecular O
weight O
oligomer B-oligomeric_state
(~ O
150 O
kDa O
). O
In O
contrast O
, O
rPduLΔEP B-mutant
eluted O
as O
one O
smaller O
oligomer O
, O
possibly O
a O
dimer B-oligomeric_state
. O
Homologs O
of O
the O
predominant O
cofactor O
utilizer O
( O
aldehyde B-protein_type
dehydrogenase I-protein_type
) O
and O
NAD B-chemical
+ I-chemical
regenerator O
( O
alcohol B-protein_type
dehydrogenase I-protein_type
) O
have O
been O
structurally O
characterized O
, O
but O
until O
now O
structural O
information O
was O
lacking O
for O
PduL B-protein_type
, O
which O
recycles O
CoA B-chemical
in O
the O
organelle O
lumen O
. O
The O
PduL B-protein_type
signature O
primary O
structure O
, O
two O
PF06130 B-structure_element
domains O
, O
occurs O
in O
some O
multidomain O
proteins O
, O
most O
of O
them O
annotated O
as O
Acks B-protein_type
, O
suggesting O
that O
PduL B-protein_type
may O
also O
replace O
Pta B-protein_type
in O
variants O
of O
the O
phosphotransacetylase B-protein_type
- O
Ack B-protein_type
pathway O
. O
For O
BMC B-complex_assembly
- O
encapsulated O
proteins O
to O
properly O
function O
together O
, O
they O
must O
be O
targeted O
to O
the O
lumen O
and O
assemble O
into O
an O
organization O
that O
facilitates O
substrate O
/ O
product O
channeling O
among O
the O
different O
catalytic B-site
sites I-site
of O
the O
signature O
and O
core O
enzymes O
. O
Structured O
aggregation O
of O
the O
core O
enzymes O
has O
been O
proposed O
to O
be O
the O
initial O
step O
in O
metabolosome B-complex_assembly
assembly O
and O
is O
known O
to O
be O
the O
first O
step O
of O
β O
- O
carboxysome O
biogenesis O
, O
where O
the O
core O
enzyme O
Ribulose B-protein_type
Bisphosphate I-protein_type
Carboxylase I-protein_type
/ I-protein_type
Oxygenase I-protein_type
( O
RuBisCO B-protein_type
) O
is O
aggregated O
by O
the O
CcmM B-protein_type
protein O
. O
The O
close O
resemblance O
between O
the O
structures O
binding O
CoA B-chemical
and O
phosphate B-chemical
likely O
indicates O
that O
no O
large O
changes O
in O
protein O
conformation O
are O
involved O
in O
catalysis O
, O
and O
that O
our O
crystal B-evidence
structures I-evidence
are O
representative O
of O
the O
active B-protein_state
form O
. O
This O
hypothesis O
is O
strengthened O
by O
the O
fact O
that O
the O
CoA B-protein_state
- I-protein_state
bound I-protein_state
crystals B-evidence
were O
obtained O
without O
added O
CoA B-chemical
, O
indicating O
that O
the O
protein O
bound B-protein_state
CoA B-chemical
from O
the O
E B-species
. I-species
coli I-species
expression O
strain O
and O
retained O
it O
throughout O
purification O
and O
crystallization O
. O
PduL B-protein_type
and O
Pta B-protein_type
are O
mechanistically O
and O
structurally O
distinct O
enzymes O
that O
catalyze O
the O
same O
reaction O
, O
a O
prime O
example O
of O
evolutionary O
convergence O
upon O
a O
function O
. O
This O
is O
not O
surprising O
, O
as O
β B-protein_type
- I-protein_type
lactamases I-protein_type
are O
not O
so O
widespread O
among O
bacteria B-taxonomy_domain
and O
therefore O
would O
be O
expected O
to O
have O
evolved O
independently O
several O
times O
as O
a O
defense O
mechanism O
against O
β O
- O
lactam O
antibiotics O
. O
These O
results O
suggest O
that O
Regnase B-protein
- I-protein
1 I-protein
RNase B-protein_type
activity O
is O
tightly O
controlled O
by O
both O
intramolecular O
( O
NTD B-structure_element
- O
PIN B-structure_element
) O
and O
intermolecular O
( O
PIN B-structure_element
- O
PIN B-structure_element
) O
interactions O
. O
The O
initial O
sensing O
of O
infection O
is O
mediated O
by O
a O
set O
of O
pattern B-protein_type
- I-protein_type
recognition I-protein_type
receptors I-protein_type
( O
PRRs B-protein_type
) O
such O
Toll B-protein_type
- I-protein_type
like I-protein_type
receptors I-protein_type
( O
TLRs B-protein_type
) O
and O
the O
intracellular O
signaling O
cascades O
triggered O
by O
TLRs B-protein_type
evoke O
transcriptional O
expression O
of O
inflammatory O
mediators O
that O
coordinate O
the O
elimination O
of O
pathogens O
and O
infected O
cells O
. O
Our O
data O
revealed O
that O
the O
catalytic O
activity O
of O
Regnase B-protein
- I-protein
1 I-protein
is O
regulated O
through O
both O
intra O
and O
intermolecular O
domain O
interactions O
in O
vitro O
. O
X B-experimental_method
- I-experimental_method
ray I-experimental_method
crystallography I-experimental_method
was O
attempted O
for O
the O
fragment O
containing O
both O
the O
PIN B-structure_element
and O
ZF B-structure_element
domains O
, O
however O
, O
electron B-evidence
density I-evidence
was O
observed O
only O
for O
the O
PIN B-structure_element
domain O
( O
Fig O
. O
1c O
), O
consistent O
with O
a O
previous O
report O
on O
Regnase B-protein
- I-protein
1 I-protein
derived O
from O
Homo B-species
sapiens I-species
. O
The O
domain O
structures B-evidence
of O
NTD B-structure_element
, O
ZF B-structure_element
, O
and O
CTD B-structure_element
were O
determined O
by O
NMR B-experimental_method
( O
Fig O
. O
1b O
, O
d O
, O
e O
). O
Although O
the O
PIN B-structure_element
domain O
is O
responsible O
for O
the O
catalytic O
activity O
of O
Regnase B-protein
- I-protein
1 I-protein
, O
the O
roles O
of O
the O
other O
domains O
are O
largely O
unknown O
. O
Upon O
addition O
of O
a O
larger O
amount O
of O
Regnase B-protein
- I-protein
1 I-protein
, O
the O
fluorescence B-evidence
of O
free B-protein_state
RNA B-chemical
decreased O
, O
indicating O
that O
Regnase B-protein
- I-protein
1 I-protein
bound B-protein_state
to I-protein_state
the O
RNA B-chemical
. O
Direct O
binding O
of O
the O
ZF B-structure_element
domain O
and O
RNA B-chemical
were O
confirmed O
by O
NMR B-experimental_method
spectral B-evidence
changes I-evidence
. O
Dimer B-oligomeric_state
formation O
of O
the O
PIN B-structure_element
domains O
Mutation B-experimental_method
of O
Arg215 B-residue_name_number
, O
whose O
side O
chain O
faces O
to O
the O
opposite O
side O
of O
the O
oligomeric B-site
surface I-site
, O
to O
Glu B-residue_name
preserved O
the O
monomer B-oligomeric_state
/ O
dimer B-oligomeric_state
equilibrium O
, O
similar O
to O
the O
wild B-protein_state
type I-protein_state
. O
Based O
on O
the O
titration B-evidence
curve I-evidence
for O
the O
chemical B-evidence
shift I-evidence
changes I-evidence
of O
L58 B-residue_name_number
, O
the O
apparent O
Kd B-evidence
between O
the O
isolated O
NTD B-structure_element
and O
PIN B-structure_element
was O
estimated O
to O
be O
110 O
± O
5 O
. O
8 O
μM O
. O
Considering O
the O
fact O
that O
the O
NTD B-structure_element
and O
PIN B-structure_element
domains O
are O
attached O
by O
a O
linker B-structure_element
, O
the O
actual O
binding B-evidence
affinity I-evidence
is O
expected O
much O
higher O
in O
the O
native B-protein_state
protein O
. O
An O
in B-experimental_method
silico I-experimental_method
docking I-experimental_method
of O
the O
NTD B-structure_element
and O
PIN B-structure_element
domains O
using O
chemical B-evidence
shift I-evidence
restraints I-evidence
provided O
a O
model O
consistent O
with O
the O
NMR B-experimental_method
experiments O
( O
Fig O
. O
3c O
). O
When O
any O
members O
of O
the O
two O
groups O
are O
mixed O
, O
two O
kinds O
of O
heterodimers B-oligomeric_state
can O
be O
formed O
: O
one O
is O
composed O
of O
a O
DDNN B-mutant
primary B-protein_state
PIN B-structure_element
and O
a O
basic O
residue O
mutant B-protein_state
secondary B-protein_state
PIN B-structure_element
and O
is O
expected O
to O
exhibit O
no O
RNase B-protein_type
activity O
; O
the O
other O
is O
composed O
of O
a O
basic O
residue O
mutant B-protein_state
primary B-protein_state
PIN B-structure_element
and O
a O
DDNN B-mutant
secondary B-protein_state
PIN B-structure_element
and O
is O
predicted O
to O
rescue O
RNase B-protein_type
activity O
( O
Fig O
. O
5a O
). O
When O
we O
compared O
the O
fluorescence B-evidence
intensity I-evidence
of O
uncleaved B-protein_state
IL B-protein_type
- I-protein_type
6 I-protein_type
mRNA B-chemical
, O
basic O
residue O
mutants B-protein_state
W182A B-mutant
, O
K184A B-mutant
, O
R214A B-mutant
, O
and O
R220A B-mutant
were O
rescued O
upon O
addition O
of O
the O
DDNN B-mutant
mutant B-protein_state
( O
Fig O
. O
5b O
). O
Rescue O
of O
K184A B-mutant
and O
R214A B-mutant
by O
the O
DDNN B-mutant
mutant B-protein_state
was O
also O
confirmed O
by O
a O
significant O
increase O
in O
the O
cleaved O
products O
. O
R214 B-residue_name_number
is O
an O
important O
residue O
for O
dimer B-oligomeric_state
formation O
as O
shown O
in O
Fig O
. O
2 O
, O
therefore O
, O
R214A B-mutant
in O
the O
secondary B-protein_state
PIN B-structure_element
cannot O
dimerize O
. O
Due O
to O
this O
limitation O
, O
it O
is O
difficult O
to O
perform O
further O
structural B-experimental_method
analyses I-experimental_method
of O
mRNA B-complex_assembly
- I-complex_assembly
Regnase I-complex_assembly
- I-complex_assembly
1 I-complex_assembly
complexes O
by O
X B-experimental_method
- I-experimental_method
ray I-experimental_method
crystallography I-experimental_method
or O
NMR B-experimental_method
. O
Moreover O
, O
our O
structure B-experimental_method
- I-experimental_method
based I-experimental_method
mutational I-experimental_method
analyses I-experimental_method
showed O
these O
two O
Regnase B-protein
- I-protein
1 I-protein
specific O
basic O
regions O
were O
essential O
for O
target O
mRNA B-chemical
cleavage O
in O
vitro O
. O
The O
affinity B-evidence
of O
the O
domain O
- O
domain O
interaction O
between O
two O
PIN B-structure_element
domains O
( O
Kd B-evidence
= O
~ O
10 O
O
4 O
M O
) O
is O
similar O
to O
that O
of O
the O
NTD B-structure_element
- O
PIN B-structure_element
( O
Kd B-evidence
= O
110 O
± O
5 O
. O
8 O
μM O
) O
interactions O
; O
however O
, O
the O
covalent O
connection O
corresponding O
to O
residues O
90 B-residue_range
I-residue_range
133 I-residue_range
between O
the O
NTD B-structure_element
and O
the O
primary B-protein_state
PIN B-structure_element
will O
greatly O
enhance O
the O
intramolecular O
domain O
interaction O
in O
the O
case O
of O
full B-protein_state
- I-protein_state
length I-protein_state
Regnase B-protein
- I-protein
1 I-protein
. O
In O
this O
context O
, O
it O
is O
interesting O
that O
, O
in O
response O
to O
TCR O
stimulation O
, O
Malt1 B-protein
cleaves O
Regnase B-protein
- I-protein
1 I-protein
at O
R111 B-residue_name_number
to O
control O
immune O
responses O
in O
vivo O
. O
Two O
PIN B-structure_element
molecules O
in O
the O
crystal B-evidence
were O
colored O
white O
and O
green O
, O
respectively O
. O
Eukaryotic B-taxonomy_domain
ribosome O
biogenesis O
is O
highly O
complex O
and O
requires O
a O
large O
number O
of O
non O
- O
ribosomal O
proteins O
and O
small B-chemical
non I-chemical
- I-chemical
coding I-chemical
RNAs I-chemical
in O
addition O
to O
ribosomal B-chemical
RNAs I-chemical
( O
rRNAs B-chemical
) O
and O
proteins O
. O
In O
addition O
, O
18S B-chemical
and O
25S B-chemical
( O
yeast B-taxonomy_domain
)/ O
28S B-chemical
( O
humans B-species
) O
rRNAs B-chemical
contain O
several O
base O
modifications O
catalyzed O
by O
site O
- O
specific O
and O
snoRNA B-chemical
- O
independent O
enzymes O
. O
In O
Saccharomyces B-species
cerevisiae I-species
18S B-chemical
rRNA I-chemical
contains O
four O
base O
methylations B-ptm
, O
two O
acetylations B-ptm
and O
a O
single O
3 B-chemical
- I-chemical
amino I-chemical
- I-chemical
3 I-chemical
- I-chemical
carboxypropyl I-chemical
( O
acp B-chemical
) O
modification O
, O
whereas O
six O
base O
methylations B-ptm
are O
present O
in O
the O
25S B-chemical
rRNA I-chemical
. O
Defects O
of O
rRNA B-chemical
modification O
enzymes O
often O
lead O
to O
disturbed O
ribosome O
biogenesis O
or O
functionally O
impaired O
ribosomes O
, O
although O
the O
lack O
of O
individual O
rRNA B-chemical
modifications O
often O
has O
no O
or O
only O
a O
slight O
influence O
on O
the O
cell O
. O
Wild B-protein_state
type I-protein_state
( O
WT B-protein_state
) O
and O
plasmid O
encoded O
18S B-chemical
rRNA I-chemical
( O
U1191U B-mutant
) O
show O
the O
14C B-chemical
- I-chemical
acp I-chemical
signal O
, O
whereas O
the O
14C B-chemical
- I-chemical
acp I-chemical
signal O
is O
missing O
in O
the O
U1191A B-mutant
mutant B-protein_state
plasmid O
encoded O
18S B-chemical
rRNA I-chemical
( O
U1191A B-mutant
) O
and O
Δtsr3 B-mutant
mutants O
( O
Δtsr3 B-mutant
). O
The O
primer O
extension O
arrest O
is O
reduced O
in O
HTC116 O
cells O
transfected O
with O
siRNAs B-chemical
544 O
and O
545 O
. O
For O
the O
Δtsr3 B-mutant
deletion O
strain O
the O
HPLC B-evidence
elution I-evidence
profile I-evidence
of O
18S B-chemical
rRNA I-chemical
nucleosides B-chemical
( O
Figure O
1B O
) O
was O
very O
similar O
to O
that O
of O
the O
pseudouridine B-protein_type
- I-protein_type
N1 I-protein_type
methyltransferase I-protein_type
mutant B-protein_state
Δnep1 B-mutant
, O
where O
a O
shoulder O
at O
O
7 O
. O
4 O
min O
elution O
time O
was O
missing O
in O
the O
elution O
profile O
. O
As O
previously O
reported O
this O
shoulder O
was O
identified O
by O
ESI B-experimental_method
- I-experimental_method
MS I-experimental_method
as O
corresponding O
to O
m1acp3Ψ B-chemical
. O
Similar O
to O
yeast B-taxonomy_domain
, O
siRNA B-experimental_method
- I-experimental_method
mediated I-experimental_method
depletion I-experimental_method
of O
the O
Ψ1248 B-protein_type
N1 I-protein_type
- I-protein_type
methyltransferase I-protein_type
Nep1 B-protein
/ O
Emg1 B-protein
had O
no O
influence O
on O
the O
primer B-evidence
extension I-evidence
arrest I-evidence
( O
Figure O
1E O
). O
However O
, O
the O
Δtsr3 B-mutant
deletion O
was O
synthetic O
sick O
with O
a O
Δsnr35 B-mutant
deletion O
preventing O
pseudouridylation B-ptm
and O
Nep1 B-protein
- O
catalyzed O
methylation O
of O
nucleotide O
1191 B-residue_number
( O
Figure O
2A O
). O
Phenotypic O
characterization O
of O
yeast B-taxonomy_domain
TSR3 B-protein
deletion O
( O
Δtrs3 B-mutant
) O
and O
human B-species
TSR3 B-protein
depletion O
( O
siRNAs B-chemical
544 O
and O
545 O
) O
and O
cellular O
localization O
of O
yeast B-taxonomy_domain
Tsr3 B-protein
. O
( O
A O
) O
Growth O
of O
yeast B-taxonomy_domain
wild B-protein_state
type I-protein_state
, O
Δtsr3 B-mutant
, O
Δsnr35 B-mutant
and O
Δtsr3 B-mutant
Δsnr35 I-mutant
segregants O
after O
meiosis O
and O
tetrad O
dissection O
of O
Δtsr3 B-mutant
/ O
TSR3 B-protein
Δsnr35 B-mutant
/ O
SNR35 B-protein
heterozygous O
diploids O
. O
Consistent O
with O
its O
role O
in O
late O
18S B-chemical
rRNA I-chemical
processing O
, O
TSR3 B-protein
deletion O
leads O
to O
a O
ribosomal O
subunit O
imbalance O
with O
a O
reduced O
40S B-complex_assembly
to O
60S B-complex_assembly
ratio O
of O
0 O
. O
81 O
( O
σ O
= O
0 O
. O
024 O
) O
which O
was O
further O
increased O
in O
a O
Δtsr3 B-mutant
Δsnr35 I-mutant
recombinant O
to O
0 O
. O
73 O
( O
σ O
= O
0 O
. O
023 O
) O
( O
Supplementary O
Figure O
S2F O
). O
N O
- O
terminal O
deletions B-experimental_method
of O
36 B-residue_range
or O
45 B-residue_range
amino O
acids O
and O
C O
- O
terminal O
deletions B-experimental_method
of O
43 B-residue_range
or O
76 B-residue_range
residues O
show O
a O
primer B-evidence
extension I-evidence
stop I-evidence
comparable O
to O
the O
wild B-protein_state
type I-protein_state
. O
Strong O
20S O
rRNA O
accumulation O
similar O
to O
that O
of O
the O
Δtsr3 B-mutant
deletion B-experimental_method
is O
observed O
for O
Tsr3 B-protein
fragments O
37 B-residue_range
I-residue_range
223 I-residue_range
or O
46 B-residue_range
I-residue_range
223 I-residue_range
. O
Well O
diffracting O
crystals B-evidence
were O
obtained O
for O
Tsr3 B-protein
homologs O
from O
the O
two O
crenarchaeal B-taxonomy_domain
species O
Vulcanisaeta B-species
distributa I-species
( O
VdTsr3 B-protein
) O
and O
Sulfolobus B-species
solfataricus I-species
( O
SsTsr3 B-protein
) O
which O
share O
36 O
% O
( O
VdTsr3 B-protein
) O
and O
38 O
% O
( O
SsTsr3 B-protein
) O
identity O
with O
the O
ScTsr3 B-protein
core B-structure_element
region I-structure_element
( O
ScTsr3 B-protein
aa O
46 B-residue_range
I-residue_range
223 I-residue_range
). O
Crystals B-evidence
of O
VdTsr3 B-protein
diffracted O
to O
a O
resolution O
of O
1 O
. O
6 O
Å O
whereas O
crystals B-evidence
of O
SsTsr3 B-protein
diffracted O
to O
2 O
. O
25 O
Å O
. O
Serendipitously O
, O
VdTsr3 B-protein
was O
purified O
and O
crystallized B-experimental_method
in B-protein_state
complex I-protein_state
with I-protein_state
endogenous B-protein_state
( O
E B-species
. I-species
coli I-species
) O
SAM B-chemical
( O
Supplementary O
Figure O
S4 O
) O
while O
SsTsr3 B-protein
crystals B-evidence
contained O
the O
protein O
in O
the O
apo B-protein_state
state O
. O
The O
structure B-evidence
of O
VdTsr3 B-protein
can O
be O
divided O
into O
two O
domains O
( O
Figure O
4A O
). O
A O
red O
arrow O
marks O
the O
location O
of O
the O
topological B-structure_element
knot I-structure_element
in O
the O
structure B-evidence
. O
( O
B O
) O
Secondary O
structure O
representation O
of O
the O
VdTsr3 B-protein
structure B-evidence
. O
Gel B-experimental_method
filtration I-experimental_method
experiments O
with O
both O
VdTsr3 B-protein
and O
SsTsr3 B-protein
( O
Figure O
4E O
) O
showed O
that O
both O
proteins O
are O
monomeric B-oligomeric_state
in O
solution O
thereby O
extending O
the O
structural O
similarities O
to O
Trm10 B-protein
. O
This O
enzyme O
, O
Tyw2 B-protein
, O
is O
part O
of O
the O
biosynthesis O
pathway O
of O
wybutosine B-chemical
nucleotides I-chemical
in O
tRNAs B-chemical
. O
SAM B-chemical
- O
binding O
by O
Tsr3 B-protein
. O
3xHA B-protein_state
tagged I-protein_state
Tsr3 B-protein
mutants B-protein_state
are O
expressed O
comparable O
to O
the O
wild B-protein_state
type I-protein_state
as O
shown O
by O
western B-experimental_method
blot I-experimental_method
( O
lower O
left O
). O
Accordingly O
, O
a O
W66A B-mutant
- O
mutation B-experimental_method
( O
W73 B-residue_name_number
in O
VdTsr3 B-protein
) O
of O
SsTsr3 B-protein
significantly O
diminished O
SAM B-evidence
- I-evidence
binding I-evidence
in O
a O
filter B-experimental_method
binding I-experimental_method
assay I-experimental_method
compared O
to O
the O
wild B-protein_state
type I-protein_state
( O
Figure O
5E O
). O
Furthermore O
, O
a O
W B-experimental_method
to I-experimental_method
A I-experimental_method
mutation I-experimental_method
at O
the O
equivalent O
position O
W114 B-residue_name_number
in O
ScTsr3 B-protein
strongly O
reduced O
the O
in O
vivo O
acp B-protein_type
transferase I-protein_type
activity O
( O
Figure O
5F O
). O
Furthermore O
, O
a O
negatively O
charged O
MES B-chemical
- O
ion O
is O
found O
in O
the O
crystal B-evidence
structure I-evidence
of O
VdTsr3 B-protein
complexed B-protein_state
to I-protein_state
the O
side O
chain O
of O
K22 B-residue_name_number
in O
helix B-structure_element
α1 B-structure_element
. O
In O
the O
C B-structure_element
- I-structure_element
terminal I-structure_element
domain I-structure_element
, O
the O
surface O
exposed O
α B-structure_element
- I-structure_element
helices I-structure_element
α5 B-structure_element
and O
α7 B-structure_element
carry O
a O
significant O
amount O
of O
positively O
charged O
amino O
acids O
. O
For O
S B-species
. I-species
solfataricus I-species
the O
chemical O
identity O
of O
the O
hypermodified B-protein_state
nucleotide B-chemical
is O
not O
known O
but O
the O
existence O
of O
NEP1 B-protein
and O
TSR3 B-protein
homologs O
suggest O
that O
it O
is O
indeed O
N1 B-chemical
- I-chemical
methyl I-chemical
- I-chemical
N3 I-chemical
- I-chemical
acp I-chemical
- I-chemical
pseudouridine I-chemical
. O
5 O
- O
fluoresceine B-chemical
labeled O
RNA B-chemical
oligonucleotides O
corresponding O
either O
to O
the O
native B-protein_state
( O
20mer B-oligomeric_state
O
see O
inset O
) O
or O
a O
stabilized B-protein_state
( O
20mer_GC B-oligomeric_state
- O
inset O
) O
helix B-structure_element
31 I-structure_element
of O
the O
small O
ribosomal O
subunit O
rRNA B-chemical
from O
S B-species
. I-species
solfataricus I-species
were O
titrated B-experimental_method
with I-experimental_method
increasing I-experimental_method
amounts I-experimental_method
of O
SsTsr3 B-protein
and O
the O
changes O
in O
the O
fluoresceine B-chemical
fluorescence B-evidence
anisotropy I-evidence
were O
measured O
and O
fitted O
to O
a O
binding B-evidence
curve I-evidence
( O
20mer B-oligomeric_state
O
red O
, O
20mer_GC B-oligomeric_state
O
blue O
). O
This O
suggests O
that O
Tsr3 B-protein
is O
not O
stably O
incorporated O
into O
pre B-complex_assembly
- I-complex_assembly
ribosomal I-complex_assembly
particles I-complex_assembly
and O
that O
its O
binding O
to O
the O
nascent O
ribosomal B-complex_assembly
subunit I-complex_assembly
possibly O
requires O
additional O
interactions O
with O
other O
pre O
- O
ribosomal O
components O
. O
The O
cleavage O
step O
most O
likely O
acts O
as O
a O
quality O
control O
check O
that O
ensures O
the O
proper O
40S B-complex_assembly
subunit I-complex_assembly
assembly O
with O
only O
completely O
processed O
precursors O
. O
Finally O
, O
termination B-protein_type
factor I-protein_type
Rli1 B-protein
, O
an O
ATPase B-protein_type
, O
promotes O
the O
dissociation O
of O
assembly O
factors O
and O
the O
80S B-complex_assembly
- I-complex_assembly
like I-complex_assembly
complex I-complex_assembly
dissociates O
and O
releases O
the O
mature B-protein_state
40S B-complex_assembly
subunit I-complex_assembly
. O
Thus O
, O
the O
acp B-chemical
transfer O
to O
m1Ψ1191 B-residue_name_number
occurs O
during O
the O
step O
at O
which O
Rio2 B-protein
leaves O
the O
pre B-complex_assembly
- I-complex_assembly
40S I-complex_assembly
particle I-complex_assembly
. O
The O
current O
data O
together O
with O
the O
finding O
that O
acp B-chemical
modification O
takes O
place O
at O
the O
very O
last O
step O
in O
pre B-complex_assembly
- I-complex_assembly
40S I-complex_assembly
subunit I-complex_assembly
maturation O
indicate O
that O
the O
acp B-chemical
modification O
probably O
supports O
the O
formation O
of O
the O
decoding B-site
site I-site
and O
efficient O
20S B-chemical
pre I-chemical
- I-chemical
rRNA I-chemical
D B-site
- I-site
site I-site
cleavage O
. O
These O
studies O
also O
revealed O
a O
well O
ordered O
break O
in O
the O
polypeptide O
chain O
at O
Lys147 B-residue_name_number
, O
resulting O
in O
a O
large O
conformational O
rearrangement O
close O
to O
the O
active B-site
site I-site
. O
PmC11 B-protein
has O
an O
acidic B-site
binding I-site
pocket I-site
and O
a O
preference O
for O
basic O
substrates O
, O
and O
accepts O
substrates O
with O
Arg B-residue_name
and O
Lys B-residue_name
in O
P1 B-residue_number
and O
does O
not O
require O
Ca2 B-chemical
+ I-chemical
for O
activity O
. O
Clan B-protein_type
CD I-protein_type
families I-protein_type
are O
typically O
described O
using O
the O
name O
of O
their O
archetypal O
, O
or O
founding O
, O
member O
and O
also O
given O
an O
identification O
number O
preceded O
by O
a O
O
C O
,O
to O
denote O
cysteine B-protein_type
peptidase I-protein_type
. O
Although O
seven O
families O
( O
C14 O
is O
additionally O
split O
into O
three O
subfamilies O
) O
have O
been O
described O
for O
this O
clan O
, O
crystal B-evidence
structures I-evidence
have O
only O
been O
determined O
from O
four O
: O
legumain B-protein
( O
C13 B-protein_type
), O
caspase B-protein
( O
C14a B-protein_type
), O
paracaspase B-protein
( O
C14b B-protein_type
( I-protein_type
P I-protein_type
), O
metacaspase B-protein
( O
C14b B-protein_type
( I-protein_type
M I-protein_type
), O
gingipain B-protein
( O
C25 B-protein_type
), O
and O
the O
cysteine B-structure_element
peptidase I-structure_element
domain I-structure_element
( O
CPD B-structure_element
) O
of O
various O
toxins O
( O
C80 B-protein_type
). O
Clan B-protein_type
CD I-protein_type
enzymes I-protein_type
have O
a O
highly B-protein_state
conserved I-protein_state
His B-site
/ I-site
Cys I-site
catalytic I-site
dyad I-site
and O
exhibit O
strict O
specificity O
for O
the O
P1 B-residue_number
residue O
of O
their O
substrates O
. O
Structure B-evidence
of O
PmC11 B-protein
The O
position O
of O
the O
catalytic B-site
dyad I-site
( O
H B-residue_name
, O
C B-residue_name
) O
and O
the O
processing B-site
site I-site
( O
Lys147 B-residue_name_number
) O
are O
highlighted O
. O
Helices O
( O
1 O
O
14 O
) O
and O
β B-structure_element
- I-structure_element
strands I-structure_element
( O
1 O
O
9 O
and O
A O
- O
F O
) O
are O
numbered O
from O
the O
N O
terminus O
. O
The O
N O
and O
C O
termini O
( O
N O
and O
C O
) O
of O
PmC11 B-protein
along O
with O
the O
central O
β B-structure_element
- I-structure_element
sheet I-structure_element
( O
1 O
O
9 O
), O
helix B-structure_element
α5 B-structure_element
, O
and O
helices B-structure_element
α8 B-structure_element
, O
α11 B-structure_element
, O
and O
α13 B-structure_element
from O
the O
C B-structure_element
- I-structure_element
terminal I-structure_element
domain I-structure_element
, O
are O
all O
labeled O
. O
Of O
the O
interacting O
secondary O
structure O
elements O
, O
α5 B-structure_element
is O
perhaps O
the O
most O
interesting O
. O
This B-structure_element
helix I-structure_element
makes O
a O
total O
of O
eight O
hydrogen O
bonds O
with O
the O
CTD B-structure_element
, O
including O
one O
salt O
bridge O
( O
Arg191 B-residue_name_number
- O
Asp255 B-residue_name_number
) O
and O
is O
surrounded O
by O
the O
CTD B-structure_element
on O
one O
side O
and O
the O
main B-structure_element
core I-structure_element
of O
the O
enzyme O
on O
the O
other O
, O
acting O
like O
a O
linchpin O
holding O
both O
components O
together O
( O
Fig O
. O
1C O
). O
The O
two O
ends O
of O
the O
autolytic B-site
cleavage I-site
site I-site
( O
Lys147 B-residue_name_number
and O
Ala148 B-residue_name_number
, O
green O
) O
are O
displaced O
by O
19 O
. O
5 O
O
( O
thin O
black O
line O
) O
from O
one O
another O
and O
residues O
in O
the O
potential O
substrate B-site
binding I-site
pocket I-site
are O
highlighted O
in O
blue O
. O
B O
, O
size B-experimental_method
exclusion I-experimental_method
chromatography I-experimental_method
of O
PmC11 B-protein
. O
Elution O
fractions O
across O
the O
major O
peak O
( O
1 O
O
6 O
) O
were O
analyzed O
by O
SDS B-experimental_method
- I-experimental_method
PAGE I-experimental_method
on O
a O
4 O
O
12 O
% O
gel O
in O
MES O
buffer O
. O
E O
, O
intermolecular B-ptm
processing I-ptm
of O
PmC11C179A B-mutant
by O
PmC11 B-protein
. O
PmC11C179A O
( O
20 O
μg O
) O
was O
incubated O
overnight O
at O
37 O
° O
C O
with O
increasing O
amounts O
of O
processed O
PmC11 B-protein
and O
analyzed O
on O
a O
10 O
% O
SDS B-experimental_method
- I-experimental_method
PAGE I-experimental_method
gel O
. O
A O
single O
lane O
of O
20 O
μg O
of O
active B-protein_state
PmC11 B-protein
( O
labeled O
20 O
) O
is O
shown O
for O
comparison O
. O
The O
position O
of O
the O
catalytic B-site
dyad I-site
, O
one O
potential O
key B-site
substrate I-site
binding I-site
residue I-site
Asp177 B-residue_name_number
, O
and O
the O
ends O
of O
the O
cleavage B-site
site I-site
Lys147 B-residue_name_number
and O
Ala148 B-residue_name_number
are O
indicated O
. O
To O
investigate O
this O
possibility O
, O
two O
mutant O
forms O
of O
the O
enzyme O
were O
created O
: O
PmC11C179A B-mutant
( O
a O
catalytically B-protein_state
inactive I-protein_state
mutant I-protein_state
) O
and O
PmC11K147A B-mutant
( O
a O
cleavage B-protein_state
- I-protein_state
site I-protein_state
mutant I-protein_state
). O
The O
PmC11K147A B-mutant
mutant B-protein_state
enzyme O
had O
a O
markedly O
different O
reaction B-evidence
rate I-evidence
( O
Vmax B-evidence
) O
compared O
with O
WT B-protein_state
, O
where O
the O
reaction B-evidence
velocity I-evidence
of O
PmC11 B-protein
was O
10 O
times O
greater O
than O
that O
of O
PmC11K147A B-mutant
( O
Fig O
. O
2D O
). O
Thus O
, O
Asn50 B-residue_name_number
, O
Asp177 B-residue_name_number
, O
and O
Asp207 B-residue_name_number
are O
most O
likely O
responsible O
for O
the O
substrate O
specificity O
of O
PmC11 B-protein
. O
Furthermore O
, O
Cu2 B-chemical
+, I-chemical
Fe2 B-chemical
+, I-chemical
and O
Zn2 B-chemical
+ I-chemical
appear O
to O
inhibit B-protein_state
PmC11 B-protein
. O
The O
structural O
similarity O
of O
PmC11 B-protein
with O
its O
nearest O
structural O
neighbors O
in O
the O
PDB O
is O
decidedly O
low O
, O
overlaying O
better O
with O
six O
- O
stranded O
caspase B-protein
- I-protein
7 I-protein
than O
any O
of O
the O
other O
larger O
members O
of O
the O
clan O
( O
Table O
2 O
). O
PmC11 B-protein
differs O
from O
clostripain B-protein
in O
that O
is O
does O
not O
appear O
to O
require O
divalent O
cations O
for O
activation O
. O
In O
addition O
, O
several O
members O
of O
clan B-protein_type
CD I-protein_type
exhibit O
self O
- O
inhibition O
, O
whereby O
regions B-structure_element
of O
the O
enzyme O
block O
access O
to O
the O
active B-site
site I-site
. O
Recently O
, O
we O
solved O
the O
crystal B-evidence
structure I-evidence
of O
YfiR B-protein
in O
both O
the O
non B-protein_state
- I-protein_state
oxidized I-protein_state
and O
the O
oxidized B-protein_state
states O
, O
revealing O
breakage O
/ O
formation O
of O
one O
disulfide B-ptm
bond I-ptm
( O
Cys71 B-residue_name_number
- O
Cys110 B-residue_name_number
) O
and O
local O
conformational O
change O
around O
the O
other O
one O
( O
Cys145 B-residue_name_number
- O
Cys152 B-residue_name_number
), O
indicating O
that O
Cys145 B-residue_name_number
- O
Cys152 B-residue_name_number
plays O
an O
important O
role O
in O
maintaining O
the O
correct O
folding O
of O
YfiR B-protein
( O
Yang O
et O
al O
.,). O
In O
the O
present O
study O
, O
we O
solved O
the O
crystal B-evidence
structures I-evidence
of O
an O
N O
- O
terminal O
truncated B-protein_state
form O
of O
YfiB B-protein
( O
34 B-residue_range
I-residue_range
168 I-residue_range
) O
and O
YfiR B-protein
in B-protein_state
complex I-protein_state
with I-protein_state
an O
active B-protein_state
mutant B-protein_state
YfiBL43P B-mutant
. O
Compared O
with O
the O
reported O
complex O
structure O
, O
YfiBL43P B-mutant
in O
our O
YfiB B-complex_assembly
- I-complex_assembly
YfiR I-complex_assembly
complex O
structure B-evidence
has O
additional O
visible O
N O
- O
terminal O
residues O
44 B-residue_range
I-residue_range
58 I-residue_range
that O
are O
shown O
to O
play O
essential O
roles O
in O
YfiB B-protein
activation O
and O
biofilm O
formation O
. O
In O
addition O
, O
there O
is O
a O
short O
helix B-structure_element
turn I-structure_element
connecting O
the O
β4 B-structure_element
strand I-structure_element
and O
α4 B-structure_element
helix I-structure_element
( O
Fig O
. O
1A O
and O
1B O
). O
The O
YfiR B-protein
molecules O
are O
shown O
in O
green O
and O
magenta O
. O
YfiBL43P B-mutant
and O
YfiR B-protein
are O
shown O
in O
cyan O
and O
green O
, O
respectively O
. O
( O
E O
and O
F O
) O
The O
conserved B-site
surface I-site
in O
YfiR B-protein
contributes O
to O
the O
interaction O
with O
YfiB B-protein
. O
( O
G O
) O
The O
residues B-structure_element
of O
YfiR B-protein
responsible O
for O
interacting O
with O
YfiB B-protein
are O
shown O
in O
green O
sticks O
, O
and O
the O
proposed O
YfiN B-site
- I-site
interacting I-site
residues I-site
are O
shown O
in O
yellow O
sticks O
. O
The O
YfiB B-complex_assembly
- I-complex_assembly
YfiR I-complex_assembly
complex O
is O
a O
2 O
: O
2 O
heterotetramer B-oligomeric_state
( O
Fig O
. O
3A O
) O
in O
which O
the O
YfiR B-protein
dimer B-oligomeric_state
is O
clamped O
by O
two O
separated O
YfiBL43P B-mutant
molecules O
with O
a O
total O
buried O
surface O
area O
of O
3161 O
. O
2 O
Å2 O
. O
The O
observed O
changes O
in O
conformation O
of O
YfiB B-protein
and O
the O
results O
of O
mutagenesis B-experimental_method
suggest O
a O
mechanism O
by O
which O
YfiB B-protein
sequesters O
YfiR B-protein
. O
Region B-structure_element
I I-structure_element
is O
formed O
by O
numerous O
main O
- O
chain O
and O
side O
- O
chain O
hydrophilic O
interactions O
between O
residues O
E45 B-residue_name_number
, O
G47 B-residue_name_number
and O
E53 B-residue_name_number
from O
the O
N O
- O
terminal O
extended O
loop B-structure_element
of O
YfiB B-protein
and O
residues O
S57 B-residue_name_number
, O
R60 B-residue_name_number
, O
A89 B-residue_name_number
and O
H177 B-residue_name_number
from O
YfiR B-protein
( O
Fig O
. O
3D O
- O
I O
( O
i O
)). O
Additionally O
, O
three O
hydrophobic B-site
anchoring I-site
sites I-site
exist O
in O
region B-structure_element
I I-structure_element
. O
The O
residues O
F48 B-residue_name_number
and O
W55 B-residue_name_number
of O
YfiB B-protein
are O
inserted O
into O
the O
hydrophobic B-site
cores I-site
mainly O
formed O
by O
the O
main O
chain O
and O
side O
chain O
carbon O
atoms O
of O
residues O
S57 B-residue_name_number
/ O
Q88 B-residue_name_number
/ O
A89 B-residue_name_number
/ O
N90 B-residue_name_number
and O
R60 B-residue_name_number
/ O
R175 B-residue_name_number
/ O
H177 B-residue_name_number
of O
YfiR B-protein
, O
respectively O
; O
and O
F57 B-residue_name_number
of O
YfiB B-protein
is O
inserted O
into O
the O
hydrophobic B-site
pocket I-site
formed O
by O
L166 B-residue_name_number
/ O
I169 B-residue_name_number
/ O
V176 B-residue_name_number
/ O
P178 B-residue_name_number
/ O
L181 B-residue_name_number
of O
YfiR B-protein
( O
Fig O
. O
3D O
- O
I O
( O
ii O
)). O
The O
results O
indicated O
that O
the O
PG B-evidence
- I-evidence
binding I-evidence
affinity I-evidence
of O
YfiBL43P B-mutant
is O
65 O
. O
5 O
μmol O
/ O
L O
, O
which O
is O
about O
16 O
- O
fold O
stronger O
than O
that O
of O
wild B-protein_state
- I-protein_state
type I-protein_state
YfiB B-protein
( O
Kd O
= O
1 O
. O
1 O
mmol O
/ O
L O
) O
( O
Fig O
. O
4E O
O
F O
). O
As O
the O
experiment O
is O
performed O
in B-protein_state
the I-protein_state
absence I-protein_state
of I-protein_state
YfiR B-protein
, O
it O
suggests O
that O
an O
increase O
in O
the O
PG B-evidence
- I-evidence
binding I-evidence
affinity I-evidence
of O
YfiB B-protein
is O
not O
a O
result O
of O
YfiB B-complex_assembly
- I-complex_assembly
YfiR I-complex_assembly
interaction O
and O
is O
highly O
coupled O
to O
the O
activation O
of O
YfiB B-protein
characterized O
by O
a O
stretched B-protein_state
N I-protein_state
- I-protein_state
terminal I-protein_state
conformation I-protein_state
. O
Calculation O
using O
the O
ConSurf B-experimental_method
Server I-experimental_method
( O
http O
:// O
consurf O
. O
tau O
. O
ac O
. O
il O
/), O
which O
estimates O
the O
evolutionary B-evidence
conservation I-evidence
of O
amino O
acid O
positions O
and O
visualizes O
information O
on O
the O
structure B-site
surface I-site
, O
revealed O
a O
conserved B-site
surface I-site
on O
YfiR B-protein
that O
contributes O
to O
the O
interaction O
with O
YfiB B-protein
( O
Fig O
. O
3E O
and O
3F O
). O
F151 B-residue_name_number
, O
E163 B-residue_name_number
and O
I169 B-residue_name_number
form O
a O
hydrophobic B-site
core I-site
while O
, O
Q187 B-residue_name_number
is O
located O
at O
the O
end O
of O
the O
α6 B-structure_element
helix I-structure_element
. O
YfiR B-protein
binds O
small O
molecules O
The O
results O
showed O
Kd B-evidence
values O
of O
1 O
. O
4 O
× O
10 O
O
7 O
mol O
/ O
L O
and O
5 O
. O
3 O
× O
10 O
O
7 O
mol O
/ O
L O
for O
YfiBL43P B-mutant
and O
YfiBL43P B-mutant
/ O
F57A B-mutant
, O
respectively O
, O
revealing O
that O
the O
YfiBL43P B-mutant
/ O
F57A B-mutant
mutant B-protein_state
caused O
a O
3 O
. O
8 O
- O
fold O
reduction O
in O
the O
binding B-evidence
affinity I-evidence
compared O
with O
the O
YfiBL43P B-mutant
mutant B-protein_state
( O
Fig O
. O
6F O
and O
6G O
). O
Here O
, O
we O
report O
the O
crystal B-evidence
structures I-evidence
of O
YfiB B-protein
alone B-protein_state
and O
an O
active B-protein_state
mutant B-protein_state
YfiBL43P B-mutant
in B-protein_state
complex I-protein_state
with I-protein_state
YfiR B-protein
, O
indicating O
that O
YfiR B-protein
forms O
a O
2 O
: O
2 O
complex B-protein_state
with I-protein_state
YfiB B-protein
via O
a O
region O
composed O
of O
conserved O
residues O
. O
Thus O
, O
YfiB B-protein
alone B-protein_state
represents O
an O
inactive B-protein_state
form O
that O
may O
only O
partially O
insert O
into O
the O
PG O
matrix O
. O
The O
periplasmic B-structure_element
domain I-structure_element
of O
YfiB B-protein
and O
the O
YfiB B-complex_assembly
- I-complex_assembly
YfiR I-complex_assembly
complex O
are O
depicted O
according O
to O
the O
crystal B-evidence
structures I-evidence
. O
The O
lipid O
acceptor O
Cys26 B-residue_name_number
is O
indicated O
as O
blue O
ball O
. O
These O
results O
, O
together O
with O
our O
observation O
that O
activated B-protein_state
YfiB B-protein
has O
a O
much O
higher O
cell B-evidence
wall I-evidence
binding I-evidence
affinity I-evidence
, O
and O
previous O
mutagenesis O
data O
showing O
that O
( O
1 O
) O
both O
PG B-chemical
binding O
and O
membrane O
anchoring O
are O
required O
for O
YfiB B-protein
activity O
and O
( O
2 O
) O
activating O
mutations O
possessing O
an O
altered O
N O
- O
terminal O
loop B-structure_element
length O
are O
dominant O
over O
the O
loss O
of O
PG B-chemical
binding O
( O
Malone O
et O
al O
.,), O
suggest O
an O
updated O
regulatory O
model O
of O
the O
YfiBNR B-complex_assembly
system O
( O
Fig O
. O
7 O
). O
In O
this O
model O
, O
in O
response O
to O
a O
particular O
cell O
stress O
that O
is O
yet O
to O
be O
identified O
, O
the O
dimeric B-oligomeric_state
YfiB B-protein
is O
activated B-protein_state
from O
a O
compact B-protein_state
, O
inactive B-protein_state
conformation B-protein_state
to O
a O
stretched B-protein_state
conformation I-protein_state
, O
which O
possesses O
increased O
PG B-chemical
binding O
affinity O
. O
Ligands O
that O
regulate O
the O
dynamics O
and O
stability O
of O
the O
coactivator B-site
I-site
binding I-site
site I-site
in O
the O
C O
O
terminal O
ligand B-structure_element
I-structure_element
binding I-structure_element
domain I-structure_element
, O
called O
activation B-structure_element
function I-structure_element
I-structure_element
2 I-structure_element
( O
AF B-structure_element
I-structure_element
2 I-structure_element
), O
showed O
similar O
activity O
profiles O
in O
different O
cell O
types O
. O
For O
some O
ligand O
series O
, O
a O
single O
inter B-evidence
I-evidence
atomic I-evidence
distance I-evidence
in O
the O
ligand B-structure_element
I-structure_element
binding I-structure_element
domain I-structure_element
predicted O
their O
proliferative O
effects O
. O
AF B-structure_element
I-structure_element
1 I-structure_element
binds O
a O
separate O
surface O
on O
these O
coactivators O
( O
Webb O
et O
al O
, O
1998 O
; O
Yi O
et O
al O
, O
2015 O
). O
However O
, O
ERα B-protein
O
mediated O
proliferative O
responses O
vary O
in O
a O
ligand O
O
dependent O
manner O
( O
Srinivasan O
et O
al O
, O
2013 O
); O
thus O
, O
it O
is O
not O
known O
whether O
this O
canonical O
model O
is O
widely O
applicable O
across O
diverse O
ERα B-protein
ligands O
. O
Summary O
of O
ligand B-experimental_method
screening I-experimental_method
assays I-experimental_method
used O
to O
measure O
ER O
O
mediated O
activities O
. O
This O
wide O
variance O
enabled O
us O
to O
probe O
specific O
features O
of O
ERα B-protein
signaling O
using O
ligand B-experimental_method
class I-experimental_method
analyses I-experimental_method
, O
and O
identify O
signaling O
patterns O
shared O
by O
specific O
ligand O
series O
or O
scaffolds O
. O
The O
ERα B-protein
ligand O
library O
contains O
241 O
ligands O
representing O
15 O
indirect O
modulator O
scaffolds O
, O
plus O
4 O
direct O
modulator O
scaffolds O
. O
Ligand O
O
specific O
signaling O
underlies O
ERα B-protein
O
mediated O
cell O
proliferation O
To O
test O
this O
idea O
, O
we O
compared O
the O
average B-evidence
L I-evidence
I-evidence
Luc I-evidence
activities I-evidence
of O
each O
scaffold O
in O
HepG2 O
cells O
co B-experimental_method
I-experimental_method
transfected I-experimental_method
with O
wild B-protein_state
I-protein_state
type I-protein_state
ERα B-protein
or O
with O
ERα B-protein
lacking B-protein_state
the I-protein_state
AB B-structure_element
domain O
( O
Figs O
1B O
and O
EV1 O
). O
Deletion B-experimental_method
of I-experimental_method
the O
AB B-structure_element
domain O
significantly O
reduced O
the O
average B-evidence
L I-evidence
I-evidence
Luc I-evidence
activities I-evidence
of O
14 O
scaffolds O
( O
Student B-experimental_method
' I-experimental_method
s I-experimental_method
t I-experimental_method
I-experimental_method
test I-experimental_method
, O
P B-evidence
O
0 O
. O
05 O
) O
( O
Fig O
3B O
). O
For O
example O
, O
3 B-chemical
, I-chemical
4 I-chemical
I-chemical
DTP I-chemical
, O
furan B-chemical
, O
and O
S B-chemical
I-chemical
OBHS I-chemical
I-chemical
2 I-chemical
drove O
positively O
correlated O
GREB1 B-protein
levels O
and O
E B-experimental_method
I-experimental_method
Luc I-experimental_method
but O
not O
L B-experimental_method
I-experimental_method
Luc I-experimental_method
ERα B-protein
O
WT B-protein_state
activity O
( O
Fig O
3C O
lanes O
5 O
O
7 O
). O
This O
is O
demonstrated O
by O
directly O
comparing O
the O
signaling O
specificities O
of O
matched O
OBHS B-chemical
( O
indirect O
modulator O
, O
cluster O
1 O
) O
and O
OBHS B-chemical
I-chemical
BSC I-chemical
analogs O
( O
direct O
modulator O
, O
cluster O
3 O
), O
which O
differ O
only O
in O
the O
basic O
side O
chain O
( O
Fig O
2E O
). O
Thus O
, O
examining O
the O
correlated O
patterns O
of O
ERα B-protein
activity O
within O
each O
scaffold O
demonstrates O
that O
an O
extended O
side O
chain O
is O
not O
required O
for O
cell O
O
specific O
signaling O
. O
Similarly O
, O
deletion B-experimental_method
of I-experimental_method
the O
F B-structure_element
domain O
did O
not O
abolish O
correlations O
between O
the O
L B-experimental_method
I-experimental_method
Luc I-experimental_method
and O
E B-experimental_method
I-experimental_method
Luc I-experimental_method
or O
GREB1 B-protein
levels O
induced O
by O
OBHS B-chemical
analogs O
( O
Fig O
EV3F O
). O
Thus O
, O
ligands O
in O
cluster O
2 O
rely O
on O
AF B-structure_element
I-structure_element
1 I-structure_element
for O
both O
activity O
( O
Fig O
3B O
) O
and O
signaling O
specificity O
( O
Fig O
3D O
). O
Direct O
modulators O
showed O
low O
NCOA1 B-protein
/ I-protein
2 I-protein
/ I-protein
3 I-protein
recruitment O
( O
Fig O
EV2F O
O
H O
), O
but O
only O
OBHS B-chemical
I-chemical
ASC I-chemical
analogs O
had O
NCOA2 B-protein
recruitment O
profiles O
that O
predicted O
a O
full O
range O
of O
effects O
on O
GREB1 B-protein
levels O
( O
Figs O
3E O
lanes O
9 O
, O
11 O
, O
18 O
O
19 O
, O
and O
EV2A O
). O
Out O
of O
11 O
indirect O
modulator O
series O
in O
cluster O
2 O
or O
3 O
, O
only O
the O
S B-chemical
I-chemical
OBHS I-chemical
I-chemical
3 I-chemical
class O
had O
NCOA1 B-protein
/ I-protein
2 I-protein
/ I-protein
3 I-protein
recruitment O
profiles O
that O
predicted O
GREB1 B-protein
levels O
( O
Fig O
3E O
lane O
12 O
). O
The O
significant O
correlations O
with O
GREB1 B-protein
expression O
and O
NCOA1 B-protein
/ I-protein
2 I-protein
/ I-protein
3 I-protein
recruitment O
observed O
in O
this O
cluster O
are O
consistent O
with O
the O
canonical O
signaling O
model O
( O
Fig O
1D O
), O
where O
NCOA1 B-protein
/ I-protein
2 I-protein
/ I-protein
3 I-protein
recruitment O
determines O
GREB1 B-protein
expression O
, O
which O
then O
drives O
proliferation O
. O
Therefore O
, O
we O
first O
performed O
a O
time B-experimental_method
I-experimental_method
course I-experimental_method
study I-experimental_method
, O
and O
found O
that O
E2 B-chemical
and O
the O
WAY B-chemical
I-chemical
C I-chemical
analog O
, O
AAPII B-chemical
I-chemical
151 I-chemical
I-chemical
4 I-chemical
, O
induced O
recruitment O
of O
NCOA3 B-protein
to O
the O
GREB1 B-protein
promoter O
in O
a O
temporal O
cycle O
that O
peaked O
after O
45 O
min O
in O
MCF O
O
7 O
cells O
( O
Fig O
4A O
). O
Kinetic B-experimental_method
ChIP I-experimental_method
assay I-experimental_method
examining O
recruitment O
of O
NCOA3 B-protein
to O
the O
GREB1 B-protein
gene O
in O
MCF O
O
7 O
cells O
stimulated O
with O
E2 B-chemical
or O
the O
indicated O
WAY B-chemical
I-chemical
C I-chemical
analog O
. O
The O
M2H B-experimental_method
assay I-experimental_method
for O
NCOA3 B-protein
recruitment O
broadly O
correlated O
with O
the O
other O
assays O
, O
and O
was O
predictive O
for O
GREB1 B-protein
expression O
and O
cell O
proliferation O
( O
Fig O
3E O
). O
However O
, O
the O
ChIP B-experimental_method
assays I-experimental_method
for O
WAY B-chemical
I-chemical
C I-chemical
O
induced O
recruitment O
of O
NCOA3 B-protein
to O
the O
GREB1 B-protein
promoter O
did O
not O
correlate O
with O
any O
of O
the O
other O
WAY B-chemical
I-chemical
C I-chemical
activity O
profiles O
( O
Fig O
4D O
), O
although O
the O
positive O
correlation O
between O
ChIP B-experimental_method
assays I-experimental_method
and O
NCOA3 B-protein
recruitment O
via O
M2H B-experimental_method
assay I-experimental_method
showed O
a O
trend O
toward O
significance O
with O
r B-evidence
2 I-evidence
= O
0 O
. O
36 O
and O
P B-evidence
= O
0 O
. O
09 O
( O
F B-experimental_method
I-experimental_method
test I-experimental_method
for O
nonzero O
slope O
). O
Nevertheless O
, O
the O
E B-experimental_method
I-experimental_method
Luc I-experimental_method
activities O
of O
both O
2 B-chemical
, I-chemical
5 I-chemical
I-chemical
DTP I-chemical
and O
cyclofenil B-chemical
analogs O
were O
better O
predicted O
by O
their O
L B-experimental_method
I-experimental_method
Luc I-experimental_method
ERα B-protein
O
WT B-protein_state
than O
L B-experimental_method
I-experimental_method
Luc I-experimental_method
ERβ B-protein
activities O
( O
Fig O
EV4A O
and O
B O
). O
ERα B-protein
activity O
of O
2 B-chemical
, I-chemical
5 I-chemical
I-chemical
DTP I-chemical
and O
cyclofenil B-chemical
analogs O
correlates O
with O
E B-experimental_method
I-experimental_method
Luc I-experimental_method
activity O
. O
Based O
on O
our O
original O
OBHS B-chemical
structure B-evidence
, O
the O
OBHS B-chemical
, O
OBHS B-chemical
I-chemical
N I-chemical
, O
and O
triaryl B-chemical
I-chemical
ethylene I-chemical
compounds O
were O
modified O
with O
h11 B-structure_element
O
directed O
pendant O
groups O
( O
Zheng O
et O
al O
, O
2012 O
; O
Zhu O
et O
al O
, O
2012 O
; O
Liao O
et O
al O
, O
2014 O
). O
For O
the O
triaryl B-chemical
I-chemical
ethylene I-chemical
analogs O
, O
the O
displacement O
of O
h11 B-structure_element
was O
in O
a O
perpendicular O
direction O
, O
away O
from O
Ile424 B-residue_name_number
in O
h8 B-structure_element
and O
toward O
h12 B-structure_element
. O
Structure B-experimental_method
I-experimental_method
class I-experimental_method
analysis I-experimental_method
of O
triaryl B-chemical
I-chemical
ethylene I-chemical
analogs O
. O
Triaryl B-chemical
I-chemical
ethylene I-chemical
analogs O
bound B-protein_state
to I-protein_state
the O
superposed B-experimental_method
crystal B-evidence
structures I-evidence
of O
the O
ERα B-protein
LBD B-structure_element
are O
shown O
. O
Triaryl B-chemical
I-chemical
ethylene I-chemical
analogs O
induce O
variance O
of O
ERα B-protein
conformations O
at O
the O
C O
O
terminal O
region O
of O
h11 B-structure_element
. O
WAY B-chemical
I-chemical
C I-chemical
side O
groups O
subtly O
nudge O
h12 B-structure_element
Leu540 B-residue_name_number
. O
Structure B-experimental_method
I-experimental_method
class I-experimental_method
analysis I-experimental_method
of O
indirect O
modulators O
in O
cluster O
1 O
. O
Crystal B-evidence
structures I-evidence
of O
the O
ERα B-protein
LBD B-structure_element
bound B-protein_state
to I-protein_state
OBHS B-chemical
and O
OBHS B-chemical
I-chemical
N I-chemical
analogs O
were O
superposed B-experimental_method
. O
As O
visualized O
in O
four O
LBD B-structure_element
structures B-evidence
( O
Srinivasan O
et O
al O
, O
2013 O
), O
WAY B-chemical
I-chemical
C I-chemical
analogs O
were O
designed O
with O
small O
substitutions O
that O
slightly O
nudge O
h12 B-structure_element
Leu540 B-residue_name_number
, O
without O
exiting O
the O
ligand B-site
I-site
binding I-site
pocket I-site
( O
Fig O
5G O
and O
H O
). O
This O
difference O
in O
ligand O
positioning O
altered O
the O
AF B-site
I-site
2 I-site
surface I-site
via O
a O
shift O
in O
the O
N O
O
terminus O
of O
h12 B-structure_element
, O
which O
directly O
contacts O
the O
coactivator O
. O
Crystal B-evidence
structures I-evidence
show O
that O
a O
3 B-chemical
, I-chemical
4 I-chemical
I-chemical
DTPD I-chemical
analog O
shifts O
h3 B-structure_element
( O
F B-structure_element
) O
and O
the O
NCOA2 B-protein
( O
G O
) O
peptide O
compared O
to O
an O
A B-chemical
I-chemical
CD I-chemical
O
ring O
estrogen B-chemical
( O
PDB O
4PPS O
, O
5DTV O
). O
The O
2 B-chemical
, I-chemical
5 I-chemical
I-chemical
DTP I-chemical
analogs O
showed O
perturbation O
of O
h11 B-structure_element
, O
as O
well O
as O
h3 B-structure_element
, O
which O
forms O
part O
of O
the O
AF B-site
I-site
2 I-site
surface I-site
. O
We O
observed O
a O
difference O
of O
0 O
. O
4 O
Å O
that O
was O
significant O
( O
two O
O
tailed O
Student B-experimental_method
' I-experimental_method
s I-experimental_method
t I-experimental_method
I-experimental_method
test I-experimental_method
, O
P B-evidence
= O
0 O
. O
002 O
) O
due O
to O
the O
very O
tight O
clustering O
of O
the O
2 B-chemical
, I-chemical
5 I-chemical
I-chemical
DTP I-chemical
O
induced O
LBD B-structure_element
conformation O
. O
The O
3 B-chemical
, I-chemical
4 I-chemical
I-chemical
DTPD I-chemical
analogs O
also O
induced O
a O
shift O
in O
h3 B-structure_element
positioning O
, O
which O
translated O
again O
into O
a O
shift O
in O
the O
bound O
coactivator O
peptide O
( O
Fig O
6F O
). O
Despite O
the O
similar O
average O
activities O
of O
these O
ligand O
classes O
( O
Fig O
3A O
and O
B O
), O
2 B-chemical
, I-chemical
5 I-chemical
I-chemical
DTP I-chemical
and O
3 B-chemical
, I-chemical
4 I-chemical
I-chemical
DTP I-chemical
analogs O
displayed O
remarkably O
different O
peptide O
recruitment O
patterns O
( O
Fig O
6H O
), O
consistent O
with O
the O
structural B-experimental_method
analyses I-experimental_method
. O
This O
finding O
can O
be O
explained O
by O
the O
fact O
that O
NCOA1 B-protein
/ I-protein
2 I-protein
/ I-protein
3 I-protein
contain O
distinct O
binding B-site
sites I-site
for O
interaction O
with O
AF B-structure_element
I-structure_element
1 I-structure_element
and O
AF B-structure_element
I-structure_element
2 I-structure_element
( O
McInerney O
et O
al O
, O
1996 O
; O
Webb O
et O
al O
, O
1998 O
), O
which O
allows O
ligands O
to O
nucleate O
ERα B-complex_assembly
I-complex_assembly
NCOA1 I-complex_assembly
/ I-complex_assembly
2 I-complex_assembly
/ I-complex_assembly
3 I-complex_assembly
interaction O
through O
AF B-structure_element
I-structure_element
2 I-structure_element
, O
and O
reinforce O
this O
interaction O
with O
additional O
binding O
to O
AF B-structure_element
I-structure_element
1 I-structure_element
. O
Also O
, O
we O
have O
used O
siRNA B-experimental_method
screening I-experimental_method
to O
identify O
a O
number O
of O
coregulators O
required O
for O
ERα B-protein
O
mediated O
repression O
of O
the O
IL O
O
6 O
gene O
( O
Nwachukwu O
et O
al O
, O
2014 O
). O
Secondly O
, O
our O
finding O
that O
WAY B-chemical
I-chemical
C I-chemical
compounds O
do O
not O
rely O
of O
AF B-structure_element
I-structure_element
1 I-structure_element
for O
signaling O
efficacy O
may O
derive O
from O
the O
slight O
contacts O
with O
h12 B-structure_element
observed O
in O
crystal B-evidence
structures I-evidence
( O
Figs O
3B O
and O
5H O
), O
unlike O
other O
compounds O
in O
cluster O
1 O
that O
dislocate O
h11 B-structure_element
and O
rely O
on O
AF B-structure_element
I-structure_element
1 I-structure_element
for O
signaling O
efficacy O
( O
Figs O
3B O
and O
5C O
, O
and O
EV5B O
). O
We O
have O
also O
investigated O
the O
binding O
of O
the O
TOCA B-protein
HR1 B-structure_element
domain O
to O
Cdc42 B-protein
and O
the O
potential O
ternary O
complex O
between O
Cdc42 B-protein
and O
the O
G B-site
protein I-site
- I-site
binding I-site
regions I-site
of O
TOCA1 B-protein
and O
a O
member O
of O
the O
Wiskott B-protein_type
- I-protein_type
Aldrich I-protein_type
syndrome I-protein_type
protein I-protein_type
family I-protein_type
, O
N B-protein
- I-protein
WASP I-protein
. O
The O
guanine B-protein_type
nucleotide I-protein_type
exchange I-protein_type
factors I-protein_type
mediate O
formation O
of O
the O
active B-protein_state
state O
by O
promoting O
the O
dissociation O
of O
GDP B-chemical
, O
allowing O
GTP B-chemical
to O
bind O
. O
The O
Rho B-protein_type
family I-protein_type
comprises O
20 O
members O
, O
of O
which O
three O
, O
RhoA B-protein
, O
Rac1 B-protein
, O
and O
Cdc42 B-protein
, O
have O
been O
relatively O
well O
studied O
. O
Following O
their O
release O
, O
the O
C B-structure_element
- I-structure_element
terminal I-structure_element
regions I-structure_element
of O
N B-protein
- I-protein
WASP I-protein
are O
free O
to O
interact O
with O
G B-protein_type
- I-protein_type
actin I-protein_type
and O
a O
known O
nucleator O
of O
actin O
assembly O
, O
the O
Arp2 B-complex_assembly
/ I-complex_assembly
3 I-complex_assembly
complex O
. O
The O
structures B-evidence
of O
the O
PRK1 B-protein
HR1a B-structure_element
domain O
in O
complex B-protein_state
with I-protein_state
RhoA B-protein
and O
the O
HR1b B-structure_element
domain O
in O
complex B-protein_state
with I-protein_state
Rac1 B-protein
show O
that O
the O
HR1 B-structure_element
domain O
comprises O
an O
anti B-structure_element
- I-structure_element
parallel I-structure_element
coiled I-structure_element
- I-structure_element
coil I-structure_element
that O
interacts O
with O
its O
G B-protein_type
protein I-protein_type
binding O
partner O
via O
both O
helices B-structure_element
. O
Both O
of O
the O
G B-site
protein I-site
switch I-site
regions I-site
are O
involved O
in O
the O
interaction O
. O
The O
coiled B-structure_element
- I-structure_element
coil I-structure_element
fold I-structure_element
is O
shared O
by O
the O
HR1 B-structure_element
domain O
of O
the O
TOCA B-protein_type
family I-protein_type
protein I-protein_type
, O
CIP4 B-protein
, O
and O
, O
based O
on O
sequence O
homology O
, O
by O
TOCA1 B-protein
itself O
. O
How O
different O
HR1 B-structure_element
domain O
proteins O
distinguish O
their O
specific O
G B-protein_type
protein I-protein_type
partners O
remains O
only O
partially O
understood O
, O
and O
structural O
characterization O
of O
a O
novel O
G B-protein_type
protein I-protein_type
- O
HR1 B-structure_element
domain O
interaction O
would O
add O
to O
the O
growing O
body O
of O
information O
pertaining O
to O
these O
protein O
complexes O
. O
The O
interactions O
of O
TOCA1 B-protein
and O
N B-protein
- I-protein
WASP I-protein
with O
Cdc42 B-protein
as O
well O
as O
with O
each O
other O
have O
raised O
questions O
as O
to O
whether O
the O
two O
Cdc42 B-protein
effectors O
can O
interact O
with O
a O
single O
molecule O
of O
Cdc42 B-protein
simultaneously O
. O
We O
also O
present O
data O
pertaining O
to O
binding O
of O
the O
TOCA B-protein_type
HR1 B-structure_element
domain O
to O
Cdc42 B-protein
, O
which O
is O
the O
first O
biophysical O
description O
of O
an O
HR1 B-structure_element
domain O
binding O
this O
particular O
Rho B-protein_type
family I-protein_type
small I-protein_type
G I-protein_type
protein I-protein_type
. O
Finally O
, O
we O
investigate O
the O
potential O
ternary O
complex O
between O
Cdc42 B-protein
and O
the O
G B-site
protein I-site
- I-site
binding I-site
regions I-site
of O
TOCA1 B-protein
and O
N B-protein
- I-protein
WASP I-protein
, O
contributing O
to O
our O
understanding O
of O
G B-protein_type
protein I-protein_type
- O
effector O
interactions O
as O
well O
as O
the O
roles O
of O
Cdc42 B-protein
, O
N B-protein
- I-protein
WASP I-protein
, O
and O
TOCA1 B-protein
in O
the O
pathways O
that O
govern O
actin O
dynamics O
. O
TOCA1 B-protein
was O
identified O
in O
Xenopus B-taxonomy_domain
extracts O
as O
a O
protein O
necessary O
for O
Cdc42 B-protein
- O
dependent O
actin O
assembly O
and O
was O
shown O
to O
bind O
to O
Cdc42 B-complex_assembly
· I-complex_assembly
GTPγS I-complex_assembly
but O
not O
to O
Cdc42 B-complex_assembly
· I-complex_assembly
GDP I-complex_assembly
or O
to O
Rac1 B-protein
and O
RhoA B-protein
. O
Given O
its O
homology O
to O
other O
Rho B-site
family I-site
binding I-site
modules I-site
, O
it O
is O
likely O
that O
the O
HR1 B-structure_element
domain O
of O
TOCA1 B-protein
is O
sufficient O
to O
bind O
Cdc42 B-protein
. O
The O
binding O
of O
TOCA1 B-protein
HR1 B-structure_element
to O
Cdc42 B-protein
was O
unexpectedly O
weak O
, O
with O
a O
Kd B-evidence
of O
> O
1 O
μm O
. O
A O
, O
curves O
derived O
from O
direct B-experimental_method
binding I-experimental_method
assays I-experimental_method
in O
which O
the O
indicated O
concentrations O
of O
Cdc42Δ7Q61L B-complex_assembly
·[ I-complex_assembly
3H I-complex_assembly
] I-complex_assembly
GTP I-complex_assembly
were O
incubated B-experimental_method
with O
30 O
nm O
GST B-mutant
- I-mutant
PAK I-mutant
or O
HR1 B-mutant
- I-mutant
His6 I-mutant
in O
SPAs B-experimental_method
. O
The O
data O
were O
fitted O
to O
a O
binding B-evidence
isotherm I-evidence
to O
give O
an O
apparent O
Kd B-evidence
and O
are O
expressed O
as O
a O
percentage O
of O
the O
maximum O
signal O
; O
B O
and O
C O
, O
competition B-experimental_method
SPA I-experimental_method
experiments O
were O
carried O
out O
with O
the O
indicated O
concentrations O
of O
ACK B-protein
GBD B-structure_element
( O
B O
) O
or O
HR1 B-structure_element
domain O
( O
C O
) O
titrated B-experimental_method
into O
30 O
nm O
GST B-mutant
- I-mutant
ACK I-mutant
and O
either O
30 O
nm O
Cdc42Δ7Q61L B-complex_assembly
·[ I-complex_assembly
3H I-complex_assembly
] I-complex_assembly
GTP I-complex_assembly
or O
full B-protein_state
- I-protein_state
length I-protein_state
Cdc42Q61L B-complex_assembly
·[ I-complex_assembly
3H I-complex_assembly
] I-complex_assembly
GTP I-complex_assembly
. O
Isothermal B-experimental_method
titration I-experimental_method
calorimetry I-experimental_method
was O
carried O
out O
, O
but O
no O
heat O
changes O
were O
observed O
at O
a O
range O
of O
concentrations O
and O
temperatures O
( O
data O
not O
shown O
), O
suggesting O
that O
the O
interaction O
is O
predominantly O
entropically O
driven O
. O
The O
binding B-experimental_method
experiments I-experimental_method
were O
repeated O
with O
full B-protein_state
- I-protein_state
length I-protein_state
[ B-complex_assembly
3H I-complex_assembly
] I-complex_assembly
GTP I-complex_assembly
· I-complex_assembly
Cdc42 I-complex_assembly
, O
but O
the O
affinity B-evidence
of O
the O
HR1 B-structure_element
domain O
for O
full B-protein_state
- I-protein_state
length I-protein_state
Cdc42 B-protein
was O
similar O
to O
its O
affinity B-evidence
for O
truncated B-protein_state
Cdc42 B-protein
( O
Kd B-evidence
O
5 O
μm O
; O
Fig O
. O
1C O
). O
Full B-protein_state
- I-protein_state
length I-protein_state
TOCA1 B-protein
and O
ΔSH3 B-mutant
TOCA1 B-protein
bound B-protein_state
with O
micromolar O
affinity O
( O
Fig O
. O
2B O
), O
in O
a O
similar O
manner O
to O
the O
isolated O
HR1 B-structure_element
domain O
( O
Fig O
. O
1A O
). O
There O
were O
1 O
, O
845 O
unambiguous O
NOEs B-evidence
and O
757 O
ambiguous O
NOEs B-evidence
after O
eight O
iterations O
. O
a O
< O
SA O
>, O
the O
average B-evidence
root I-evidence
mean I-evidence
square I-evidence
deviations I-evidence
for O
the O
ensemble O
± O
S O
. O
D O
. O
B O
, O
a O
sequence B-experimental_method
alignment I-experimental_method
of O
the O
HR1 B-structure_element
domains O
from O
TOCA1 B-protein
, O
CIP4 B-protein
, O
and O
PRK1 B-protein
. O
A O
series O
of O
15N B-experimental_method
HSQC I-experimental_method
experiments O
was O
recorded O
on O
15N B-chemical
- O
labeled B-protein_state
TOCA1 B-protein
HR1 B-structure_element
domain O
in O
the O
presence B-protein_state
of I-protein_state
increasing B-experimental_method
concentrations I-experimental_method
of O
unlabeled B-protein_state
Cdc42Δ7Q61L B-complex_assembly
· I-complex_assembly
GMPPNP I-complex_assembly
to O
map O
the O
Cdc42 B-site
- I-site
binding I-site
surface I-site
. O
Residues O
with O
significantly O
affected O
backbone O
or O
side O
chain O
chemical O
shifts O
when O
Cdc42 B-protein_state
bound I-protein_state
and O
that O
are O
buried O
are O
colored O
dark O
blue O
, O
whereas O
those O
that O
are O
solvent B-protein_state
- I-protein_state
accessible I-protein_state
are O
colored O
yellow O
. O
Therefore O
, O
13C B-experimental_method
HSQC I-experimental_method
and O
methyl B-experimental_method
- I-experimental_method
selective I-experimental_method
SOFAST I-experimental_method
- I-experimental_method
HMQC I-experimental_method
experiments O
were O
also O
recorded O
on O
15N B-chemical
, O
13C B-chemical
- O
labeled B-protein_state
TOCA1 B-protein
HR1 B-structure_element
to O
yield O
more O
information O
on O
side O
chain O
involvement O
. O
As O
was O
the O
case O
when O
labeled B-protein_state
HR1 B-structure_element
was O
observed O
, O
several O
peaks O
were O
shifted O
in O
the O
complex O
, O
but O
many O
disappeared O
, O
indicating O
exchange O
on O
an O
unfavorable O
, O
millisecond O
time O
scale O
( O
Fig O
. O
5A O
). O
B O
, O
CSPs B-experimental_method
are O
shown O
for O
backbone O
NH O
groups O
. O
C O
, O
the O
residues O
with O
significantly O
affected O
backbone O
and O
side O
chain O
groups O
are O
highlighted O
on O
an O
NMR B-experimental_method
structure B-evidence
of O
free B-protein_state
Cdc42Δ7Q61L B-complex_assembly
· I-complex_assembly
GMPPNP I-complex_assembly
; O
those O
that O
are O
buried O
are O
colored O
dark O
blue O
, O
whereas O
those O
that O
are O
solvent B-protein_state
- I-protein_state
accessible I-protein_state
are O
colored O
red O
. O
Although O
the O
binding B-site
interface I-site
may O
be O
overestimated O
, O
this O
suggests O
that O
the O
switch B-site
regions I-site
are O
involved O
in O
binding O
to O
TOCA1 B-protein
. O
HADDOCK B-experimental_method
was O
therefore O
used O
to O
perform O
rigid O
body B-experimental_method
docking I-experimental_method
based O
on O
the O
structures B-evidence
of O
free B-protein_state
HR1 B-structure_element
domain O
and O
Cdc42 B-protein
and O
ambiguous O
interaction O
restraints O
derived O
from O
the O
titration B-experimental_method
experiments I-experimental_method
described O
above O
. O
The O
cluster O
with O
the O
lowest O
root B-evidence
mean I-evidence
square I-evidence
deviation I-evidence
from O
the O
lowest O
energy O
structure B-evidence
is O
assumed O
to O
be O
the O
best O
model O
. O
Residues O
of O
Cdc42 B-protein
that O
are O
affected O
in O
the O
presence B-protein_state
of I-protein_state
the O
HR1 B-structure_element
domain O
but O
are O
not O
in O
close O
proximity O
to O
it O
are O
colored O
in O
red O
and O
labeled O
. O
B O
, O
structure B-evidence
of O
Rac1 B-protein
in B-protein_state
complex I-protein_state
with I-protein_state
the O
HR1b B-structure_element
domain O
of O
PRK1 B-protein
( O
PDB O
code O
2RMK O
). O
Cdc42 O
is O
shown O
in O
cyan O
, O
and O
TOCA1 B-protein
is O
shown O
in O
purple O
. O
D O
, O
selected O
regions O
of O
the O
15N B-experimental_method
HSQC I-experimental_method
of O
600 O
μm O
TOCA1 B-protein
HR1 B-structure_element
domain O
in B-protein_state
complex I-protein_state
with I-protein_state
Cdc42 B-protein
in O
the O
absence B-protein_state
and O
presence B-protein_state
of I-protein_state
the O
N B-protein
- I-protein
WASP I-protein
GBD B-structure_element
, O
showing O
displacement O
of O
Cdc42 B-protein
from O
the O
HR1 B-structure_element
domain O
by O
N B-protein
- I-protein
WASP I-protein
. O
The O
Kd B-evidence
that O
was O
determined O
( O
37 O
nm O
) O
is O
consistent O
with O
the O
previously O
reported O
affinity B-evidence
. O
A O
comparison O
of O
the O
HSQC B-experimental_method
experiments O
recorded O
on O
15N B-chemical
- O
Cdc42 B-protein
alone B-protein_state
, O
in O
the O
presence B-protein_state
of I-protein_state
TOCA1 B-protein
HR1 B-structure_element
, O
N B-protein
- I-protein
WASP I-protein
GBD B-structure_element
, O
or O
both O
, O
shows O
that O
the O
spectra B-evidence
in O
the O
presence B-protein_state
of I-protein_state
N B-protein
- I-protein
WASP I-protein
and O
in O
the O
presence B-protein_state
of I-protein_state
both O
N B-protein
- I-protein
WASP I-protein
and O
TOCA1 B-protein
HR1 B-structure_element
are O
identical O
( O
Fig O
. O
7C O
). O
These O
assays O
, O
described O
in O
detail O
elsewhere O
, O
were O
carried O
out O
using O
pyrene B-chemical
actin I-chemical
- O
supplemented O
Xenopus B-taxonomy_domain
extracts O
into O
which O
exogenous O
TOCA1 B-protein
HR1 B-structure_element
domain O
or O
N B-protein
- I-protein
WASP I-protein
GBD B-structure_element
was O
added O
, O
to O
assess O
their O
effects O
on O
actin B-protein_type
polymerization O
. O
The O
corresponding O
sequence O
in O
CIP4 B-protein
also O
includes O
a O
series O
of O
turns O
but O
is O
flexible O
, O
whereas O
in O
the O
HR1a B-structure_element
domain O
of O
PRK1 B-protein
, O
the O
equivalent O
region O
adopts O
an O
α B-structure_element
- I-structure_element
helical I-structure_element
structure I-structure_element
that O
packs O
against O
the O
coiled B-structure_element
- I-structure_element
coil I-structure_element
. O
The O
lowest O
energy O
model B-evidence
produced O
by O
HADDOCK B-experimental_method
using O
ambiguous O
interaction O
restraints O
from O
the O
titration B-evidence
data O
resembled O
the O
NMR B-experimental_method
structures B-evidence
of O
RhoA B-protein
and O
Rac1 B-protein
in B-protein_state
complex I-protein_state
with I-protein_state
their O
HR1 B-structure_element
domain O
partners O
. O
For O
example O
, O
Phe B-residue_name_number
- I-residue_name_number
56Cdc42 I-residue_name_number
, O
which O
is O
not O
visible O
in O
free B-protein_state
Cdc42 B-protein
or O
Cdc42 B-complex_assembly
· I-complex_assembly
HR1TOCA1 I-complex_assembly
, O
is O
close O
to O
the O
TOCA1 B-protein
HR1 B-structure_element
( O
Fig O
. O
6A O
). O
Phe B-residue_name_number
- I-residue_name_number
56Cdc42 I-residue_name_number
is O
therefore O
likely O
to O
be O
involved O
in O
the O
Cdc42 B-protein
- O
TOCA1 B-protein
interaction O
, O
probably O
by O
stabilizing O
the O
position O
of O
switch B-site
I I-site
. O
Thr B-residue_name_number
- I-residue_name_number
52Cdc42 I-residue_name_number
, O
which O
has O
also O
been O
identified O
as O
making O
minor O
contacts O
with O
ACK B-protein
, O
falls O
near O
the O
side O
chains O
of O
HR1TOCA1 B-structure_element
helix B-structure_element
1 I-structure_element
, O
particularly O
Lys B-residue_name_number
- I-residue_name_number
372TOCA1 I-residue_name_number
, O
whereas O
the O
equivalent O
position O
in O
Rac1 B-protein
is O
Asn B-residue_name_number
- I-residue_name_number
52Rac1 I-residue_name_number
. O
In O
contrast O
, O
the O
best O
estimate O
of O
the O
affinity B-evidence
of O
full B-protein_state
- I-protein_state
length I-protein_state
WASP B-protein_type
for O
Cdc42 B-protein
is O
low O
micromolar O
. O
WIP B-protein
inhibits O
the O
activation O
of O
N B-protein
- I-protein
WASP I-protein
by O
Cdc42 B-protein
, O
an O
effect O
that O
is O
reversed O
by O
TOCA1 B-protein
. O
It O
has O
been O
postulated O
that O
the O
initial O
interactions O
between O
this O
basic O
region O
and O
Cdc42 B-protein
could O
stabilize O
the O
active B-protein_state
conformation O
of O
WASP B-protein
, O
leading O
to O
high O
affinity O
binding O
between O
the O
core O
CRIB B-structure_element
and O
Cdc42 B-protein
. O
We O
envisage O
a O
complex O
interplay O
of O
equilibria O
between O
free B-protein_state
and O
bound B-protein_state
, O
active B-protein_state
and O
inactive B-protein_state
Cdc42 B-protein
, O
TOCA B-protein_type
family I-protein_type
, O
and O
WASP B-protein_type
family O
proteins O
, O
facilitating O
a O
tightly O
spatially O
and O
temporally O
regulated O
pathway O
requiring O
numerous O
simultaneous O
events O
in O
order O
to O
achieve O
appropriate O
and O
robust O
activation O
of O
the O
downstream O
pathway O
. O
It O
is O
clear O
from O
the O
data O
presented O
here O
that O
TOCA1 B-protein
and O
N B-protein
- I-protein
WASP I-protein
do O
not O
bind O
Cdc42 B-protein
simultaneously O
and O
that O
N B-protein
- I-protein
WASP I-protein
is O
likely O
to O
outcompete O
TOCA1 B-protein
for O
Cdc42 B-protein
binding O
. O
Furthermore O
, O
elevated O
ACC B-protein_type
activity O
is O
observed O
in O
malignant O
tumours O
. O
The O
principal O
functional O
protein O
components O
of O
ACCs B-protein_type
have O
been O
described O
already O
in O
the O
late O
1960s O
for O
Escherichia B-species
coli I-species
( O
E B-species
. I-species
coli I-species
) O
ACC B-protein_type
: O
Biotin B-protein_type
carboxylase I-protein_type
( O
BC B-protein_type
) O
catalyses O
the O
ATP B-chemical
- O
dependent O
carboxylation O
of O
a O
biotin B-chemical
moiety O
, O
which O
is O
covalently O
linked O
to O
the O
biotin B-protein_type
carboxyl I-protein_type
carrier I-protein_type
protein I-protein_type
( O
BCCP B-protein_type
). O
Human B-species
ACC1 B-protein
is O
further O
regulated O
by O
specific O
phosphorylation B-ptm
- O
dependent O
binding O
of O
BRCA1 B-protein
to O
Ser1263 B-residue_name_number
in O
the O
CD B-structure_element
. O
Furthermore O
, O
phosphorylation B-ptm
by O
AMP B-protein
- I-protein
activated I-protein
protein I-protein
kinase I-protein
( O
AMPK B-protein
) O
and O
cAMP B-protein
- I-protein
dependent I-protein
protein I-protein
kinase I-protein
( O
PKA B-protein
) O
leads O
to O
a O
decrease O
in O
ACC1 B-protein
activity O
. O
The O
regulatory O
Ser1201 B-residue_name_number
shows O
only O
moderate B-protein_state
conservation I-protein_state
across O
higher B-taxonomy_domain
eukaryotes I-taxonomy_domain
, O
while O
the O
phosphorylated B-protein_state
Ser1216 B-residue_name_number
is O
highly B-protein_state
conserved I-protein_state
across O
all O
eukaryotes B-taxonomy_domain
. O
In O
yeast B-taxonomy_domain
ACC B-protein_type
, O
phosphorylation B-site
sites I-site
have O
been O
identified O
at O
Ser2 B-residue_name_number
, O
Ser735 B-residue_name_number
, O
Ser1148 B-residue_name_number
, O
Ser1157 B-residue_name_number
and O
Ser1162 B-residue_name_number
( O
ref O
.). O
SceCD B-species
comprises O
four O
distinct O
domains O
, O
an O
N O
- O
terminal O
α B-structure_element
- I-structure_element
helical I-structure_element
domain I-structure_element
( O
CDN B-structure_element
), O
and O
a O
central O
four B-structure_element
- I-structure_element
helix I-structure_element
bundle I-structure_element
linker I-structure_element
domain I-structure_element
( O
CDL B-structure_element
), O
followed O
by O
two O
α B-structure_element
I-structure_element
β I-structure_element
- I-structure_element
fold I-structure_element
C I-structure_element
- I-structure_element
terminal I-structure_element
domains I-structure_element
( O
CDC1 B-structure_element
/ O
CDC2 B-structure_element
). O
In O
insect B-experimental_method
- I-experimental_method
cell I-experimental_method
- I-experimental_method
expressed I-experimental_method
full B-protein_state
- I-protein_state
length I-protein_state
SceACC B-protein
, O
the O
highly B-protein_state
conserved I-protein_state
Ser1157 B-residue_name_number
is O
the O
only O
fully B-protein_state
occupied I-protein_state
phosphorylation B-site
site I-site
with O
functional O
relevance O
in O
S B-species
. I-species
cerevisiae I-species
. O
Additional O
phosphorylation B-ptm
was O
detected O
for O
Ser2101 B-residue_name_number
and O
Tyr2179 B-residue_name_number
; O
however O
, O
these O
sites O
are O
neither B-protein_state
conserved I-protein_state
across O
fungal B-taxonomy_domain
ACC B-protein_type
nor B-protein_state
natively I-protein_state
phosphorylated I-protein_state
in O
yeast B-taxonomy_domain
. O
Already O
the O
binding O
of O
phosphorylated B-protein_state
Ser1157 B-residue_name_number
apparently O
stabilizes O
the O
regulatory B-structure_element
loop I-structure_element
conformation O
; O
the O
accessory O
phosphorylation B-site
sites I-site
Ser1148 B-residue_name_number
and O
Ser1162 B-residue_name_number
in O
the O
same B-structure_element
loop I-structure_element
may O
further O
modulate O
the O
strength O
of O
interaction O
between O
the O
regulatory B-structure_element
loop I-structure_element
and O
the O
CDC1 B-structure_element
and O
CDC2 B-structure_element
domains O
. O
The O
variable O
CD B-structure_element
is O
conserved B-protein_state
between O
yeast B-taxonomy_domain
and O
human B-species
To O
compare O
the O
organization O
of O
fungal B-taxonomy_domain
and O
human B-species
ACC B-protein_type
CD B-structure_element
, O
we O
determined B-experimental_method
the I-experimental_method
structure I-experimental_method
of O
a O
human B-species
ACC1 B-mutant
fragment I-mutant
that O
comprises O
the O
BT B-structure_element
and O
CD B-structure_element
domains O
( O
HsaBT B-mutant
- I-mutant
CD I-mutant
), O
but O
lacks B-protein_state
the O
mobile O
BCCP B-structure_element
in O
between O
( O
Fig O
. O
1a O
). O
Besides O
the O
regulatory B-structure_element
loop I-structure_element
, O
also O
the O
phosphopeptide B-site
target I-site
region I-site
for O
BRCA1 B-protein
interaction O
is O
not O
resolved O
presumably O
because O
of O
pronounced O
flexibility O
. O
The O
neighbouring O
loop B-structure_element
on O
the O
CT B-structure_element
side O
( O
between O
CT B-structure_element
β1 B-structure_element
/ O
β2 B-structure_element
) O
is O
displaced O
by O
2 O
. O
5 O
Å O
compared O
to O
isolated B-protein_state
CT B-structure_element
structures B-evidence
( O
Supplementary O
Fig O
. O
3c O
). O
The O
interface B-site
between O
CDC2 B-structure_element
and O
CDL B-structure_element
/ O
CDC1 B-structure_element
, O
which O
is O
mediated O
by O
the O
phosphorylated B-protein_state
regulatory B-structure_element
loop I-structure_element
in O
the O
SceCD B-species
structure B-evidence
, O
is O
less O
variable O
than O
the O
CD B-structure_element
I-structure_element
CT I-structure_element
junction I-structure_element
, O
and O
permits O
only O
limited O
rotation O
and O
tilting O
( O
Fig O
. O
3b O
). O
The O
BC B-structure_element
domain O
is O
not O
completely O
disordered O
, O
but O
laterally O
attached O
to O
BT B-structure_element
/ O
CDN B-structure_element
in O
a O
generally B-protein_state
conserved I-protein_state
position I-protein_state
, O
albeit O
with O
increased O
flexibility O
. O
The O
most O
relevant O
candidate O
site O
for O
mediating O
such O
additional O
flexibility O
and O
permitting O
an O
extended O
set O
of O
conformations O
is O
the O
CDC1 B-site
/ I-site
CDC2 I-site
interface I-site
, O
which O
is O
rigidified O
by O
the O
Ser1157 B-residue_name_number
- O
phosphorylated B-protein_state
regulatory B-structure_element
loop I-structure_element
, O
as O
depicted O
in O
the O
SceCD B-species
crystal B-evidence
structure I-evidence
. O
In O
flACC B-mutant
, O
the O
ACC B-protein_type
dimer B-oligomeric_state
obeys O
twofold O
symmetry O
and O
assembles O
in O
a O
triangular B-protein_state
architecture I-protein_state
with O
dimeric B-oligomeric_state
BC B-structure_element
domains O
( O
Supplementary O
Fig O
. O
5a O
). O
On O
the O
basis O
of O
a O
superposition B-experimental_method
of O
CDC2 B-structure_element
, O
CDC1 B-structure_element
of O
the O
phosphorylated B-protein_state
SceCD B-species
is O
rotated O
by O
30 O
° O
relative O
to O
CDC1 B-structure_element
of O
the O
non B-protein_state
- I-protein_state
phosphorylated I-protein_state
flACC B-mutant
( O
Supplementary O
Fig O
. O
5d O
), O
similar O
to O
what O
we O
have O
observed O
for O
the O
non B-protein_state
- I-protein_state
phosphorylated I-protein_state
HsaBT B-mutant
- I-mutant
CD I-mutant
( O
Supplementary O
Fig O
. O
1d O
). O
When O
inspecting B-experimental_method
all O
individual O
protomer B-oligomeric_state
and O
fragment B-mutant
structures B-evidence
in O
their O
study O
, O
Wei O
and O
Tong O
also O
identify O
the O
CDN B-structure_element
/ I-structure_element
CDC1 I-structure_element
connection I-structure_element
as O
a O
highly B-protein_state
flexible I-protein_state
hinge B-structure_element
, O
in O
agreement O
with O
our O
observations O
. O
The O
only O
bona O
fide O
regulatory B-protein_state
phophorylation B-site
site I-site
of O
fungal B-taxonomy_domain
ACC B-protein_type
in O
the O
regulatory B-structure_element
loop I-structure_element
is O
directly O
participating O
in O
CDC1 B-structure_element
/ O
CDC2 B-structure_element
domain O
interactions O
and O
thus O
stabilizes O
the O
hinge B-structure_element
conformation I-structure_element
. O
The O
phosphorylated B-protein_state
regulatory B-structure_element
loop I-structure_element
binds O
to O
an O
allosteric B-site
site I-site
at O
the O
interface B-site
of O
two O
non B-protein_state
- I-protein_state
catalytic I-protein_state
domains O
and O
restricts O
conformational O
freedom O
at O
several O
hinges B-structure_element
in O
the O
dynamic B-protein_state
ACC B-protein_type
. O
However O
, O
the O
example O
of O
ACC B-protein_type
now O
demonstrates O
the O
possibility O
of O
regulating O
activity O
by O
controlled O
dynamics O
of O
non B-structure_element
- I-structure_element
enzymatic I-structure_element
linker I-structure_element
regions I-structure_element
also O
in O
other O
families O
of O
carrier B-protein_type
- I-protein_type
dependent I-protein_type
multienzymes I-protein_type
. O
CDN B-structure_element
is O
linked O
by O
a O
four B-structure_element
- I-structure_element
helix I-structure_element
bundle I-structure_element
( O
CDL B-structure_element
) O
to O
two B-structure_element
α I-structure_element
I-structure_element
β I-structure_element
- I-structure_element
fold I-structure_element
domains I-structure_element
( O
CDC1 B-structure_element
and O
CDC2 B-structure_element
). O
( O
e O
) O
Structural O
overview O
of O
HsaBT B-mutant
- I-mutant
CD I-mutant
. O
( O
a O
O
c O
) O
Large O
- O
scale O
conformational O
variability O
of O
the O
CDN B-structure_element
domain O
relative O
to O
the O
CDL B-structure_element
/ O
CDC1 B-structure_element
domain O
. O
Domains O
other O
than O
CDN B-structure_element
and O
CDL B-structure_element
/ O
CDC1 B-structure_element
are O
omitted O
for O
clarity O
. O
Structural O
insights O
into O
the O
Escherichia B-species
coli I-species
lysine B-protein_type
decarboxylases I-protein_type
and O
molecular O
determinants O
of O
interaction O
with O
the O
AAA B-protein_type
+ I-protein_type
ATPase I-protein_type
RavA B-protein
Previously O
, O
we O
proposed O
a O
pseudoatomic B-evidence
model I-evidence
of O
the O
LdcI B-complex_assembly
- I-complex_assembly
RavA I-complex_assembly
cage O
based O
on O
its O
cryo B-experimental_method
- I-experimental_method
electron I-experimental_method
microscopy I-experimental_method
map B-evidence
and O
crystal B-evidence
structures I-evidence
of O
an O
inactive B-protein_state
LdcI B-protein
decamer B-oligomeric_state
and O
a O
RavA B-protein
monomer B-oligomeric_state
. O
Enterobacterial B-taxonomy_domain
inducible B-protein_state
decarboxylases B-protein_type
of O
basic B-protein_state
amino B-chemical
acids I-chemical
lysine B-residue_name
, O
arginine B-residue_name
and O
ornithine B-residue_name
have O
a O
common O
evolutionary O
origin O
and O
belong O
to O
the O
α B-protein_type
- I-protein_type
family I-protein_type
of O
pyridoxal B-chemical
- I-chemical
5 I-chemical
- I-chemical
phosphate I-chemical
( O
PLP B-chemical
)- O
dependent O
enzymes O
. O
Inducible B-protein_state
enterobacterial B-taxonomy_domain
amino B-protein_type
acid I-protein_type
decarboxylases I-protein_type
have O
been O
intensively O
studied O
since O
the O
early O
1940 O
because O
the O
ability O
of O
bacteria B-taxonomy_domain
to O
withstand O
acid O
stress O
can O
be O
linked O
to O
their O
pathogenicity O
in O
humans B-species
. O
Each O
monomer B-oligomeric_state
is O
composed O
of O
three O
domains O
O
an O
N O
- O
terminal O
wing B-structure_element
domain I-structure_element
( O
residues O
1 B-residue_range
I-residue_range
129 I-residue_range
), O
a O
PLP B-structure_element
- I-structure_element
binding I-structure_element
core I-structure_element
domain I-structure_element
( O
residues O
130 B-residue_range
I-residue_range
563 I-residue_range
), O
and O
a O
C B-structure_element
- I-structure_element
terminal I-structure_element
domain I-structure_element
( O
CTD B-structure_element
, O
residues O
564 B-residue_range
I-residue_range
715 I-residue_range
). O
Monomers B-oligomeric_state
tightly O
associate O
via O
their O
core B-structure_element
domains I-structure_element
into O
2 B-protein_state
- I-protein_state
fold I-protein_state
symmetrical I-protein_state
dimers B-oligomeric_state
with O
two O
complete O
active B-site
sites I-site
, O
and O
further O
build O
a O
toroidal B-structure_element
D5 I-structure_element
- I-structure_element
symmetrical I-structure_element
structure I-structure_element
held O
by O
the O
wing B-structure_element
and O
core B-structure_element
domain I-structure_element
interactions O
around O
the O
central B-structure_element
pore I-structure_element
, O
with O
the O
CTDs B-structure_element
at O
the O
periphery O
. O
Furthermore O
, O
we O
recently O
solved B-experimental_method
the I-experimental_method
structure I-experimental_method
of O
the O
E B-species
. I-species
coli I-species
LdcI B-complex_assembly
- I-complex_assembly
RavA I-complex_assembly
complex O
by O
cryo B-experimental_method
- I-experimental_method
electron I-experimental_method
microscopy I-experimental_method
( O
cryoEM B-experimental_method
) O
and O
combined O
it O
with O
the O
crystal B-evidence
structures I-evidence
of O
the O
individual O
proteins O
. O
To O
solve O
this O
discrepancy O
, O
in O
the O
present O
work O
we O
provided O
a O
three O
- O
dimensional O
( O
3D O
) O
cryoEM B-experimental_method
reconstruction B-evidence
of O
LdcC B-protein
and O
compared O
it O
with O
the O
available O
LdcI B-protein
and O
LdcI B-complex_assembly
- I-complex_assembly
RavA I-complex_assembly
structures B-evidence
. O
Given O
that O
the O
LdcI B-protein
crystal B-evidence
structures I-evidence
were O
obtained O
at O
high B-protein_state
pH I-protein_state
where O
the O
enzyme O
is O
inactive B-protein_state
( O
LdcIi B-protein
, O
pH B-protein_state
8 I-protein_state
. I-protein_state
5 I-protein_state
), O
whereas O
the O
cryoEM B-experimental_method
reconstructions B-evidence
of O
LdcI B-complex_assembly
- I-complex_assembly
RavA I-complex_assembly
and O
LdcI B-complex_assembly
- I-complex_assembly
LARA I-complex_assembly
were O
done O
at O
acidic B-protein_state
pH I-protein_state
optimal I-protein_state
for O
the O
enzymatic O
activity O
, O
for O
a O
meaningful O
comparison O
, O
we O
also O
produced O
a O
3D B-evidence
reconstruction I-evidence
of O
the O
LdcI B-protein
at O
active B-protein_state
pH I-protein_state
( O
LdcIa B-protein
, O
pH B-protein_state
6 I-protein_state
. I-protein_state
2 I-protein_state
). O
As O
common O
for O
the O
α B-protein_type
family I-protein_type
of O
the O
PLP B-protein_type
- I-protein_type
dependent I-protein_type
decarboxylases I-protein_type
, O
dimerization O
is O
required O
for O
the O
enzymatic O
activity O
because O
the O
active B-site
site I-site
is O
buried O
in O
the O
dimer B-site
interface I-site
( O
Fig O
. O
3A O
, O
B O
). O
In O
addition O
, O
our O
earlier O
biochemical B-experimental_method
observation I-experimental_method
that O
the O
enzymatic O
activity O
of O
LdcIa B-protein
is O
unaffected O
by O
RavA B-protein
binding O
is O
consistent O
with O
the O
relatively O
small O
changes O
undergone O
by O
the O
active B-site
site I-site
upon O
transition O
from O
LdcIa B-protein
to O
LdcI B-complex_assembly
- I-complex_assembly
LARA I-complex_assembly
. O
Second O
, O
the O
phylogenetic B-experimental_method
analysis I-experimental_method
clearly O
split O
the O
lysine B-protein_type
decarboxylases I-protein_type
into O
two O
groups O
( O
Fig O
. O
6A O
). O
Inspection O
of O
these O
consensus B-evidence
sequences I-evidence
revealed O
important O
differences O
between O
the O
groups O
regarding O
charge O
, O
size O
and O
hydrophobicity O
of O
several O
residues O
precisely O
at O
the O
level O
of O
the O
C O
- O
terminal O
β B-structure_element
- I-structure_element
sheet I-structure_element
that O
is O
responsible O
for O
the O
interaction O
with O
RavA B-protein
( O
Fig O
. O
6B O
O
D O
). O
For O
example O
, O
in O
our O
previous O
study O
, O
site B-experimental_method
- I-experimental_method
directed I-experimental_method
mutations I-experimental_method
identified O
Y697 B-residue_name_number
as O
critically O
required O
for O
the O
RavA B-protein
binding O
. O
Our O
current O
analysis O
shows O
that O
Y697 B-residue_name_number
is O
strictly B-protein_state
conserved I-protein_state
in O
the O
O
LdcI B-protein_type
- I-protein_type
like I-protein_type
O
group O
whereas O
the O
O
LdcC B-protein_type
- I-protein_type
like I-protein_type
O
enzymes O
always B-protein_state
have I-protein_state
a O
lysine B-residue_name
in O
this O
position O
; O
it O
also O
uncovers O
several O
other O
residues O
potentially O
essential O
for O
the O
interaction O
with O
RavA B-protein
which O
can O
now O
be O
addressed O
by O
site B-experimental_method
- I-experimental_method
directed I-experimental_method
mutagenesis I-experimental_method
. O
Superposition B-experimental_method
of O
the O
pseudoatomic B-evidence
models I-evidence
of O
LdcC B-protein
, O
LdcI B-protein
from O
LdcI B-complex_assembly
- I-complex_assembly
LARA I-complex_assembly
and O
LdcIa B-protein
colored O
as O
in O
Fig O
. O
1 O
, O
and O
the O
crystal B-evidence
structure I-evidence
of O
LdcIi B-protein
in O
shades O
of O
yellow O
. O
( O
B O
) O
The O
LdcIi B-protein
dimer B-oligomeric_state
extracted O
from O
the O
crystal B-evidence
structure I-evidence
of O
the O
decamer B-oligomeric_state
. O
( O
A O
) O
A O
slice O
through O
the O
pseudoatomic B-evidence
models I-evidence
of O
the O
LdcIa B-protein
( O
purple O
) O
and O
LdcC B-protein
( O
green O
) O
monomers B-oligomeric_state
extracted O
from O
the O
superimposed B-experimental_method
decamers B-oligomeric_state
( O
Fig O
. O
2 O
). O
( O
B O
) O
The O
C O
- O
terminal O
β B-structure_element
- I-structure_element
sheet I-structure_element
in O
LdcIa B-protein
and O
LdcC B-protein
enlarged O
from O
( O
A O
, O
C O
) O
Exchanged O
primary O
sequences O
( O
capital O
letters O
) O
and O
their O
immediate O
vicinity O
( O
lower O
case O
letters O
) O
colored O
as O
in O
( O
A O
, O
B O
), O
with O
the O
corresponding O
secondary O
structure O
elements O
and O
the O
amino O
acid O
numbering O
shown O
. O
Sequence B-experimental_method
alignment I-experimental_method
suggests O
that O
both O
kinases B-protein_type
belong O
to O
the O
ribulokinase B-protein_type
- I-protein_type
like I-protein_type
carbohydrate I-protein_type
kinases I-protein_type
, O
a O
sub O
- O
family O
of O
FGGY B-protein_type
family I-protein_type
carbohydrate I-protein_type
kinases I-protein_type
. O
In O
addition O
, O
our O
enzymatic B-experimental_method
assays I-experimental_method
suggested O
that O
SePSK B-protein
has O
the O
capability O
to O
phosphorylate O
D B-chemical
- I-chemical
ribulose I-chemical
. O
These O
kinases B-protein_type
exhibit O
considerable O
differences O
in O
their O
folding O
pattern O
and O
substrate O
specificity O
. O
Domain B-structure_element
I I-structure_element
exhibits O
a O
ribonuclease B-structure_element
H I-structure_element
- I-structure_element
like I-structure_element
folding I-structure_element
pattern I-structure_element
, O
and O
is O
responsible O
for O
the O
substrate O
binding O
, O
while O
domain B-structure_element
II I-structure_element
possesses O
an O
actin B-structure_element
- I-structure_element
like I-structure_element
ATPase I-structure_element
domain I-structure_element
that O
binds O
cofactor O
ATP B-chemical
. O
2 B-residue_range
I-residue_range
228 I-residue_range
and O
aa O
. O
Domain B-structure_element
II I-structure_element
is O
comprised O
of O
aa O
. O
229 B-residue_range
I-residue_range
401 I-residue_range
and O
classified O
into O
B2 B-structure_element
( O
β31 B-structure_element
/ O
β29 B-structure_element
/ O
β22 B-structure_element
/ O
β23 B-structure_element
/ O
β25 B-structure_element
/ O
β24 B-structure_element
) O
and O
A3 B-structure_element
( O
α26 B-structure_element
/ O
α27 B-structure_element
/ O
α28 B-structure_element
/ O
α30 B-structure_element
) O
( O
Fig O
1A O
and O
S1 O
Fig O
). O
( O
A O
) O
Three O
- O
dimensional O
structure B-evidence
of O
apo B-protein_state
- O
SePSK B-protein
. O
( O
B O
) O
Three O
- O
dimensional O
structure B-evidence
of O
apo B-protein_state
- O
AtXK B-protein
- I-protein
1 I-protein
. O
In O
order O
to O
understand O
the O
function O
of O
these O
two O
kinases O
, O
we O
performed O
structural B-experimental_method
comparison I-experimental_method
using O
Dali B-experimental_method
server I-experimental_method
. O
Both O
SePSK B-protein
and O
AtXK B-protein
- I-protein
1 I-protein
showed O
ATP B-chemical
hydrolysis O
activity O
in O
the O
absence B-protein_state
of I-protein_state
substrate O
. O
This O
result O
was O
consistent O
with O
our O
enzymatic B-experimental_method
activity I-experimental_method
assays I-experimental_method
where O
SePSK B-protein
and O
AtXK B-protein
- I-protein
1 I-protein
showed O
ATP B-chemical
hydrolysis O
activity O
without O
adding O
any O
substrates O
( O
Fig O
2A O
and O
2C O
). O
( O
A O
) O
The O
electron B-evidence
density I-evidence
of O
AMP B-chemical
- I-chemical
PNP I-chemical
. O
To O
better O
understand O
the O
interaction O
pattern O
between O
SePSK B-protein
and O
D B-chemical
- I-chemical
ribulose I-chemical
, O
the O
apo B-protein_state
- O
SePSK B-protein
crystals B-experimental_method
were I-experimental_method
soaked I-experimental_method
into I-experimental_method
the O
reservoir B-experimental_method
with O
10 O
mM O
D B-chemical
- I-chemical
ribulose I-chemical
( O
RBL B-chemical
) O
and O
the O
RBL B-complex_assembly
- I-complex_assembly
SePSK I-complex_assembly
structure B-evidence
was O
solved B-experimental_method
. O
As O
shown O
in O
Fig O
4A O
, O
the O
nearest O
distance O
between O
the O
carbon O
skeleton O
of O
two O
D B-chemical
- I-chemical
ribulose I-chemical
molecules O
are O
approx O
. O
Furthermore O
, O
the O
O2 O
of O
RBL1 B-residue_name_number
interacts O
with O
the O
main O
chain O
amide O
nitrogen O
of O
Ser72 B-residue_name_number
( O
Fig O
4B O
). O
( O
A O
) O
The O
electrostatic B-evidence
potential I-evidence
surface I-evidence
map I-evidence
of O
RBL B-complex_assembly
- I-complex_assembly
SePSK I-complex_assembly
and O
a O
zoom O
- O
in O
view O
of O
RBL B-site
binding I-site
site I-site
. O
The O
RBL B-chemical
molecules O
( O
carbon O
atoms O
colored O
yellow O
) O
and O
amino O
acid O
residues O
of O
SePSK B-protein
( O
carbon O
atoms O
colored O
green O
) O
involved O
in O
RBL B-chemical
interaction O
are O
shown O
as O
sticks O
. O
Structural B-experimental_method
comparison I-experimental_method
of O
SePSK B-protein
and O
AtXK B-protein
- I-protein
1 I-protein
showed O
that O
while O
the O
RBL1 B-site
binding I-site
pocket I-site
is O
conserved B-protein_state
, O
the O
RBL2 B-site
pocket I-site
is O
disrupted O
in O
AtXK B-protein
- I-protein
1 I-protein
structure B-evidence
, O
despite O
the O
fact O
that O
the O
residues O
interacting O
with O
RBL2 B-residue_name_number
are O
highly B-protein_state
conserved I-protein_state
between O
the O
two O
proteins O
. O
To O
further O
verified O
this O
result O
, O
we O
measured O
the O
binding B-evidence
affinity I-evidence
for O
D B-chemical
- I-chemical
ribulose I-chemical
of O
both O
wild B-protein_state
type I-protein_state
( O
WT B-protein_state
) O
and O
D8A B-mutant
mutant B-protein_state
of O
SePSK B-protein
using O
a O
surface B-experimental_method
plasmon I-experimental_method
resonance I-experimental_method
method I-experimental_method
. O
Dissociation B-evidence
rate I-evidence
constant I-evidence
( O
Kd B-evidence
) O
of O
wild B-protein_state
type I-protein_state
and O
D8A B-mutant
- O
SePSK B-protein
are O
3 O
ms O
- O
1 O
and O
9 O
ms O
- O
1 O
, O
respectively O
. O
Simulated O
conformational O
change O
of O
SePSK B-protein
during O
the O
catalytic O
process O
. O
The O
crystal B-evidence
structure I-evidence
of O
phosphorylation B-protein_state
- I-protein_state
mimicking I-protein_state
Mep2 B-mutant
variants I-mutant
from O
C B-species
. I-species
albicans I-species
show O
large O
conformational O
changes O
in O
a O
conserved B-protein_state
and O
functionally O
important O
region O
of O
the O
CTR B-structure_element
. O
Mep2 B-protein_type
proteins I-protein_type
are O
tightly O
regulated O
fungal B-taxonomy_domain
ammonium B-protein_type
transporters I-protein_type
. O
While O
most O
studies O
have O
focused O
on O
the O
Saccharomyces B-species
cerevisiae I-species
transceptors B-protein_type
for O
phosphate B-chemical
( O
Pho84 B-protein
), O
amino B-chemical
acids I-chemical
( O
Gap1 B-protein
) O
and O
ammonium B-chemical
( O
Mep2 B-protein
), O
transceptors B-protein_type
are O
found O
in O
higher B-taxonomy_domain
eukaryotes I-taxonomy_domain
as O
well O
( O
for O
example O
, O
the O
mammalian B-taxonomy_domain
SNAT2 B-protein
amino B-protein_type
- I-protein_type
acid I-protein_type
transporter I-protein_type
and O
the O
GLUT2 B-protein
glucose B-protein_type
transporter I-protein_type
). O
With O
the O
exception O
of O
the O
human B-species
RhCG B-protein
structure B-evidence
, O
no O
structural O
information O
is O
available O
for O
eukaryotic B-taxonomy_domain
ammonium B-protein_type
transporters I-protein_type
. O
Ammonium B-chemical
transport O
is O
tightly O
regulated O
. O
In O
bacteria B-taxonomy_domain
, O
amt B-gene
genes O
are O
present O
in O
an O
operon O
with O
glnK B-gene
, O
encoding O
a O
PII B-protein_type
- I-protein_type
like I-protein_type
signal I-protein_type
transduction I-protein_type
class I-protein_type
protein I-protein_type
. O
In O
plants B-taxonomy_domain
, O
transporter B-protein_type
phosphorylation B-ptm
and O
dephosphorylation B-ptm
are O
known O
to O
regulate O
activity O
. O
In O
S B-species
. I-species
cerevisiae I-species
, O
phosphorylation B-ptm
of O
Ser457 B-residue_name_number
within O
the O
C B-structure_element
- I-structure_element
terminal I-structure_element
region I-structure_element
( O
CTR B-structure_element
) O
in O
the O
cytoplasm O
was O
recently O
proposed O
to O
cause O
Mep2 B-protein_type
opening O
, O
possibly O
via O
inducing O
a O
conformational O
change O
. O
The O
most O
striking O
difference O
is O
the O
fact O
that O
the O
Mep2 B-protein_type
proteins I-protein_type
have O
closed B-protein_state
conformations O
. O
Electron B-evidence
density I-evidence
is O
visible O
for O
the O
entire O
polypeptide O
chains O
, O
with O
the O
exception O
of O
the O
C O
- O
terminal O
43 B-residue_range
( O
ScMep2 B-protein
) O
and O
25 B-residue_range
residues O
( O
CaMep2 B-protein
), O
which O
are O
poorly B-protein_state
conserved I-protein_state
and O
presumably O
disordered B-protein_state
. O
Together O
with O
additional O
, O
smaller O
differences O
in O
other O
extracellular B-structure_element
loops I-structure_element
, O
these O
changes O
generate O
a O
distinct O
vestibule B-structure_element
leading O
to O
the O
ammonium B-site
binding I-site
site I-site
that O
is O
much O
more O
pronounced O
than O
in O
the O
bacterial B-taxonomy_domain
proteins O
. O
The O
largest O
backbone O
movements O
of O
equivalent O
residues O
within O
ICL1 B-structure_element
are O
O
10 O
Å O
, O
markedly O
affecting O
the O
conserved B-protein_state
basic B-protein_state
RxK B-structure_element
motif I-structure_element
( O
Fig O
. O
4 O
). O
The O
head O
group O
of O
Arg54 B-residue_name_number
has O
moved O
O
11 O
Å O
relative O
to O
that O
in O
Amt B-protein
- I-protein
1 I-protein
, O
whereas O
the O
shift O
of O
the O
head O
group O
of O
the O
variable O
Lys55 B-residue_name_number
residue O
is O
almost O
20 O
Å O
. O
The O
side O
chain O
of O
Lys56 B-residue_name_number
in O
the O
basic B-protein_state
motif B-structure_element
points O
in O
an O
opposite O
direction O
in O
the O
Mep2 B-protein
structures B-evidence
compared O
with O
that O
of O
, O
for O
example O
, O
Amt B-protein
- I-protein
1 I-protein
( O
Fig O
. O
4 O
). O
Compared O
with O
ICL1 B-structure_element
, O
the O
backbone O
conformational O
changes O
observed O
for O
the O
neighbouring O
ICL2 B-structure_element
are O
smaller O
, O
but O
large O
shifts O
are O
nevertheless O
observed O
for O
the O
conserved B-protein_state
residues O
Glu140 B-residue_name_number
and O
Arg141 B-residue_name_number
( O
Fig O
. O
4 O
). O
The O
closed B-protein_state
state O
of O
the O
channel B-site
might O
also O
explain O
why O
no B-evidence
density I-evidence
, O
which O
could O
correspond O
to O
ammonium B-chemical
( O
or O
water B-chemical
), O
is O
observed O
in O
the O
hydrophobic O
part O
of O
the O
Mep2 B-protein
channel B-site
close O
to O
the O
twin B-structure_element
- I-structure_element
His I-structure_element
motif I-structure_element
. O
The O
final O
region O
in O
Mep2 B-protein
that O
shows O
large O
differences O
compared O
with O
the O
bacterial B-taxonomy_domain
transporters B-protein_type
is O
the O
CTR B-structure_element
. O
In O
Mep2 B-protein
, O
the O
CTR B-structure_element
has O
moved O
away O
and O
makes O
relatively O
few O
contacts O
with O
the O
main B-structure_element
body I-structure_element
of O
the O
transporter B-protein_type
, O
generating O
a O
more O
elongated B-protein_state
protein O
( O
Figs O
1 O
and O
4 O
). O
This O
is O
illustrated O
by O
the O
positions O
of O
the O
five O
universally B-protein_state
conserved I-protein_state
residues O
within O
the O
CTR B-structure_element
, O
that O
is O
, O
Arg415 B-residue_name_number
( O
370 B-residue_number
), O
Glu421 B-residue_name_number
( O
376 B-residue_number
), O
Gly424 B-residue_name_number
( O
379 B-residue_number
), O
Asp426 B-residue_name_number
( O
381 B-residue_number
) O
and O
Tyr B-residue_name_number
435 I-residue_name_number
( O
390 B-residue_number
) O
in O
CaMep2 B-protein
( O
Amt B-protein
- I-protein
1 I-protein
) O
( O
Fig O
. O
2 O
). O
On O
one O
side O
, O
the O
Tyr390 B-residue_name_number
hydroxyl O
in O
Amt B-protein
- I-protein
1 I-protein
is O
hydrogen O
bonded O
with O
the O
side O
chain O
of O
the O
conserved B-protein_state
His185 B-residue_name_number
at O
the O
C O
- O
terminal O
end O
of O
loop B-structure_element
ICL3 B-structure_element
. O
In O
the O
Mep2 B-protein
structures B-evidence
, O
none O
of O
the O
interactions O
mentioned O
above O
are O
present O
. O
In O
the O
absence B-protein_state
of I-protein_state
Npr1 B-protein
, O
plasmid B-experimental_method
- I-experimental_method
encoded I-experimental_method
WT B-protein_state
Mep2 B-protein
in O
a O
S B-species
. I-species
cerevisiae I-species
mep1 B-mutant
- I-mutant
3Δ I-mutant
strain O
( O
triple B-mutant
mepΔ I-mutant
) O
does O
not O
allow O
growth O
on O
low O
concentrations O
of O
ammonium B-chemical
, O
suggesting O
that O
the O
transporter B-protein_type
is O
inactive B-protein_state
( O
Fig O
. O
3 O
and O
Supplementary O
Fig O
. O
1 O
). O
Conversely O
, O
the O
phosphorylation B-protein_state
- I-protein_state
mimicking I-protein_state
S457D B-mutant
variant O
is O
active B-protein_state
both O
in O
the O
triple B-mutant
mepΔ I-mutant
background O
and O
in O
a O
triple B-mutant
mepΔ I-mutant
npr1Δ I-mutant
strain O
( O
Fig O
. O
3 O
). O
Mutation B-experimental_method
of O
other O
potential O
phosphorylation B-site
sites I-site
in O
the O
CTR B-structure_element
did O
not O
support O
growth O
in O
the O
npr1Δ B-mutant
background O
. O
In O
CaMep2 B-protein
, O
the O
visible O
part O
of O
the O
sequence O
extends O
for O
two O
residues O
beyond O
Ser453 B-residue_name_number
( O
Fig O
. O
6 O
). O
Boeckstaens O
et O
al O
. O
proposed O
that O
phosphorylation B-ptm
does O
not O
affect O
channel O
activity O
directly O
, O
but O
instead O
relieves O
inhibition O
by O
the O
AI B-structure_element
region I-structure_element
. O
The O
first O
one O
is O
that O
the O
open B-protein_state
state O
is O
disfavoured O
by O
crystallization B-experimental_method
because O
of O
lower O
stability O
or O
due O
to O
crystal O
packing O
constraints O
. O
The O
side O
- O
chain O
hydroxyl O
of O
Ser457 B-residue_name_number
/ O
453 B-residue_number
is O
located O
in O
a O
well O
- O
defined O
electronegative B-site
pocket I-site
that O
is O
solvent B-protein_state
accessible I-protein_state
( O
Fig O
. O
6 O
). O
In O
the O
WT B-protein_state
structure B-evidence
, O
the O
acidic O
residues O
Asp419 B-residue_name_number
, O
Glu420 B-residue_name_number
and O
Glu421 B-residue_name_number
are O
within O
hydrogen O
bonding O
distance O
of O
Ser453 B-residue_name_number
. O
Finally O
, O
the O
S453J B-mutant
mutant B-protein_state
is O
also O
stable B-protein_state
throughout O
the O
200 O
- O
ns O
simulation B-experimental_method
and O
has O
an O
average O
backbone O
deviation O
of O
O
3 O
. O
8 O
Å O
, O
which O
is O
similar O
to O
the O
DD B-mutant
mutant I-mutant
. O
The O
distance B-evidence
between O
the O
phosphate B-chemical
of O
Sep453 B-residue_name_number
and O
the O
acidic O
oxygen O
atoms O
of O
Glu420 B-residue_name_number
is O
initially O
O
11 O
Å O
, O
but O
increases O
to O
> O
30 O
Å O
after O
200 O
ns O
. O
These O
efforts O
have O
advanced O
our O
knowledge O
considerably O
but O
have O
not O
yet O
yielded O
atomic O
- O
level O
answers O
to O
several O
important O
mechanistic O
questions O
, O
including O
how O
ammonium B-chemical
transport O
is O
regulated O
in O
eukaryotes B-taxonomy_domain
and O
the O
mechanism O
of O
ammonium B-chemical
signalling O
. O
In O
Arabidopsis B-species
thaliana I-species
Amt B-protein
- I-protein
1 I-protein
; I-protein
1 I-protein
, O
phosphorylation B-ptm
of O
the O
CTR B-structure_element
residue O
T460 B-residue_name_number
under O
conditions O
of O
high O
ammonium B-chemical
inhibits O
transport O
activity O
, O
that O
is O
, O
the O
default O
( O
non B-protein_state
- I-protein_state
phosphorylated I-protein_state
) O
state O
of O
the O
plant B-taxonomy_domain
transporter B-protein_type
is O
open B-protein_state
. O
Interestingly O
, O
phosphomimetic B-mutant
mutations I-mutant
introduced O
into O
one O
monomer B-oligomeric_state
inactivate O
the O
entire O
trimer B-oligomeric_state
, O
indicating O
that O
( O
i O
) O
heterotrimerization O
occurs O
and O
( O
ii O
) O
the O
CTR B-structure_element
mediates O
allosteric O
regulation O
of O
ammonium B-chemical
transport O
activity O
via O
phosphorylation B-ptm
. O
More O
specifically O
, O
the O
close O
interactions O
between O
the O
CTR B-structure_element
and O
ICL1 B-structure_element
/ O
ICL3 B-structure_element
present O
in O
open B-protein_state
transporters B-protein_type
are O
disrupted O
, O
causing O
ICL3 B-structure_element
to O
move O
outwards O
and O
block O
the O
channel B-site
( O
Figs O
4 O
and O
9a O
). O
How O
exactly O
the O
channel B-site
opens O
and O
whether O
opening O
is O
intra O
- O
monomeric O
are O
still O
open B-protein_state
questions O
; O
it O
is O
possible O
that O
the O
change O
in O
the O
CTR B-structure_element
may O
disrupt O
its O
interactions O
with O
ICL3 B-structure_element
of O
the O
neighbouring O
monomer B-oligomeric_state
( O
Fig O
. O
9b O
), O
which O
could O
result O
in O
opening O
of O
the O
neighbouring O
channel B-site
via O
inward O
movement O
of O
its O
ICL3 B-structure_element
. O
Is O
our O
model O
for O
opening O
and O
closing O
of O
Mep2 B-protein
channels B-site
valid O
for O
other O
eukaryotic B-taxonomy_domain
ammonium B-protein_type
transporters I-protein_type
? O
Our O
structural B-evidence
data I-evidence
support O
previous O
studies O
and O
clarify O
the O
central O
role O
of O
the O
CTR B-structure_element
and O
cytoplasmic B-structure_element
loops I-structure_element
in O
the O
transition O
between O
closed B-protein_state
and O
open B-protein_state
states O
. O
There O
is O
generally O
no O
equivalent O
for O
CaMep2 B-protein
Tyr49 B-residue_name_number
in O
plant B-taxonomy_domain
AMTs B-protein_type
, O
indicating O
that O
a O
Tyr B-site
I-site
His2 I-site
hydrogen I-site
bond I-site
as O
observed O
in O
Mep2 B-protein
may O
not O
contribute O
to O
the O
closed B-protein_state
state O
in O
plant B-taxonomy_domain
transporters B-protein_type
. O
The O
need O
to O
regulate O
in O
opposite O
ways O
may O
be O
the O
reason O
why O
the O
phosphorylation B-site
sites I-site
are O
in O
different O
parts O
of O
the O
CTR B-structure_element
, O
that O
is O
, O
centrally O
located O
close O
to O
the O
ExxGxD B-structure_element
motif I-structure_element
in O
AMTs B-protein_type
and O
peripherally O
in O
Mep2 B-protein
. O
With O
respect O
to O
ammonium B-chemical
transport O
, O
phosphorylation B-ptm
has O
thus O
far O
only O
been O
shown O
for O
A B-species
. I-species
thaliana I-species
AMTs B-protein_type
and O
for O
S B-species
. I-species
cerevisiae I-species
Mep2 B-protein
( O
refs O
). O
In O
one O
model O
, O
signalling O
is O
proposed O
to O
depend O
on O
the O
nature O
of O
the O
transported O
substrate O
, O
which O
might O
be O
different O
in O
certain O
subfamilies O
of O
ammonium B-protein_type
transporters I-protein_type
( O
for O
example O
, O
Mep1 B-protein
/ O
Mep3 B-protein
versus O
Mep2 B-protein
). O
In O
the O
other O
model O
, O
signalling O
is O
thought O
to O
require O
a O
distinct O
conformation O
of O
the O
Mep2 B-protein
transporter B-protein_type
occurring O
during O
the O
transport O
cycle O
. O
The O
region O
showing O
ICL1 B-structure_element
( O
blue O
), O
ICL3 B-structure_element
( O
green O
) O
and O
the O
CTR B-structure_element
( O
red O
) O
is O
boxed O
for O
comparison O
. O
( O
a O
) O
ICL1 B-structure_element
in O
AfAmt B-protein
- I-protein
1 I-protein
( O
light O
blue O
) O
and O
CaMep2 B-protein
( O
dark O
blue O
), O
showing O
unwinding O
and O
inward O
movement O
in O
the O
fungal B-taxonomy_domain
protein O
. O
( O
b O
) O
Stereo O
diagram O
viewed O
from O
the O
cytosol O
of O
ICL1 B-structure_element
, O
ICL3 B-structure_element
( O
green O
) O
and O
the O
CTR B-structure_element
( O
red O
) O
in O
AfAmt B-protein
- I-protein
1 I-protein
( O
light O
colours O
) O
and O
CaMep2 B-protein
( O
dark O
colours O
). O
The O
labelled O
residues O
are O
analogous O
within O
both O
structures B-evidence
. O
Channel O
closures O
in O
Mep2 B-protein
. O
The O
Npr1 B-protein
kinase B-protein_type
target O
Ser453 B-residue_name_number
is O
dephosphorylated B-protein_state
and O
located O
in O
an O
electronegative B-site
pocket I-site
. O
( O
a O
) O
Stereoviews O
of O
CaMep2 B-protein
showing O
2Fo O
O
Fc O
electron O
density O
( O
contoured O
at O
1 O
. O
0 O
σ O
) O
for O
CTR B-structure_element
residues O
Asp419 B-residue_range
- I-residue_range
Met422 I-residue_range
and O
for O
Tyr446 B-residue_range
- I-residue_range
Thr455 I-residue_range
of O
the O
AI B-structure_element
region I-structure_element
. O
Phosphorylation B-ptm
causes O
conformational O
changes O
in O
the O
CTR B-structure_element
. O
( O
a O
) O
In O
the O
closed B-protein_state
, O
non B-protein_state
- I-protein_state
phosphorylated I-protein_state
state O
( O
i O
), O
the O
CTR B-structure_element
( O
magenta O
) O
and O
ICL3 B-structure_element
( O
green O
) O
are O
far O
apart O
with O
the O
latter O
blocking O
the O
intracellular O
channel B-site
exit I-site
( O
indicated O
with O
a O
hatched O
circle O
). O
Visualizing O
chaperone B-protein_type
- O
assisted O
protein O
folding O
READ B-experimental_method
enabled O
us O
to O
visualize O
even O
sparsely O
populated O
conformations O
of O
the O
substrate O
protein O
immunity B-protein
protein I-protein
7 I-protein
( O
Im7 B-protein
) O
in B-protein_state
complex I-protein_state
with I-protein_state
the O
E B-species
. I-species
coli I-species
chaperone B-protein_type
Spy B-protein
. O
It O
is O
clear O
that O
molecular O
chaperones B-protein_type
aid O
in O
protein O
folding O
. O
Structural B-evidence
models I-evidence
of O
chaperone B-protein_type
- O
substrate O
complexes O
have O
recently O
begun O
to O
provide O
information O
as O
to O
how O
a O
chaperone B-protein_type
can O
recognize O
its O
substrate O
. O
For O
most O
chaperones B-protein_type
, O
it O
is O
still O
unclear O
whether O
the O
chaperone B-protein_type
actively O
participates O
in O
and O
affects O
the O
folding O
of O
the O
substrate O
proteins O
, O
or O
merely O
provides O
a O
suitable O
microenvironment O
enabling O
the O
substrate O
to O
fold O
on O
its O
own O
. O
We O
therefore O
screened B-experimental_method
crystallization B-experimental_method
conditions I-experimental_method
for O
Spy B-protein
with O
four O
different O
substrate O
proteins O
: O
a O
fragment O
of O
the O
largely O
unfolded B-protein_state
bovine B-taxonomy_domain
α B-chemical
- I-chemical
casein I-chemical
protein O
, O
wild B-protein_state
- I-protein_state
type I-protein_state
( O
WT B-protein_state
) O
E B-species
. I-species
coli I-species
Im7 B-protein
, O
an O
unfolded B-protein_state
variant O
of O
Im7 B-protein
( O
L18A B-mutant
L19A B-mutant
L37A B-mutant
), O
and O
the O
N B-structure_element
- I-structure_element
terminal I-structure_element
half I-structure_element
of O
Im7 B-protein
( O
Im76 B-mutant
- I-mutant
45 I-mutant
), O
which O
encompasses O
the O
entire O
Spy B-structure_element
- I-structure_element
binding I-structure_element
portion I-structure_element
of O
Im7 B-protein
. O
Subsequent O
crystal B-experimental_method
washing I-experimental_method
and I-experimental_method
dissolution I-experimental_method
experiments O
confirmed O
the O
presence O
of O
the O
substrates O
in O
the O
co B-experimental_method
- I-experimental_method
crystals I-experimental_method
( O
Supplementary O
Fig O
. O
2 O
). O
We O
split O
this O
approach O
into O
five O
steps O
: O
( O
1 O
) O
By O
using O
a O
well O
- O
diffracting O
Spy B-protein
: O
substrate O
co B-evidence
- I-evidence
crystal I-evidence
, O
we O
first O
determined O
the O
structure B-evidence
of O
the O
folded B-protein_state
domain B-structure_element
of O
Spy B-protein
and O
obtained O
high O
quality O
residual B-evidence
electron I-evidence
density I-evidence
within O
the O
dynamic B-protein_state
regions O
of O
the O
substrate O
. O
The O
READ B-experimental_method
sample B-experimental_method
- I-experimental_method
and I-experimental_method
- I-experimental_method
select I-experimental_method
algorithm I-experimental_method
is O
diagrammed O
in O
Fig O
. O
2 O
. O
To O
make O
the O
electron B-experimental_method
density I-experimental_method
selection I-experimental_method
practical O
, O
we O
needed O
to O
develop O
a O
method O
to O
rapidly O
evaluate O
the O
agreement O
between O
the O
selected O
sub O
- O
ensembles O
and O
the O
experimental O
electron B-evidence
density I-evidence
on O
- O
the O
- O
fly O
during O
the O
selection O
procedure O
. O
To O
reduce O
the O
extent O
of O
3D O
space O
to O
be O
explored O
, O
this O
compressed O
map B-evidence
was O
created O
by O
only O
using O
density B-evidence
from O
regions O
of O
space O
significantly O
sampled O
by O
Im76 B-mutant
- I-mutant
45 I-mutant
in O
the O
Spy B-complex_assembly
: I-complex_assembly
Im76 I-complex_assembly
- I-complex_assembly
45 I-complex_assembly
MD B-experimental_method
simulations B-experimental_method
. O
We O
were O
particularly O
interested O
in O
finding O
answers O
to O
one O
of O
the O
most O
fundamental O
questions O
in O
chaperone B-protein_type
biology O
O
how O
does O
chaperone B-protein_type
binding O
affect O
substrate O
structure O
and O
vice O
versa O
. O
We O
constructed O
a O
contact B-evidence
map I-evidence
of O
the O
complex O
, O
which O
shows O
the O
frequency O
of O
interactions O
for O
chaperone B-protein_type
- O
substrate O
residue O
pairs O
( O
Fig O
. O
4 O
). O
This O
twist O
yields O
asymmetry O
and O
results O
in O
substantially O
different O
interaction O
patterns O
in O
the O
two O
Spy B-protein
monomers B-oligomeric_state
( O
Fig O
. O
4b O
). O
Additionally O
, O
we O
observed O
that O
the O
linker B-structure_element
region I-structure_element
( O
residues O
47 B-residue_range
I-residue_range
57 I-residue_range
) O
of O
Spy B-protein
, O
which O
participates O
in O
substrate O
interaction O
, O
becomes O
mostly O
disordered B-protein_state
upon O
binding O
the O
substrate O
. O
Importantly O
, O
we O
observed O
the O
same O
structural O
changes O
in O
Spy B-protein
regardless O
of O
which O
of O
the O
four O
substrates O
was O
bound O
( O
Fig O
. O
5b O
, O
Table O
1 O
). O
We O
recently O
showed O
that O
Im7 B-protein
can O
fold O
while O
remaining O
continuously B-protein_state
bound I-protein_state
to I-protein_state
Spy B-protein
. O
This O
model O
is O
consistent O
with O
previous O
studies O
postulating O
that O
the O
flexible O
binding O
of O
chaperones B-protein_type
allows O
for O
substrate O
protein O
folding O
. O
The O
amphipathic O
concave B-site
surface I-site
of O
Spy B-protein
likely O
facilitates O
this O
flexible O
binding O
and O
may O
be O
a O
crucial O
feature O
for O
Spy B-protein
and O
potentially O
other O
chaperones B-protein_type
, O
allowing O
them O
to O
bind O
multiple O
conformations O
of O
many O
different O
substrates O
. O
The O
negatively O
charged O
Im7 B-protein
residues O
Glu21 B-residue_name_number
, O
Asp32 B-residue_name_number
, O
and O
Asp35 B-residue_name_number
reside O
on O
the O
surface O
of O
Im7 B-protein
and O
form O
interactions O
with O
Spy B-protein
O
s O
positively O
charged O
cradle B-site
in O
both O
the O
unfolded B-protein_state
and O
native B-protein_state
- I-protein_state
like I-protein_state
states O
. O
This O
selection O
resulted O
in O
O
Super O
Spy B-protein
O
variants B-protein_state
that O
were O
more O
effective O
at O
both O
preventing O
aggregation O
and O
promoting O
protein O
folding O
. O
By O
sampling O
multiple O
conformations O
, O
this O
linker B-structure_element
region I-structure_element
may O
allow O
diverse O
substrate O
conformations O
to O
be O
accommodated O
. O
Overall O
, O
comparison O
of O
our O
ensemble B-evidence
to O
the O
Super O
Spy B-protein
variants B-protein_state
provides O
specific O
examples O
to O
corroborate O
the O
importance O
of O
conformational O
flexibility O
in O
chaperone B-protein_type
- O
substrate O
interactions O
. O
ATP B-chemical
and O
co O
- O
chaperone B-protein_type
dependencies O
may O
have O
emerged O
later O
through O
evolution O
to O
better O
modulate O
and O
control O
chaperone B-protein_type
action O
. O
As O
the O
residues O
involved O
in O
contacts O
are O
more O
evenly O
distributed O
in O
Im76 B-mutant
- I-mutant
45 I-mutant
compared O
to O
Spy B-protein
, O
its O
contact B-evidence
map I-evidence
was O
amplified O
. O
( O
b O
) O
Detailed O
contact B-evidence
maps I-evidence
of O
Spy B-complex_assembly
: I-complex_assembly
Im76 I-complex_assembly
- I-complex_assembly
45 I-complex_assembly
. O
The O
Super O
Spy B-protein
mutants O
F115L B-mutant
, O
F115I B-mutant
, O
and O
L32P B-mutant
are O
proposed O
to O
gain O
activity O
by O
increasing O
the O
flexibility O
or O
size O
of O
this O
linker B-structure_element
region I-structure_element
. O
To O
support O
antibody B-protein_type
therapeutic O
development O
, O
the O
crystal B-evidence
structures I-evidence
of O
a O
set O
of O
16 O
germline O
variants O
composed O
of O
4 O
different O
kappa B-structure_element
light I-structure_element
chains I-structure_element
paired O
with O
4 O
different O
heavy B-structure_element
chains I-structure_element
have O
been O
determined O
. O
The O
longer B-protein_state
CDRs B-structure_element
with O
tandem O
glycines B-residue_name
or O
serines B-residue_name
have O
more O
conformational O
diversity O
than O
the O
others O
. O
Two O
of O
16 O
structures B-evidence
showed O
particularly O
large O
variations O
in O
the O
tilt B-evidence
angles I-evidence
when O
compared O
with O
the O
other O
pairings O
. O
These O
domains O
have O
a O
common O
folding O
pattern O
often O
referred O
to O
as O
the O
O
immunoglobulin B-structure_element
fold I-structure_element
,O
formed O
by O
the O
packing O
together O
of O
2 O
anti B-structure_element
- I-structure_element
parallel I-structure_element
β I-structure_element
- I-structure_element
sheets I-structure_element
. O
All O
immunoglobulin B-protein_type
chains I-protein_type
have O
an O
N O
- O
terminal O
V B-structure_element
domain I-structure_element
followed O
by O
1 O
to O
4 O
C B-structure_element
domains I-structure_element
, O
depending O
upon O
the O
chain O
type O
. O
The O
cataloging O
and O
development O
of O
the O
rules O
for O
predicting O
the O
conformation O
of O
the O
anchor B-structure_element
region I-structure_element
of O
CDR B-structure_element
H3 B-structure_element
continue O
to O
be O
refined O
, O
producing O
new O
insight O
into O
the O
CDR B-structure_element
H3 B-structure_element
conformations O
and O
new O
tools O
for O
antibody B-protein_type
engineering O
. O
One O
important O
finding O
of O
the O
antibody B-experimental_method
modeling I-experimental_method
assessments I-experimental_method
was O
that O
errors O
in O
the O
structural O
templates O
that O
are O
used O
as O
the O
basis O
for O
homology B-experimental_method
models I-experimental_method
can O
propagate O
into O
the O
final O
models O
, O
producing O
inaccuracies O
that O
may O
negatively O
influence O
the O
predictive O
nature O
of O
the O
V B-structure_element
region I-structure_element
model O
. O
The O
structures B-evidence
and O
their O
analyses O
provide O
a O
foundation O
for O
future O
antibody B-protein_type
engineering O
and O
structure O
determination O
efforts O
. O
The O
similarity O
in O
the O
crystal B-evidence
forms I-evidence
is O
attributed O
in O
part O
to O
cross O
- O
seeding O
using O
the O
microseed B-experimental_method
matrix I-experimental_method
screening I-experimental_method
for O
groups O
2 O
and O
3 O
. O
The O
number O
of O
Fab B-structure_element
molecules O
in O
the O
crystallographic O
asymmetric O
unit O
varies O
from O
1 O
( O
for O
12 O
Fabs B-structure_element
) O
to O
2 O
( O
for O
4 O
Fabs B-structure_element
). O
For O
the O
LC B-structure_element
, O
the O
disorder B-protein_state
is O
observed O
at O
2 O
of O
the O
C O
- O
terminal O
residues O
with O
few O
exceptions O
. O
CDR B-structure_element
H1 B-structure_element
The O
canonical O
structures O
of O
CDR B-structure_element
H2 B-structure_element
have O
fairly O
consistent O
conformations O
( O
Table O
2 O
, O
Fig O
. O
2 O
). O
In O
one O
case O
, O
in O
the O
second O
Fab B-structure_element
of O
H1 B-complex_assembly
- I-complex_assembly
69 I-complex_assembly
: I-complex_assembly
L3 I-complex_assembly
- I-complex_assembly
20 I-complex_assembly
, O
CDR B-structure_element
H2 B-structure_element
is O
partially B-protein_state
disordered I-protein_state
( O
Δ55 B-mutant
- I-mutant
60 I-mutant
). O
Despite O
this O
, O
the O
conformations O
are O
tightly O
clustered O
( O
rmsd B-evidence
is O
0 O
. O
20 O
O
). O
L3 B-mutant
- I-mutant
20 I-mutant
is O
the O
most O
variable O
in O
CDR B-structure_element
L1 B-structure_element
among O
the O
4 O
germlines O
as O
indicated O
by O
an O
rmsd B-evidence
of O
0 O
. O
54 O
O
( O
Fig O
. O
3C O
). O
The O
CDR B-structure_element
L2 B-structure_element
conformations O
for O
each O
of O
the O
LCs B-structure_element
paired O
with O
the O
4 O
HCs B-structure_element
are O
clustered O
more O
tightly O
than O
any O
of O
the O
other O
CDRs B-structure_element
( O
rmsd B-evidence
values O
are O
in O
the O
range O
0 O
. O
09 O
- O
0 O
. O
16 O
O
), O
and O
all O
4 O
sets O
have O
virtually O
the O
same O
conformation O
despite O
the O
sequence O
diversity O
of O
the O
loop B-structure_element
. O
The O
superposition B-experimental_method
of O
CDR B-structure_element
L3 B-structure_element
backbones O
for O
all O
HC B-complex_assembly
: I-complex_assembly
LC I-complex_assembly
pairs O
with O
light B-structure_element
chains I-structure_element
: O
( O
A O
) O
L1 B-mutant
- I-mutant
39 I-mutant
, O
( O
B O
) O
L3 B-mutant
- I-mutant
11 I-mutant
, O
( O
C O
) O
L3 B-mutant
- I-mutant
20 I-mutant
and O
( O
D O
) O
L4 B-mutant
- I-mutant
1 I-mutant
. O
An O
interesting O
feature O
of O
these O
CDR B-structure_element
H3 B-structure_element
structures B-evidence
is O
the O
presence O
of O
a O
water B-chemical
molecule O
that O
interacts O
with O
the O
peptide O
nitrogens O
and O
carbonyl O
oxygens O
near O
the O
bridging O
loop B-structure_element
connecting O
the O
2 O
β B-structure_element
- I-structure_element
strands I-structure_element
. O
A O
representative O
CDR B-structure_element
H3 B-structure_element
structure B-evidence
for O
H1 B-complex_assembly
- I-complex_assembly
69 I-complex_assembly
: I-complex_assembly
L1 I-complex_assembly
- I-complex_assembly
39 I-complex_assembly
illustrating O
this O
is O
shown O
in O
Fig O
. O
7A O
. O
The O
stem B-structure_element
regions I-structure_element
in O
these O
3 O
cases O
are O
in O
the O
O
kinked B-protein_state
O
conformation O
consistent O
with O
that O
observed O
for O
4DN3 O
. O
The O
stem B-structure_element
regions I-structure_element
of O
CDR B-structure_element
H3 B-structure_element
for O
the O
H5 B-complex_assembly
- I-complex_assembly
51 I-complex_assembly
: I-complex_assembly
L4 I-complex_assembly
- I-complex_assembly
1 I-complex_assembly
Fabs B-structure_element
are O
in O
the O
O
kinked B-protein_state
O
conformation O
while O
, O
surprisingly O
, O
those O
of O
the O
H1 B-complex_assembly
- I-complex_assembly
69 I-complex_assembly
: I-complex_assembly
L3 I-complex_assembly
- I-complex_assembly
20 I-complex_assembly
pair O
and O
H3 B-complex_assembly
- I-complex_assembly
53 I-complex_assembly
: I-complex_assembly
L4 I-complex_assembly
- I-complex_assembly
1 I-complex_assembly
are O
in O
the O
O
extended B-protein_state
O
conformation O
( O
Fig O
. O
7B O
). O
The O
two O
domains O
pack O
together O
such O
that O
the O
5 B-structure_element
- I-structure_element
stranded I-structure_element
β I-structure_element
- I-structure_element
sheets I-structure_element
, O
which O
have O
hydrophobic O
surfaces O
, O
interact O
with O
each O
other O
bringing O
the O
CDRs B-structure_element
from O
both O
the O
VH B-structure_element
and O
VL B-structure_element
domains O
into O
close O
proximity O
. O
VH B-site
: I-site
VL I-site
interface I-site
amino O
acid O
residue O
interactions O
Position O
43 B-residue_number
may O
be O
alternatively O
occupied O
by O
Ser B-residue_name
, O
Val B-residue_name
or O
Pro B-residue_name
( O
as O
in O
L4 B-mutant
- I-mutant
1 I-mutant
), O
but O
the O
hydrophobic O
interaction O
with O
H B-structure_element
- O
Tyr91 B-residue_name_number
is O
preserved O
. O
These O
core O
interactions O
provide O
enough O
stability O
to O
the O
VH B-complex_assembly
: I-complex_assembly
VL I-complex_assembly
dimer B-oligomeric_state
so O
that O
additional O
VH B-site
- I-site
VL I-site
contacts I-site
can O
tolerate O
amino O
acid O
sequence O
variations O
in O
CDRs B-structure_element
H3 B-structure_element
and O
L3 B-structure_element
that O
form O
part O
of O
the O
VH B-site
: I-site
VL I-site
interface I-site
. O
One O
notable O
exception O
is O
H B-structure_element
- O
Trp47 B-residue_name_number
, O
which O
exhibits O
2 O
conformations O
of O
the O
indole O
ring O
. O
Apparently O
, O
residues O
flanking O
CDR B-structure_element
H3 B-structure_element
in O
the O
2 O
VH B-complex_assembly
: I-complex_assembly
VL I-complex_assembly
pairings O
are O
inconsistent O
with O
any O
stable B-protein_state
conformation O
of O
CDR B-structure_element
H3 B-structure_element
, O
which O
translates O
into O
a O
less O
restricted O
conformational O
space O
for O
some O
of O
them O
, O
including O
H B-structure_element
- O
Trp47 B-residue_name_number
. O
Differences O
in O
VH B-complex_assembly
: I-complex_assembly
VL I-complex_assembly
tilt B-evidence
angles I-evidence
. O
The O
differences B-evidence
in O
the O
tilt B-evidence
angle I-evidence
are O
shown O
for O
all O
pairs O
of O
V B-structure_element
regions I-structure_element
in O
Table O
3 O
. O
Residues O
in O
CDR B-structure_element
H3 B-structure_element
are O
missing O
: O
YGE B-structure_element
in O
H5 B-complex_assembly
- I-complex_assembly
51 I-complex_assembly
: I-complex_assembly
L3 I-complex_assembly
- I-complex_assembly
11 I-complex_assembly
, O
GIY B-structure_element
in O
H5 B-complex_assembly
- I-complex_assembly
51 I-complex_assembly
: I-complex_assembly
L3 I-complex_assembly
- I-complex_assembly
20 I-complex_assembly
. O
Interestingly O
, O
the O
2 O
structures B-evidence
that O
have O
the O
largest O
tilt B-evidence
angle I-evidence
differences I-evidence
with O
the O
other O
variants O
, O
H3 B-complex_assembly
- I-complex_assembly
23 I-complex_assembly
: I-complex_assembly
L3 I-complex_assembly
- I-complex_assembly
20 I-complex_assembly
and O
H1 B-complex_assembly
- I-complex_assembly
69 I-complex_assembly
: I-complex_assembly
L3 I-complex_assembly
- I-complex_assembly
20 I-complex_assembly
, O
have O
the O
smallest O
VH B-site
: I-site
VL I-site
interfaces I-site
, O
684 O
and O
725 O
2 O
, O
respectively O
. O
It O
appears O
that O
for O
each O
given O
LC B-structure_element
, O
the O
Fabs B-structure_element
with O
germlines O
H1 B-mutant
- I-mutant
69 I-mutant
and O
H3 B-mutant
- I-mutant
23 I-mutant
are O
substantially O
more O
stable B-protein_state
than O
those O
with O
germlines O
H3 B-mutant
- I-mutant
53 I-mutant
and O
H5 B-mutant
- I-mutant
51 I-mutant
. O
Parts O
of O
CDR B-structure_element
H3 B-structure_element
main O
chain O
are O
completely O
disordered B-protein_state
, O
and O
were O
not O
modeled O
in O
Fabs B-structure_element
H5 B-complex_assembly
- I-complex_assembly
51 I-complex_assembly
: I-complex_assembly
L3 I-complex_assembly
- I-complex_assembly
20 I-complex_assembly
and O
H5 B-complex_assembly
- I-complex_assembly
51 I-complex_assembly
: I-complex_assembly
L3 I-complex_assembly
- I-complex_assembly
11 I-complex_assembly
that O
have O
the O
lowest O
Tms B-evidence
in O
the O
set O
. O
All O
those O
molecules O
are O
relatively O
unstable O
, O
as O
is O
reflected O
in O
their O
low O
Tms B-evidence
. O
Of O
the O
4 O
HCs B-structure_element
, O
H1 B-mutant
- I-mutant
69 I-mutant
has O
the O
greatest O
number O
of O
canonical O
structure O
assignments O
( O
Table O
2 O
). O
The O
remaining O
8 O
structures B-evidence
exhibit O
O
non O
- O
parental O
O
conformations O
, O
indicating O
that O
the O
VH B-structure_element
and O
VL B-structure_element
context O
can O
also O
be O
a O
dominating O
factor O
influencing O
CDR B-structure_element
H3 B-structure_element
. O
Thus O
, O
no O
patterns O
of O
conformational O
preference O
for O
a O
particular O
HC B-structure_element
or O
LC B-structure_element
emerge O
to O
shed O
any O
direct O
light O
on O
what O
drives O
the O
conformational O
differences O
. O
One O
of O
the O
variants O
, O
H3 B-complex_assembly
- I-complex_assembly
23 I-complex_assembly
: I-complex_assembly
L3 I-complex_assembly
- I-complex_assembly
20 I-complex_assembly
, O
has O
the O
CDR B-structure_element
H3 B-structure_element
conformation O
similar O
to O
the O
parent O
, O
but O
the O
other O
, O
H1 B-complex_assembly
- I-complex_assembly
69 I-complex_assembly
: I-complex_assembly
L3 I-complex_assembly
- I-complex_assembly
20 I-complex_assembly
, O
is O
different O
. O
These O
differences O
undoubtedly O
influence O
the O
conformation O
of O
the O
CDRs B-structure_element
, O
in O
particular O
CDR B-structure_element
H1 B-structure_element
( O
Fig O
. O
1A O
) O
and O
CDR B-structure_element
L1 B-structure_element
( O
Fig O
. O
3C O
), O
especially O
with O
the O
tandem O
glycines B-residue_name
and O
multiple O
serines B-residue_name
present O
, O
respectively O
. O
Pairing O
of O
different O
germlines O
yields O
antibodies B-protein_type
with O
various O
degrees O
of O
stability O
. O
Other O
germlines O
have O
bulky O
residues O
, O
Tyr B-residue_name
, O
Arg B-residue_name
and O
Trp B-residue_name
, O
at O
these O
positions O
, O
whereas O
L1 B-mutant
- I-mutant
39 I-mutant
has O
Ser B-residue_name
and O
Thr B-residue_name
. O
The O
set O
of O
16 O
germline O
Fab B-structure_element
structures B-evidence
offers O
a O
unique O
dataset O
to O
facilitate O
software O
development O
for O
antibody B-protein_type
modeling O
. O
An O
extended B-protein_state
U2AF65 B-structure_element
I-structure_element
RNA I-structure_element
- I-structure_element
binding I-structure_element
domain I-structure_element
recognizes O
the O
3 B-site
I-site
splice I-site
site I-site
signal O
The O
U2AF65 B-protein
linker B-structure_element
residues O
between O
the O
dual O
RNA B-structure_element
recognition I-structure_element
motifs I-structure_element
( O
RRMs B-structure_element
) O
recognize O
the O
central O
nucleotide B-chemical
, O
whereas O
the O
N O
- O
and O
C O
- O
terminal O
RRM B-structure_element
extensions I-structure_element
recognize O
the O
3 B-site
I-site
terminus I-site
and O
third B-residue_number
nucleotide B-chemical
. O
The O
splice B-site
sites I-site
are O
marked O
by O
relatively O
short B-structure_element
consensus I-structure_element
sequences I-structure_element
and O
are O
regulated O
by O
additional O
pre B-structure_element
- I-structure_element
mRNA I-structure_element
motifs I-structure_element
( O
reviewed O
in O
ref O
.). O
The O
early O
- O
stage O
pre B-protein_type
- I-protein_type
mRNA I-protein_type
splicing I-protein_type
factor I-protein_type
U2AF65 B-protein
is O
essential O
for O
viability O
in O
vertebrates B-taxonomy_domain
and O
other O
model O
organisms O
( O
for O
example O
, O
ref O
.). O
A O
tightly O
controlled O
assembly B-complex_assembly
among O
U2AF65 B-protein
, O
the O
pre B-chemical
- I-chemical
mRNA I-chemical
, O
and O
partner O
proteins O
sequentially O
identifies O
the O
3 B-site
I-site
splice I-site
site I-site
and O
promotes O
association O
of O
the O
spliceosome B-complex_assembly
, O
which O
ultimately O
accomplishes O
the O
task O
of O
splicing O
. O
We O
use O
single B-experimental_method
- I-experimental_method
molecule I-experimental_method
Förster I-experimental_method
resonance I-experimental_method
energy I-experimental_method
transfer I-experimental_method
( O
smFRET B-experimental_method
) O
to O
characterize O
the O
conformational B-evidence
dynamics I-evidence
of O
this O
extended B-protein_state
U2AF65 B-structure_element
I-structure_element
RNA I-structure_element
- I-structure_element
binding I-structure_element
domain I-structure_element
during O
Py B-chemical
- I-chemical
tract I-chemical
recognition O
. O
Likewise O
, O
both O
U2AF651 B-mutant
, I-mutant
2L I-mutant
and O
full B-protein_state
- I-protein_state
length I-protein_state
U2AF65 B-protein
showed O
similar O
sequence B-evidence
specificity I-evidence
for O
U B-structure_element
- I-structure_element
rich I-structure_element
stretches I-structure_element
in O
the O
5 B-site
- I-site
region I-site
of O
the O
Py B-chemical
tract I-chemical
and O
promiscuity O
for O
C B-structure_element
- I-structure_element
rich I-structure_element
regions I-structure_element
in O
the O
3 B-site
- I-site
region I-site
( O
Fig O
. O
1c O
, O
Supplementary O
Fig O
. O
1e O
O
h O
). O
We O
compare O
the O
global O
conformation O
of O
the O
U2AF651 B-mutant
, I-mutant
2L I-mutant
structures B-evidence
with O
the O
prior O
dU2AF651 B-mutant
, I-mutant
2 I-mutant
crystal B-evidence
structure I-evidence
and O
U2AF651 B-mutant
, I-mutant
2 I-mutant
NMR B-experimental_method
structure B-evidence
in O
the O
Supplementary O
Discussion O
and O
Supplementary O
Fig O
. O
2 O
. O
Otherwise O
, O
the O
rU4 B-residue_name_number
nucleotide B-chemical
packs O
against O
F304 B-residue_name_number
in O
the O
signature O
ribonucleoprotein B-structure_element
consensus I-structure_element
motif I-structure_element
( I-structure_element
RNP I-structure_element
)- I-structure_element
2 I-structure_element
of O
RRM2 B-structure_element
. O
This O
nucleotide B-chemical
twists O
to O
face O
away O
from O
the O
U2AF65 B-protein
linker B-structure_element
and O
instead O
inserts O
the O
rU6 B-residue_name_number
- O
uracil B-residue_name
into O
a O
sandwich O
between O
the O
β2 B-structure_element
/ I-structure_element
β3 I-structure_element
loops I-structure_element
of O
RRM1 B-structure_element
and O
RRM2 B-structure_element
. O
The O
rU6 B-residue_name_number
base O
edge O
is O
relatively O
solvent B-protein_state
exposed I-protein_state
; O
accordingly O
, O
the O
rU6 B-residue_name_number
hydrogen O
bonds O
with O
U2AF65 B-protein
are O
water B-chemical
mediated O
apart O
from O
a O
single O
direct O
interaction O
by O
the O
RRM1 B-structure_element
- O
N196 B-residue_name_number
side O
chain O
. O
Consistent O
with O
loss O
of O
a O
hydrogen O
bond O
with O
the O
ninth B-residue_number
pyrimidine B-chemical
- O
O2 O
( O
ΔΔG B-evidence
1 O
. O
0 O
kcal O
mol O
O
1 O
), O
mutation B-experimental_method
of O
the O
Q147 B-residue_name_number
to O
an O
alanine B-residue_name
reduced O
U2AF651 B-evidence
, I-evidence
2L I-evidence
affinity I-evidence
for O
the O
AdML B-gene
Py B-chemical
tract I-chemical
by O
five O
- O
fold O
( O
Fig O
. O
3i O
; O
Supplementary O
Fig O
. O
4c O
). O
Despite O
12 B-experimental_method
concurrent I-experimental_method
mutations I-experimental_method
, O
the O
AdML B-gene
RNA B-evidence
affinity I-evidence
of O
the O
U2AF651 B-mutant
, I-mutant
2L I-mutant
- I-mutant
12Gly I-mutant
variant B-protein_state
was O
reduced O
by O
only O
three O
- O
fold O
relative O
to O
the O
unmodified B-protein_state
protein B-protein
( O
Fig O
. O
4b O
), O
which O
is O
less O
than O
the O
penalty O
of O
the O
V254P B-mutant
mutation O
that O
disrupts O
the O
rU5 B-residue_name_number
hydrogen O
bond O
( O
Fig O
. O
3d O
, O
i O
). O
This O
difference O
indicates O
that O
the O
linearly B-protein_state
distant I-protein_state
regions B-structure_element
of O
the O
U2AF65 B-protein
primary O
sequence O
, O
including O
Q147 B-residue_name_number
in O
the O
N O
- O
terminal O
RRM1 B-structure_element
extension I-structure_element
and O
R227 B-residue_name_number
/ O
V254 B-residue_name_number
in O
the O
N O
-/ O
C O
- O
terminal O
linker B-structure_element
regions I-structure_element
at O
the O
fifth B-site
nucleotide I-site
site I-site
, O
cooperatively O
recognize O
the O
Py B-chemical
tract I-chemical
. O
When O
transfected B-experimental_method
into O
HEK293T O
cells O
containing O
only O
endogenous B-protein_state
U2AF65 B-protein
, O
the O
PY B-site
splice I-site
site I-site
is O
used O
and O
the O
remaining O
transcript O
remains O
unspliced O
. O
Co B-experimental_method
- I-experimental_method
transfection I-experimental_method
of O
the O
U2AF65 B-mutant
- I-mutant
3Mut I-mutant
with O
the O
pyPY B-chemical
splicing O
substrate O
significantly O
reduced O
splicing O
of O
the O
weak O
B-site
py I-site
' I-site
splice I-site
site I-site
relative O
to O
wild B-protein_state
- I-protein_state
type I-protein_state
U2AF65 B-protein
( O
Fig O
. O
5b O
, O
c O
). O
Paramagnetic B-experimental_method
resonance I-experimental_method
enhancement I-experimental_method
( O
PRE B-experimental_method
) O
measurements O
previously O
had O
suggested O
a O
predominant O
back B-protein_state
- I-protein_state
to I-protein_state
- I-protein_state
back I-protein_state
, O
or O
O
closed B-protein_state
' O
conformation O
of O
the O
apo B-protein_state
- O
U2AF651 B-mutant
, I-mutant
2 I-mutant
RRM1 B-structure_element
and O
RRM2 B-structure_element
in O
equilibrium O
with O
a O
minor O
O
open B-protein_state
' O
conformation O
resembling O
the O
RNA B-protein_state
- I-protein_state
bound I-protein_state
inter B-structure_element
- I-structure_element
RRM I-structure_element
arrangement O
. O
To O
complement O
the O
static O
portraits O
of O
U2AF651 B-mutant
, I-mutant
2L I-mutant
structure B-evidence
that O
we O
had O
determined O
by O
X B-experimental_method
- I-experimental_method
ray I-experimental_method
crystallography I-experimental_method
, O
we O
used O
smFRET B-experimental_method
to O
characterize O
the O
probability B-evidence
distribution I-evidence
functions I-evidence
and O
time O
dependence O
of O
U2AF65 B-protein
inter B-structure_element
- I-structure_element
RRM I-structure_element
conformational O
dynamics O
in O
solution O
. O
The O
positions O
of O
single O
cysteine B-residue_name
mutations B-experimental_method
for O
fluorophore B-chemical
attachment O
( O
A181C B-mutant
in O
RRM1 B-structure_element
and O
Q324C B-mutant
in O
RRM2 B-structure_element
) O
were O
chosen O
based O
on O
inspection O
of O
the O
U2AF651 B-mutant
, I-mutant
2L I-mutant
structures B-evidence
and O
the O
O
closed B-protein_state
' O
model O
of O
apo B-protein_state
- O
U2AF651 B-mutant
, I-mutant
2 I-mutant
. O
Approximately O
70 O
% O
of O
observed O
fluctuations O
were O
interchanges O
between O
the O
O
0 O
. O
65 O
and O
O
0 O
. O
45 O
FRET B-evidence
values I-evidence
( O
Supplementary O
Fig O
. O
7b O
). O
However O
, O
the O
presence O
of O
repetitive O
fluctuations O
between O
particular O
FRET B-evidence
values I-evidence
supports O
the O
hypothesis O
that O
RNA B-protein_state
- I-protein_state
free I-protein_state
U2AF65 B-protein
samples O
several O
distinct O
conformations O
. O
U2AF65 B-protein
conformational O
selection O
and O
induced O
fit O
by O
bound B-protein_state
RNA B-chemical
Insertion B-experimental_method
of O
adenine B-chemical
nucleotides I-chemical
decreased O
binding B-evidence
affinity I-evidence
of O
U2AF65 B-protein
to O
RNA B-chemical
by O
approximately O
five O
- O
fold O
. O
Further O
research O
will O
be O
needed O
to O
understand O
the O
roles O
of O
SF1 B-protein
and O
U2AF35 B-protein
subunits O
in O
the O
conformational O
equilibria O
underlying O
U2AF65 B-protein
association O
with O
Py B-chemical
tracts I-chemical
. O
Residues O
V249 B-residue_name_number
, O
V250 B-residue_name_number
, O
V254 B-residue_name_number
( O
yellow O
) O
are O
mutated B-experimental_method
to O
V249G B-mutant
/ O
V250G B-mutant
/ O
V254G B-mutant
in O
the O
3Gly B-mutant
mutant I-mutant
; O
residues O
S251 B-residue_name_number
, O
T252 B-residue_name_number
, O
V253 B-residue_name_number
, O
P255 B-residue_name_number
( O
red O
) O
along O
with O
V254 B-residue_name_number
are O
mutated B-experimental_method
to O
S251G B-mutant
/ O
T252G B-mutant
/ O
V253G B-mutant
/ O
V254G B-mutant
/ O
P255G B-mutant
in O
the O
5Gly B-mutant
mutant I-mutant
or O
to O
S251N B-mutant
/ O
T252L B-mutant
/ O
V253A B-mutant
/ O
V254L B-mutant
/ O
P255A B-mutant
in O
the O
NLALA B-mutant
mutant I-mutant
; O
residues O
M144 B-residue_name_number
, O
L235 B-residue_name_number
, O
M238 B-residue_name_number
, O
V244 B-residue_name_number
, O
V246 B-residue_name_number
( O
orange O
) O
along O
with O
V249 B-residue_name_number
, O
V250 B-residue_name_number
, O
S251 B-residue_name_number
, O
T252 B-residue_name_number
, O
V253 B-residue_name_number
, O
V254 B-residue_name_number
, O
P255 B-residue_name_number
are O
mutated B-experimental_method
to O
M144G B-mutant
/ O
L235G B-mutant
/ O
M238G B-mutant
/ O
V244G B-mutant
/ O
V246G B-mutant
/ O
V249G B-mutant
/ O
V250G B-mutant
/ O
S251G B-mutant
/ O
T252G B-mutant
/ O
V253G B-mutant
/ O
V254G B-mutant
/ O
P255G B-mutant
in O
the O
12Gly B-mutant
mutant I-mutant
. O
Other O
linker B-structure_element
residues O
are O
coloured O
either O
dark O
blue O
for O
new O
residues O
in O
the O
U2AF651 B-mutant
, I-mutant
2L I-mutant
structure O
or O
light O
blue O
for O
the O
remaining O
inter B-structure_element
- I-structure_element
RRM I-structure_element
residues O
. O
The O
central O
panel O
shows O
an O
overall O
view O
with O
stick O
diagrams O
for O
mutated O
residues O
; O
boxed O
regions O
are O
expanded O
to O
show O
the O
C O
- O
terminal O
( O
bottom O
left O
) O
and O
central B-structure_element
linker I-structure_element
regions I-structure_element
( O
top O
) O
at O
the O
inter B-structure_element
- I-structure_element
RRM I-structure_element
interfaces I-structure_element
, O
and O
N O
- O
terminal O
linker O
region O
contacts O
with O
RRM1 B-structure_element
( O
bottom O
right O
). O
The O
fitted O
fluorescence O
anisotropy O
RNA B-evidence
- I-evidence
binding I-evidence
curves I-evidence
are O
shown O
in O
Supplementary O
Fig O
. O
4d O
O
j O
. O
( O
c O
) O
Close O
view O
of O
the O
U2AF65 B-protein
RRM1 B-site
/ I-site
RRM2 I-site
interface I-site
following O
a O
two O
- O
fold O
rotation O
about O
the O
x O
- O
axis O
relative O
to O
a O
. O
( O
a O
, O
b O
) O
Views O
of O
FRET B-experimental_method
pairs O
chosen O
to O
follow O
the O
relative O
movement O
of O
RRM1 B-structure_element
and O
RRM2 B-structure_element
on O
the O
crystal B-evidence
structure I-evidence
of O
O
side B-protein_state
- I-protein_state
by I-protein_state
- I-protein_state
side I-protein_state
' O
U2AF651 B-mutant
, I-mutant
2L I-mutant
RRMs B-structure_element
bound B-protein_state
to I-protein_state
a O
Py B-chemical
- I-chemical
tract I-chemical
oligonucleotide I-chemical
( O
a O
, O
representative O
structure O
iv O
) O
or O
O
closed B-protein_state
' O
NMR B-experimental_method
/ O
PRE B-experimental_method
- O
based O
model O
of O
U2AF651 B-mutant
, I-mutant
2 I-mutant
( O
b O
, O
PDB O
ID O
2YH0 O
) O
in O
identical O
orientations O
of O
RRM2 B-structure_element
. O
( O
c O
O
f O
, O
i O
, O
j O
) O
The O
U2AF651 B-mutant
, I-mutant
2LFRET I-mutant
( O
Cy3 B-chemical
/ O
Cy5 B-chemical
) O
protein O
was O
immobilized O
on O
the O
microscope O
slide O
via O
biotin B-chemical
- I-chemical
NTA I-chemical
/ I-chemical
Ni I-chemical
+ I-chemical
2 I-chemical
( O
orange O
line O
) O
on O
a O
neutravidin O
( O
black O
X O
)- O
biotin O
- O
PEG O
( O
orange O
triangle O
)- O
treated O
surface O
and O
imaged O
either O
in O
the O
absence B-protein_state
of I-protein_state
ligands B-chemical
( O
c O
, O
d O
), O
in O
the O
presence O
of O
5 O
μM O
AdML B-gene
Py B-chemical
- I-chemical
tract I-chemical
RNA I-chemical
( O
5 B-chemical
- I-chemical
CCUUUUUUUUCC I-chemical
- I-chemical
3 I-chemical
) I-chemical
( O
e O
, O
f O
), O
or O
in O
the O
presence O
of O
10 O
μM O
adenosine B-residue_name
- O
interrupted O
variant O
RNA B-chemical
( O
5 B-chemical
- I-chemical
CUUUUUAAUUUCCA I-chemical
- I-chemical
3 I-chemical
) I-chemical
( O
i O
, O
j O
). O
The O
untethered B-protein_state
U2AF651 B-mutant
, I-mutant
2LFRET I-mutant
( O
Cy3 B-chemical
/ O
Cy5 B-chemical
) O
protein O
( O
1 O
nM O
) O
was O
added O
to O
AdML B-gene
RNA B-chemical
I-chemical
polyethylene I-chemical
- I-chemical
glycol I-chemical
- I-chemical
linker I-chemical
I-chemical
DNA I-chemical
oligonucleotide I-chemical
( O
10 O
nM O
), O
which O
was O
immobilized O
on O
the O
microscope O
slide O
by O
annealing O
with O
a O
complementary O
biotinyl B-chemical
- I-chemical
DNA I-chemical
oligonucleotide I-chemical
( O
black O
vertical O
line O
). O
( O
b O
) O
Following O
binding O
to O
the O
Py B-chemical
- I-chemical
tract I-chemical
RNA I-chemical
, O
a O
conformation O
corresponding O
to O
high B-evidence
FRET I-evidence
and O
consistent O
with O
the O
O
closed B-protein_state
', O
back B-protein_state
- I-protein_state
to I-protein_state
- I-protein_state
back I-protein_state
apo B-protein_state
- O
U2AF65 B-protein
model O
resulting O
from O
PRE B-experimental_method
/ O
NMR B-experimental_method
characterization O
( O
PDB O
ID O
2YH0 O
) O
often O
transitions O
to O
a O
conformation O
corresponding O
to O
O
0 O
. O
45 O
FRET B-evidence
value I-evidence
, O
which O
is O
consistent O
with O
O
open B-protein_state
', O
side B-protein_state
- I-protein_state
by I-protein_state
- I-protein_state
side I-protein_state
RRMs B-structure_element
such O
as O
the O
U2AF651 B-mutant
, I-mutant
2L I-mutant
crystal B-evidence
structures I-evidence
. O
RRM1 B-structure_element
, O
green O
; O
RRM2 B-structure_element
, O
pale O
blue O
; O
RRM B-structure_element
extensions I-structure_element
/ O
linker B-structure_element
, O
blue O
. O
Systematic O
analysis O
of O
radiation O
damage O
within O
a O
protein B-complex_assembly
I-complex_assembly
RNA I-complex_assembly
complex O
over O
a O
large O
dose O
range O
( O
1 O
. O
3 O
O
25 O
MGy O
) O
reveals O
significant O
differential O
susceptibility O
of O
RNA B-chemical
and O
protein O
. O
With O
the O
wide O
use O
of O
high O
- O
flux O
third O
- O
generation O
synchrotron O
sources O
, O
radiation O
damage O
( O
RD O
) O
has O
once O
again O
become O
a O
dominant O
reason O
for O
the O
failure O
of O
structure B-experimental_method
determination I-experimental_method
using O
macromolecular B-experimental_method
crystallography I-experimental_method
( O
MX B-experimental_method
) O
in O
experiments O
conducted O
both O
at O
room O
temperature O
and O
under O
cryocooled O
conditions O
( O
100 O
K O
). O
Significant O
progress O
has O
been O
made O
in O
recent O
years O
in O
understanding O
the O
inevitable O
manifestations O
of O
X O
- O
ray O
- O
induced O
RD O
within O
protein O
crystals B-evidence
, O
and O
there O
is O
now O
a O
body O
of O
literature O
on O
possible O
strategies O
to O
mitigate O
the O
effects O
of O
RD O
( O
e O
. O
g O
. O
Zeldin O
, O
Brockhauser O
et O
al O
., O
2013 O
; O
Bourenkov O
& O
Popov O
, O
2010 O
). O
There O
are O
a O
number O
of O
cases O
where O
SRD O
manifestations O
have O
compromised O
the O
biological O
information O
extracted O
from O
MX B-experimental_method
- I-experimental_method
determined I-experimental_method
structures B-evidence
at O
much O
lower O
doses O
than O
the O
recommended O
30 O
MGy O
limit O
, O
leading O
to O
false O
structural O
interpretations O
of O
protein O
mechanisms O
. O
Understanding O
RD O
to O
such O
complexes O
is O
crucial O
, O
since O
DNA B-chemical
is O
rarely O
naked O
within O
a O
cell O
, O
instead O
dynamically O
interacting O
with O
proteins O
, O
facilitating O
replication O
, O
transcription O
, O
modification O
and O
DNA B-chemical
repair O
. O
Nucleoproteins B-complex_assembly
also O
represent O
one O
of O
the O
main O
targets O
of O
radiotherapy O
, O
and O
an O
insight O
into O
the O
damage O
mechanisms O
induced O
by O
X O
- O
ray O
irradiation O
could O
inform O
innovative O
treatments O
. O
Investigations O
on O
sub O
- O
ionization O
- O
level O
LEEs O
( O
0 O
O
15 O
eV O
) O
interacting O
with O
both O
dried O
and O
aqueous O
oligonucleotides O
( O
Alizadeh O
& O
Sanche O
, O
2014 O
; O
Simons O
, O
2006 O
) O
concluded O
that O
resonant O
electron O
attachment O
to O
DNA B-chemical
bases O
and O
the O
sugar O
- O
phosphate O
backbone O
could O
lead O
to O
the O
preferential O
cleavage O
of O
strong O
(O
4 O
eV O
, O
385 O
kJ O
mol O
O
1 O
) O
sugar O
- O
phosphate O
C O
O
O O
covalent O
bonds O
within O
the O
DNA B-chemical
backbone O
and O
then O
base O
- O
sugar O
N1 O
O
C O
bonds O
, O
eventually O
leading O
to O
single O
- O
strand O
breakages O
( O
SSBs O
; O
Ptasińska O
& O
Sanche O
, O
2007 O
). O
To O
avoid O
the O
previous O
necessity O
for O
visual O
inspection O
of O
electron B-evidence
- I-evidence
density I-evidence
maps I-evidence
to O
detect O
SRD B-site
sites I-site
, O
a O
computational O
approach O
was O
designed O
to O
quantify O
the O
electron B-evidence
- I-evidence
density I-evidence
change I-evidence
for O
each O
refined O
atom O
with O
increasing O
dose O
, O
thus O
providing O
a O
rapid O
systematic O
method O
for O
SRD O
study O
on O
such O
large O
multimeric O
complexes O
. O
To O
quantify O
the O
exact O
effects O
of O
nucleic O
acid O
binding O
to O
a O
protein O
on O
SRD O
susceptibility O
, O
a O
high O
- O
throughput O
and O
automated O
pipeline O
was O
created O
to O
systematically O
calculate O
the O
electron B-evidence
- I-evidence
density I-evidence
change I-evidence
for O
every O
refined O
atom O
within O
the O
TRAP B-complex_assembly
I-complex_assembly
RNA I-complex_assembly
structure B-evidence
as O
a O
function O
of O
dose O
. O
This O
provides O
an O
atom O
- O
specific O
quantification O
of O
density B-evidence
I-evidence
dose I-evidence
dynamics I-evidence
, O
which O
was O
previously O
lacking O
within O
the O
field O
. O
However O
, O
these O
σ B-evidence
levels O
depend O
on O
the O
standard B-evidence
deviation I-evidence
values O
of O
the O
map B-evidence
, O
which O
can O
deviate O
between O
data O
sets O
, O
and O
are O
thus O
unsuitable O
for O
quantitative O
comparison O
of O
density B-evidence
between O
different O
dose O
data O
sets O
. O
The O
rate O
of O
D B-evidence
loss I-evidence
( O
attributed O
to O
side O
- O
chain O
decarboxylation O
) O
was O
consistently O
larger O
for O
Glu B-residue_name
compared O
with O
Asp B-residue_name
residues O
over O
the O
large O
dose O
range O
( O
Fig O
. O
2 O
O
b O
and O
Supplementary O
Fig O
. O
S3 O
); O
this O
observation O
is O
consistent O
with O
our O
calculations O
on O
model O
systems O
( O
see O
above O
) O
that O
suggest O
that O
, O
without O
considering O
differential O
hydrogen O
- O
bonding O
environments O
, O
CO2 B-chemical
loss O
is O
more O
exothermic O
by O
around O
8 O
kJ O
mol O
O
1 O
from O
oxidized B-protein_state
Glu B-residue_name
residues O
than O
from O
their O
Asp B-residue_name
counterparts O
. O
In O
our O
analysis O
, O
Asp39 B-residue_name_number
in O
the O
TRAP B-complex_assembly
( I-complex_assembly
GAGUU I-complex_assembly
) I-complex_assembly
10GAG I-complex_assembly
structure B-evidence
appears O
to O
exhibit O
two O
distinct O
hydrogen O
bonds O
to O
the O
G1 B-residue_name_number
base O
within O
each O
of O
the O
11 O
TRAP B-site
I-site
RNA I-site
interfaces I-site
, O
as O
does O
Glu36 B-residue_name_number
to O
G3 B-residue_name_number
; O
however O
, O
the O
reduction O
in O
density B-evidence
disordering O
upon O
RNA B-chemical
binding O
is O
far O
less O
significant O
for O
Asp39 B-residue_name_number
than O
for O
Glu36 B-residue_name_number
( O
Fig O
. O
5 O
O
b O
, O
p O
= O
0 O
. O
0925 O
). O
One O
oxygen O
( O
O O
O
1 O
) O
of O
Glu42 B-residue_name_number
appears O
to O
form O
a O
hydrogen O
bond O
to O
a O
nearby O
water B-chemical
within O
each O
TRAP B-site
RNA I-site
- I-site
binding I-site
pocket I-site
, O
with O
the O
other O
( O
O O
O
2 O
) O
being O
involved O
in O
a O
salt O
- O
bridge O
interaction O
with O
Arg58 B-residue_name_number
( O
Hopcroft O
et O
al O
., O
2002 O
; O
Antson O
et O
al O
., O
1999 O
). O
The O
density B-evidence
- I-evidence
change I-evidence
dynamics I-evidence
were O
statistically O
indistinguishable O
between O
bound B-protein_state
and O
nonbound B-protein_state
TRAP B-complex_assembly
for O
each O
Glu42 B-residue_name_number
carboxyl O
group O
Cδ O
atom O
( O
p O
= O
0 O
. O
435 O
), O
indicating O
that O
upon O
RNA B-chemical
binding O
the O
conserved O
salt O
- O
bridge O
interaction O
ultimately O
dictated O
the O
overall O
Glu42 B-residue_name_number
decarboxylation O
rate O
. O
The O
RNA B-chemical
- O
stabilizing O
effect O
was O
not O
restricted O
to O
radiation O
- O
sensitive O
acidic O
residues O
. O
Here O
, O
MX B-experimental_method
radiation O
- O
induced O
specific O
structural O
changes O
within O
the O
large O
TRAP B-complex_assembly
I-complex_assembly
RNA I-complex_assembly
assembly O
over O
a O
large O
dose O
range O
( O
1 O
. O
3 O
O
25 O
. O
0 O
MGy O
) O
have O
been O
analysed O
using O
a O
high O
- O
throughput O
quantitative O
approach O
, O
providing O
a O
measure O
of O
the O
electron B-evidence
- I-evidence
density I-evidence
distribution I-evidence
for O
each O
refined O
atom O
with O
increasing O
dose O
, O
D B-evidence
loss I-evidence
. O
The O
RNA B-chemical
was O
found O
to O
be O
substantially O
more O
radiation B-protein_state
- I-protein_state
resistant I-protein_state
than O
the O
protein O
, O
even O
at O
the O
highest O
doses O
investigated O
(O
25 O
. O
0 O
MGy O
), O
which O
is O
in O
strong O
concurrence O
with O
our O
previous O
SRD B-experimental_method
investigation I-experimental_method
of O
the O
C B-complex_assembly
. I-complex_assembly
Esp1396I I-complex_assembly
protein O
O
DNA B-chemical
complex O
( O
Bury O
et O
al O
., O
2015 O
). O
For O
example O
, O
Asp17 B-residue_name_number
is O
located O
O
6 O
. O
8 O
Å O
from O
the O
G1 B-residue_name_number
base O
, O
outside O
the O
RNA B-site
- I-site
binding I-site
interfaces I-site
, O
and O
has O
indistinguishable O
Cγ O
atom O
D O
loss B-evidence
dose I-evidence
- I-evidence
dynamics I-evidence
between O
RNA B-protein_state
- I-protein_state
bound I-protein_state
and O
nonbound B-protein_state
TRAP B-complex_assembly
( O
p O
> O
0 O
. O
9 O
). O
However O
, O
in O
the O
current O
MX B-experimental_method
study O
at O
100 O
K O
, O
the O
main O
damaging O
species O
are O
believed O
to O
be O
migrating O
LEEs O
and O
holes O
produced O
directly O
within O
the O
protein B-complex_assembly
I-complex_assembly
RNA I-complex_assembly
components O
or O
in O
closely O
associated O
solvent O
. O
The O
results O
presented O
here O
suggest O
that O
biologically O
relevant O
nucleoprotein B-complex_assembly
complexes O
also O
exhibit O
prolonged O
life O
- O
doses O
under O
the O
effect O
of O
LEE O
- O
induced O
structural O
changes O
, O
involving O
direct O
physical O
protection O
of O
key O
RNA B-site
- I-site
binding I-site
residues I-site
. O
Such O
reduced O
radiation O
- O
sensitivity O
in O
this O
case O
ensures O
that O
the O
interacting O
protein O
remains O
bound B-protein_state
long O
enough O
to O
the O
RNA B-chemical
to O
complete O
its O
function O
, O
even O
whilst O
exposed O
to O
ionizing O
radiation O
. O
RNA B-chemical
is O
shown O
is O
yellow O
. O
Only O
a O
subset O
of O
key O
TRAP B-complex_assembly
residue O
types O
are O
included O
. O
D O
loss O
calculated O
for O
all O
side O
- O
chain O
carboxyl O
group O
Glu B-residue_name
Cδ O
and O
Asp B-residue_name
Cγ O
atoms O
within O
the O
TRAP B-complex_assembly
I-complex_assembly
RNA I-complex_assembly
complex O
for O
a O
dose O
of O
19 O
. O
3 O
MGy O
( O
d O
8 O
). O
Another O
challenge O
will O
be O
to O
find O
out O
where O
IDA B-protein
is O
produced O
in O
the O
plant B-taxonomy_domain
and O
what O
causes O
it O
to O
accumulate O
in O
specific O
places O
in O
preparation O
for O
organ O
shedding O
. O
The O
HAESA B-protein
ectodomain B-structure_element
folds O
into O
a O
superhelical B-structure_element
assembly I-structure_element
of O
21 O
leucine B-structure_element
- I-structure_element
rich I-structure_element
repeats I-structure_element
. O
( O
A O
) O
Details O
of O
the O
IDA B-site
binding I-site
pocket I-site
. O
The O
IDA B-complex_assembly
- I-complex_assembly
HAESA I-complex_assembly
and O
SERK1 B-complex_assembly
- I-complex_assembly
HAESA I-complex_assembly
complex O
interfaces B-site
are O
conserved B-protein_state
among O
HAESA B-protein
and O
HAESA B-protein_type
- I-protein_type
like I-protein_type
proteins I-protein_type
from O
different O
plant B-taxonomy_domain
species O
. O
The O
peptide B-site
binding I-site
pocket I-site
covers O
HAESA B-protein
LRRs B-structure_element
2 I-structure_element
I-structure_element
14 I-structure_element
. O
( O
D O
) O
Close O
- O
up O
view O
of O
the O
entire O
IDA B-protein
( O
in O
yellow O
) O
peptide B-site
binding I-site
site I-site
in O
HAESA B-protein
( O
in O
blue O
). O
Hydrogren O
bonds O
are O
depicted O
as O
dotted O
lines O
( O
in O
magenta O
), O
a O
water B-chemical
molecule O
is O
shown O
as O
a O
red O
sphere O
. O
This B-structure_element
sequence I-structure_element
motif I-structure_element
is O
highly B-protein_state
conserved I-protein_state
among O
IDA B-protein_type
family I-protein_type
members I-protein_type
( O
IDA B-protein_type
- I-protein_type
LIKE I-protein_type
PROTEINS I-protein_type
, O
IDLs B-protein_type
) O
and O
contains O
a O
central O
Pro B-residue_name
residue O
, O
presumed O
to O
be O
post B-protein_state
- I-protein_state
translationally I-protein_state
modified I-protein_state
to O
hydroxyproline B-residue_name
( O
Hyp B-residue_name
; O
Figure O
1A O
). O
Active B-protein_state
IDA B-protein_type
- I-protein_type
family I-protein_type
peptide I-protein_type
hormones I-protein_type
are O
hydroxyprolinated B-protein_state
dodecamers B-structure_element
. O
no O
detectable O
binding O
). O
( O
E O
) O
Structural B-experimental_method
superposition I-experimental_method
of O
the O
active B-protein_state
IDA B-protein
( O
in O
bonds O
representation O
, O
in O
gray O
) O
and O
IDL1 B-chemical
peptide I-chemical
( O
in O
yellow O
) O
hormones O
bound B-protein_state
to I-protein_state
the O
HAESA B-protein
ectodomain B-structure_element
. O
Petal O
break O
- O
strength O
was O
found O
significantly O
increased O
in O
almost O
all O
positions O
( O
indicated O
with O
a O
*) O
for O
haesa B-gene
/ O
hsl2 B-gene
and O
serk1 B-gene
- I-gene
1 I-gene
mutant B-protein_state
plants B-taxonomy_domain
with O
respect O
to O
the O
Col O
- O
0 O
control O
. O
( O
B O
) O
Analytical B-experimental_method
size I-experimental_method
- I-experimental_method
exclusion I-experimental_method
chromatography I-experimental_method
. O
The O
central O
Hyp64IDA B-residue_name_number
is O
buried O
in O
a O
specific O
pocket B-site
formed O
by O
HAESA B-protein
LRRs B-structure_element
8 I-structure_element
I-structure_element
10 I-structure_element
, O
with O
its O
hydroxyl O
group O
establishing O
hydrogen O
bonds O
with O
the O
strictly B-protein_state
conserved I-protein_state
Glu266HAESA B-residue_name_number
and O
with O
a O
water B-chemical
molecule O
, O
which O
in O
turn O
is O
coordinated O
by O
the O
main O
chain O
oxygens O
of O
Phe289HAESA B-residue_name_number
and O
Ser311HAESA B-residue_name_number
( O
Figure O
1E O
; O
Figure O
1 O
O
figure O
supplement O
3 O
). O
In O
this O
structure B-evidence
, O
no O
additional O
electron B-evidence
density I-evidence
accounts O
for O
the O
PKGV B-structure_element
motif I-structure_element
at O
the O
IDA B-protein
N O
- O
terminus O
( O
Figure O
2A O
, O
B O
). O
We O
do O
not O
detect O
interaction O
between O
HAESA B-protein
and O
a O
synthetic B-protein_state
peptide B-chemical
missing B-protein_state
the I-protein_state
C I-protein_state
- I-protein_state
terminal I-protein_state
Asn69IDA B-residue_name_number
( O
ΔN69 B-mutant
), O
highlighting O
the O
importance O
of O
the O
polar O
interactions O
between O
the O
IDA B-protein
carboxy O
- O
terminus O
and O
Arg407HAESA B-residue_name_number
/ O
Arg409HAESA B-residue_name_number
( O
Figures O
1F O
, O
2D O
). O
The O
co B-protein_type
- I-protein_type
receptor I-protein_type
kinase I-protein_type
SERK1 B-protein
allows O
for O
high O
- O
affinity O
IDA O
sensing O
We O
found O
that O
the O
force O
required O
to O
remove O
the O
petals O
of O
serk1 B-gene
- I-gene
1 I-gene
mutants B-protein_state
is O
significantly O
higher O
than O
that O
needed O
for O
wild B-protein_state
- I-protein_state
type I-protein_state
plants B-taxonomy_domain
, O
as O
previously O
observed O
for O
haesa B-gene
/ O
hsl2 B-gene
mutants B-protein_state
, O
and O
that O
floral O
abscission O
is O
delayed O
in O
serk1 B-gene
- I-gene
1 I-gene
( O
Figure O
3A O
). O
In O
vitro O
, O
the O
LRR B-structure_element
ectodomain I-structure_element
of O
SERK1 B-protein
( O
residues O
24 B-residue_range
I-residue_range
213 I-residue_range
) O
forms O
stable B-protein_state
, O
IDA B-protein_state
- I-protein_state
dependent I-protein_state
heterodimeric B-oligomeric_state
complexes B-protein_state
with I-protein_state
HAESA B-protein
in O
size B-experimental_method
exclusion I-experimental_method
chromatography I-experimental_method
experiments O
( O
Figure O
3B O
). O
We O
next O
titrated B-experimental_method
SERK1 B-protein
into O
a O
solution O
containing O
only O
the O
HAESA B-protein
ectodomain B-structure_element
. O
In O
this O
case O
, O
there O
was O
no O
detectable O
interaction O
between O
receptor O
and O
co O
- O
receptor O
, O
while O
in O
the O
presence B-protein_state
of I-protein_state
IDA B-protein
, O
SERK1 B-protein
strongly O
binds O
HAESA B-protein
with O
a O
dissociation B-evidence
constant I-evidence
in O
the O
mid O
- O
nanomolar O
range O
( O
Figure O
3C O
). O
Upon O
IDA B-protein
binding O
at O
the O
cell O
surface O
, O
the O
kinase B-structure_element
domains I-structure_element
of O
HAESA B-protein
and O
SERK1 B-protein
, O
which O
have O
been O
shown O
to O
be O
active B-protein_state
protein B-protein_type
kinases I-protein_type
, O
may O
interact O
in O
the O
cytoplasm O
to O
activate O
each O
other O
. O
Consistently O
, O
the O
HAESA B-protein
kinase B-structure_element
domain I-structure_element
can O
transphosphorylate O
SERK1 B-protein
and O
vice O
versa O
in O
in O
vitro O
transphosphorylation B-experimental_method
assays I-experimental_method
( O
Figure O
3E O
). O
Crystal B-evidence
structure I-evidence
of O
a O
HAESA B-complex_assembly
I-complex_assembly
IDA I-complex_assembly
I-complex_assembly
SERK1 I-complex_assembly
signaling O
complex O
. O
( O
A O
) O
Overview O
of O
the O
ternary O
complex O
with O
HAESA B-protein
in O
blue O
( O
surface O
representation O
), O
IDA B-protein
in O
yellow O
( O
bonds O
representation O
) O
and O
SERK1 B-protein
in O
orange O
( O
surface O
view O
). O
( O
B O
) O
The O
HAESA B-protein
ectodomain B-structure_element
undergoes O
a O
conformational O
change O
upon O
SERK1 B-protein
co O
- O
receptor O
binding O
. O
Polar O
contacts O
of O
SERK1 B-protein
with O
IDA B-protein
are O
shown O
in O
magenta O
, O
with O
the O
HAESA B-protein
LRR B-structure_element
domain I-structure_element
in O
gray O
. O
( O
D O
) O
Details O
of O
the O
zipper B-structure_element
- I-structure_element
like I-structure_element
SERK1 B-site
- I-site
HAESA I-site
interface I-site
. O
The O
SERK1 B-protein
ectodomain B-structure_element
interacts O
with O
the O
IDA B-site
peptide I-site
binding I-site
site I-site
using O
a O
loop B-structure_element
region I-structure_element
( O
residues O
51 B-residue_range
- I-residue_range
59SERK1 I-residue_range
) O
from O
its O
N O
- O
terminal O
cap B-structure_element
( O
Figure O
4A O
, O
C O
). O
We O
found O
that O
over B-experimental_method
- I-experimental_method
expression I-experimental_method
of O
wild B-protein_state
- I-protein_state
type I-protein_state
IDA B-protein
leads O
to O
early O
floral O
abscission O
and O
an O
enlargement O
of O
the O
abscission O
zone O
( O
Figure O
5C O
O
E O
). O
In O
contrast O
to O
animal B-taxonomy_domain
LRR B-protein_type
receptors I-protein_type
, O
plant B-taxonomy_domain
LRR B-structure_element
- I-structure_element
RKs I-structure_element
harbor O
spiral B-protein_state
- I-protein_state
shaped I-protein_state
ectodomains B-structure_element
and O
thus O
they O
require O
shape B-protein_state
- I-protein_state
complementary I-protein_state
co B-protein_type
- I-protein_type
receptor I-protein_type
proteins I-protein_type
for O
receptor O
activation O
. O
However O
our O
results O
show O
that O
SERK1 B-protein
also O
can O
activate O
this O
process O
upon O
IDA B-protein
sensing O
, O
indicating O
that O
SERKs B-protein_type
may O
fulfill O
several O
different O
functions O
in O
the O
course O
of O
the O
abscission O
process O
. O
The O
central O
Hyp B-residue_name
residue O
in O
IDA B-protein
is O
found O
buried O
in O
the O
HAESA B-protein
peptide B-site
binding I-site
surface I-site
and O
thus O
this O
post O
- O
translational O
modification O
may O
regulate O
IDA B-protein
bioactivity O
. O
In O
our O
quantitative B-experimental_method
biochemical I-experimental_method
assays I-experimental_method
, O
the O
presence B-protein_state
of I-protein_state
SERK1 B-protein
dramatically O
increases O
the O
HAESA B-protein
binding O
specificity O
and O
affinity O
for O
IDA B-protein
. O
A O
ribbon O
diagram O
of O
SERK1 B-protein
in O
the O
same O
orientation O
is O
shown O
alongside O
. O
These O
residues O
are O
not O
involved O
in O
the O
sensing O
of O
the O
steroid B-chemical
hormone I-chemical
brassinolide B-chemical
. O
Different O
plant B-taxonomy_domain
peptide B-protein_type
hormone I-protein_type
families I-protein_type
contain O
a O
C O
- O
terminal O
( B-structure_element
Arg I-structure_element
)- I-structure_element
His I-structure_element
- I-structure_element
Asn I-structure_element
motif I-structure_element
, O
which O
in O
IDA B-protein
represents O
the O
co B-site
- I-site
receptor I-site
recognition I-site
site I-site
. O
Our O
experiments O
reveal O
that O
SERK1 B-protein
recognizes O
a O
C O
- O
terminal O
Arg B-structure_element
- I-structure_element
His I-structure_element
- I-structure_element
Asn I-structure_element
motif I-structure_element
in O
IDA B-protein
. O
Among O
these O
are O
the O
CLE B-chemical
peptides I-chemical
regulating O
stem O
cell O
maintenance O
in O
the O
shoot O
and O
the O
root O
. O
The O
crotonyllysine B-residue_name
mark O
on O
histone B-protein_type
H3K18 B-protein_type
is O
produced O
by O
p300 B-protein
, O
a O
histone B-protein_type
acetyltransferase I-protein_type
also O
responsible O
for O
acetylation B-ptm
of O
histones O
. O
The O
family O
of O
acetyllysine B-residue_name
readers O
has O
been O
expanded O
with O
the O
discovery O
that O
the O
YEATS B-structure_element
( O
Yaf9 B-protein
, O
ENL B-protein
, O
AF9 B-protein
, O
Taf14 B-protein
, O
Sas5 B-protein
) O
domains O
of O
human B-species
AF9 B-protein
and O
yeast B-taxonomy_domain
Taf14 B-protein
are O
capable O
of O
recognizing O
the O
histone B-protein_type
mark O
H3K9ac B-protein_type
. O
Similarly O
, O
activation O
of O
a O
subset O
of O
genes O
and O
DNA O
damage O
repair O
in O
yeast B-taxonomy_domain
require O
the O
acetyllysine B-residue_name
binding O
activity O
of O
the O
Taf14 B-protein
YEATS B-structure_element
domain I-structure_element
. O
However O
, O
Taf14 B-protein
is O
also O
found O
in O
a O
number O
of O
chromatin O
- O
remodeling O
complexes O
( O
i O
. O
e O
., O
INO80 B-complex_assembly
, O
SWI B-complex_assembly
/ I-complex_assembly
SNF I-complex_assembly
and O
RSC B-complex_assembly
) O
and O
the O
histone B-protein_type
acetyltransferase I-protein_type
complex O
NuA3 B-complex_assembly
, O
indicating O
a O
multifaceted O
role O
of O
Taf14 B-protein
in O
transcriptional O
regulation O
and O
chromatin O
biology O
. O
We O
found O
that O
H3K9cr B-protein_type
is O
present O
in O
yeast B-taxonomy_domain
and O
is O
dynamically O
regulated O
. O
This O
distinctive O
mechanism O
was O
corroborated O
through O
mapping O
the O
Taf14 B-protein
YEATS B-site
- I-site
H3K9cr I-site
binding I-site
interface I-site
in O
solution O
using O
NMR B-experimental_method
chemical I-experimental_method
shift I-experimental_method
perturbation I-experimental_method
analysis I-experimental_method
( O
Supplementary O
Fig O
. O
2a O
, O
b O
). O
Binding O
of O
the O
Taf14 B-protein
YEATS B-structure_element
domain I-structure_element
to O
H3K9cr B-protein_type
is O
robust O
. O
We O
concluded O
that O
H3K9cr B-protein_type
is O
the O
preferred O
target O
of O
this O
domain O
. O
However O
, O
bromodomains B-structure_element
did O
not O
interact O
( O
or O
associated O
very O
weakly O
) O
with O
longer O
acyl O
modifications O
, O
including O
crotonyllysine B-residue_name
, O
as O
in O
the O
case O
of O
BDs B-structure_element
of O
TAF1 B-protein
and O
BRD2 B-protein
, O
supporting O
recent O
reports O
. O
As O
we O
previously O
showed O
the O
importance O
of O
acyllysine B-residue_name
binding O
by O
the O
Taf14 B-protein
YEATS B-structure_element
domain I-structure_element
for O
the O
DNA O
damage O
response O
and O
gene O
transcription O
, O
it O
will O
be O
essential O
in O
the O
future O
to O
define O
the O
physiological O
role O
of O
crotonyllysine B-residue_name
recognition O
and O
to O
differentiate O
the O
activities O
of O
Taf14 B-protein
that O
are O
due O
to O
binding O
to O
crotonyllysine B-residue_name
and O
acetyllysine B-residue_name
modifications O
. O
Furthermore O
, O
the O
functional O
significance O
of O
crotonyllysine B-residue_name
recognition O
by O
other O
YEATS B-protein_type
proteins O
will O
be O
of O
great O
importance O
to O
elucidate O
and O
compare O
. O
The O
structural O
mechanism O
for O
the O
recognition O
of O
H3K9cr B-protein_type
Total O
H3 B-protein_type
was O
used O
as O
a O
loading O
control O
. O
( O
c O
) O
Superimposed O
1H B-experimental_method
, I-experimental_method
15N I-experimental_method
HSQC I-experimental_method
spectra B-evidence
of O
Taf14 B-protein
YEATS B-structure_element
recorded O
as O
H3K9cr5 B-chemical
- I-chemical
13 I-chemical
and O
H3K9ac5 B-chemical
- I-chemical
13 I-chemical
peptides O
were O
titrated B-experimental_method
in O
. O
Although O
a O
Thr1Ser B-mutant
mutant B-protein_state
is O
active B-protein_state
, O
it O
is O
less O
efficient O
compared O
with O
wild B-protein_state
type I-protein_state
because O
of O
the O
unfavourable O
orientation O
of O
Ser1 B-residue_name_number
towards O
incoming O
substrates O
. O
The O
proteasome B-complex_assembly
, O
an O
essential O
molecular O
machine O
, O
is O
a O
threonine B-protein_type
protease I-protein_type
, O
but O
the O
evolution O
and O
the O
components O
of O
its O
proteolytic O
centre O
are O
unclear O
. O
In O
the O
last O
stage O
of O
CP B-complex_assembly
biogenesis O
, O
the O
prosegments B-structure_element
are O
autocatalytically B-ptm
removed I-ptm
through O
nucleophilic O
attack O
by O
the O
active B-site
site I-site
residue I-site
Thr1 B-residue_name_number
on O
the O
preceding O
peptide O
bond O
involving O
Gly B-residue_name_number
(- I-residue_name_number
1 I-residue_name_number
). I-residue_name_number
These O
results O
indicate O
that O
the O
β1 B-protein
and O
β2 B-protein
proteolytic O
activities O
are O
not O
essential O
for O
cell O
survival O
. O
Our O
present O
crystallographic B-experimental_method
analysis I-experimental_method
of O
the O
β5 B-mutant
- I-mutant
T1A I-mutant
pp B-chemical
trans B-protein_state
mutant B-protein_state
demonstrates O
that O
the O
mutation B-experimental_method
per O
se O
does O
not O
structurally O
alter O
the O
catalytic B-site
active I-site
site I-site
and O
that O
the O
trans B-experimental_method
- I-experimental_method
expressed I-experimental_method
β5 B-protein
propeptide B-structure_element
is O
not B-protein_state
bound I-protein_state
in O
the O
β5 B-protein
substrate B-site
- I-site
binding I-site
channel I-site
( O
Supplementary O
Fig O
. O
1a O
). O
Sequencing B-experimental_method
of I-experimental_method
the I-experimental_method
plasmids I-experimental_method
, O
testing O
them O
in O
both O
published O
yeast B-taxonomy_domain
strain O
backgrounds O
and O
site B-experimental_method
- I-experimental_method
directed I-experimental_method
mutagenesis I-experimental_method
revealed O
that O
the O
β5 B-mutant
- I-mutant
T1A I-mutant
mutant B-protein_state
pp B-chemical
cis B-protein_state
is O
viable O
, O
but O
suffers O
from O
a O
marked O
growth O
defect O
that O
requires O
extended O
incubation O
of O
4 O
O
5 O
days O
for O
initial O
colony O
formation O
( O
Table O
1 O
and O
Supplementary O
Methods O
). O
In O
subunit O
β1 B-protein
, O
we O
found O
that O
Gly B-residue_name_number
(- I-residue_name_number
1 I-residue_name_number
) I-residue_name_number
indeed O
forms O
a O
sharp B-structure_element
turn I-structure_element
, O
which O
relaxes O
on O
prosegment B-ptm
cleavage I-ptm
( O
Fig O
. O
1a O
and O
Supplementary O
Fig O
. O
2a O
). O
Regarding O
the O
β2 B-protein
propeptide B-structure_element
, O
Thr B-residue_name_number
(- I-residue_name_number
2 I-residue_name_number
) I-residue_name_number
occupies O
the O
S1 B-site
pocket I-site
but O
is O
less O
deeply O
anchored O
compared O
with O
Leu B-residue_name_number
(- I-residue_name_number
2 I-residue_name_number
) I-residue_name_number
in O
β1 B-protein
, O
which O
might O
be O
due O
to O
the O
rather O
large O
β2 B-protein
- O
S1 B-site
pocket I-site
created O
by O
Gly45 B-residue_name_number
. O
Nevertheless O
, O
both O
Leu B-residue_name_number
(- I-residue_name_number
2 I-residue_name_number
) I-residue_name_number
and O
Thr B-residue_name_number
(- I-residue_name_number
2 I-residue_name_number
) I-residue_name_number
were O
found O
to O
occupy O
the O
S1 B-site
specificity I-site
pocket I-site
formed O
by O
Met45 B-residue_name_number
( O
Fig O
. O
2a O
, O
b O
and O
Supplementary O
Fig O
. O
4f O
O
h O
). O
Bearing O
in O
mind O
that O
in O
contrast O
to O
Thr B-residue_name_number
(- I-residue_name_number
2 I-residue_name_number
) I-residue_name_number
in O
β2 B-protein
, O
Leu B-residue_name_number
(- I-residue_name_number
2 I-residue_name_number
) I-residue_name_number
in O
subunit O
β1 B-protein
is O
not B-protein_state
conserved I-protein_state
among O
species O
( O
Supplementary O
Fig O
. O
3a O
), O
we O
created B-experimental_method
a O
β2 B-mutant
- I-mutant
T I-mutant
(- I-mutant
2 I-mutant
) I-mutant
V I-mutant
proteasome B-complex_assembly
mutant B-protein_state
. O
Notably O
, O
the O
2FO B-evidence
I-evidence
FC I-evidence
electron I-evidence
- I-evidence
density I-evidence
map I-evidence
displays O
a O
different O
orientation O
for O
the O
β2 B-protein
propeptide B-structure_element
than O
has O
been O
observed O
for O
the O
β2 B-mutant
- I-mutant
T1A I-mutant
proteasome B-complex_assembly
. O
The O
active B-site
site I-site
of O
the O
proteasome B-complex_assembly
Instead O
, O
Lys33NH2 B-residue_name_number
, O
which O
is O
in O
hydrogen O
- O
bonding O
distance O
to O
Thr1Oγ B-residue_name_number
( O
2 O
. O
7 O
Å O
) O
in O
all O
catalytically B-protein_state
active I-protein_state
β B-protein
subunits I-protein
( O
Fig O
. O
3a O
, O
b O
), O
was O
proposed O
to O
serve O
as O
the O
proton O
acceptor O
. O
In O
agreement O
, O
an O
E17A B-mutant
mutant B-protein_state
in O
the O
proteasomal O
β B-protein
- I-protein
subunit I-protein
of O
the O
archaeon B-taxonomy_domain
Thermoplasma B-species
acidophilum I-species
prevents O
autolysis B-ptm
and O
catalysis O
. O
Strikingly O
, O
although O
the O
X B-evidence
- I-evidence
ray I-evidence
data I-evidence
on O
the O
β5 B-mutant
- I-mutant
D17N I-mutant
mutant B-protein_state
with O
the O
propeptide B-structure_element
expressed B-experimental_method
in O
cis B-protein_state
and O
in O
trans B-protein_state
looked O
similar O
, O
there O
was O
a O
pronounced O
difference O
in O
their O
growth O
phenotypes O
observed O
( O
Supplementary O
Fig O
. O
6a O
and O
Supplementary O
Fig O
. O
7b O
). O
Whereas O
Asn B-residue_name
can O
to O
some O
degree O
replace O
Asp166 B-residue_name_number
due O
to O
its O
carbonyl O
group O
in O
the O
side O
chain O
, O
Ala B-residue_name
at O
this O
position O
was O
found O
to O
prevent O
both O
autolysis B-ptm
and O
catalysis O
. O
His B-residue_name_number
(- I-residue_name_number
2 I-residue_name_number
) I-residue_name_number
occupies O
the O
S2 B-site
pocket I-site
like O
observed O
for O
the O
β5 B-mutant
- I-mutant
T1A I-mutant
- I-mutant
K81R I-mutant
mutant B-protein_state
, O
but O
in O
contrast O
to O
the O
latter O
, O
the O
propeptide B-structure_element
in O
the O
T1C B-mutant
mutant B-protein_state
adopts O
an O
antiparallel B-structure_element
β I-structure_element
- I-structure_element
sheet I-structure_element
conformation O
as O
known O
from O
inhibitors O
like O
MG132 B-chemical
( O
Fig O
. O
4c O
O
e O
and O
Supplementary O
Fig O
. O
9b O
). O
Activity B-experimental_method
assays I-experimental_method
with O
the O
β5 B-protein
- O
specific O
substrate O
Suc B-chemical
- I-chemical
LLVY I-chemical
- I-chemical
AMC I-chemical
demonstrated O
that O
the O
ChT O
- O
L O
activity O
of O
the O
T1S B-mutant
mutant B-protein_state
is O
reduced O
by O
40 O
O
45 O
% O
compared O
with O
WT B-protein_state
proteasomes B-complex_assembly
depending O
on O
the O
incubation O
temperature O
( O
Fig O
. O
4b O
and O
Supplementary O
Fig O
. O
9c O
). O
In O
vitro O
, O
the O
mutant B-protein_state
proteasome B-complex_assembly
is O
less O
susceptible O
to O
proteasome B-complex_assembly
inhibition O
by O
bortezomib B-chemical
( O
3 O
. O
7 O
- O
fold O
) O
and O
carfilzomib B-chemical
( O
1 O
. O
8 O
- O
fold O
; O
Fig O
. O
5 O
). O
The O
20S B-complex_assembly
proteasome I-complex_assembly
CP B-complex_assembly
is O
the O
major O
non B-protein_type
- I-protein_type
lysosomal I-protein_type
protease I-protein_type
in O
eukaryotic B-taxonomy_domain
cells O
, O
and O
its O
assembly O
is O
highly O
organized O
. O
The O
β B-protein
- I-protein
subunit I-protein
propeptides B-structure_element
, O
particularly O
that O
of O
β5 B-protein
, O
are O
key O
factors O
that O
help O
drive O
proper O
assembly O
of O
the O
CP B-complex_assembly
complex O
. O
We O
propose O
a O
catalytic B-site
triad I-site
for O
the O
active B-site
site I-site
of O
the O
CP B-complex_assembly
consisting O
of O
residues O
Thr1 B-residue_name_number
, O
Lys33 B-residue_name_number
and O
Asp B-residue_name
/ O
Glu17 B-residue_name_number
, O
which O
are O
conserved O
among O
all O
proteolytically O
active O
eukaryotic B-taxonomy_domain
, O
bacterial B-taxonomy_domain
and O
archaeal B-taxonomy_domain
proteasome B-complex_assembly
subunits O
. O
The O
resulting O
uncharged O
Thr1NH2 B-residue_name_number
is O
hydrogen O
- O
bridged O
to O
the O
C3 O
- O
OH O
group O
. O
In O
agreement O
, O
acetylation B-ptm
of O
the O
Thr1 B-residue_name_number
N O
terminus O
irreversibly O
blocks O
hydrolytic O
activity O
, O
and O
binding O
of O
substrates O
is O
prevented O
for O
steric O
reasons O
. O
This O
interpretation O
agrees O
with O
the O
strongly O
reduced O
catalytic O
activity O
of O
the O
β5 B-mutant
- I-mutant
D166N I-mutant
mutant B-protein_state
on O
the O
one O
hand O
, O
and O
the O
ability O
to O
react O
readily O
with O
carfilzomib B-chemical
on O
the O
other O
. O
We O
also O
observed O
slightly O
lower O
affinity O
of O
the O
β5 B-mutant
- I-mutant
T1S I-mutant
mutant B-protein_state
yCP B-complex_assembly
for O
the O
Food O
and O
Drug O
Administration O
- O
approved O
proteasome B-complex_assembly
inhibitors O
bortezomib B-chemical
and O
carfilzomib B-chemical
. O
In O
contrast O
to O
Thr1 B-residue_name_number
, O
the O
hydroxyl O
group O
of O
Ser1 B-residue_name_number
occupies O
the O
position O
of O
the O
Thr1 B-residue_name_number
methyl O
side O
chain O
in O
the O
WT B-protein_state
enzyme B-complex_assembly
, O
which O
requires O
its O
reorientation O
relative O
to O
the O
substrate O
to O
allow O
cleavage O
( O
Fig O
. O
4g O
, O
h O
). O
Architecture O
and O
proposed O
reaction O
mechanism O
of O
the O
proteasomal O
active B-site
site I-site
. O
Thr1OH B-residue_name_number
is O
hydrogen O
- O
bonded O
to O
Lys33NH2 B-residue_name_number
( O
2 O
. O
7 O
Å O
), O
which O
in O
turn O
interacts O
with O
Asp17Oδ B-residue_name_number
. O
Autolysis B-ptm
( O
left O
set O
of O
structures O
) O
is O
initiated O
by O
deprotonation O
of O
Thr1OH B-residue_name_number
via O
Lys33NH2 B-residue_name_number
and O
the O
formation O
of O
a O
tetrahedral O
transition O
state O
. O
Next O
, O
Thr1NH2 B-residue_name_number
polarizes O
a O
water B-chemical
molecule O
for O
the O
nucleophilic O
attack O
of O
the O
acyl O
- O
enzyme O
intermediate O
. O
( O
c O
) O
Illustration O
of O
the O
2FO B-evidence
I-evidence
FC I-evidence
electron I-evidence
- I-evidence
density I-evidence
map I-evidence
( O
blue O
mesh O
contoured O
at O
1σ O
) O
for O
the O
β5 B-mutant
- I-mutant
T1C I-mutant
propeptide B-structure_element
fragment O
. O
( O
h O
) O
The O
methyl O
group O
of O
Thr1 B-residue_name_number
is O
anchored O
by O
hydrophobic O
interactions O
with O
Ala46Cβ B-residue_name_number
and O
Thr3Cγ B-residue_name_number
. O