Biochemical B-experimental_method analysis I-experimental_method reveals O that O these O outer B-protein_type membrane I-protein_type - I-protein_type anchored I-protein_type proteins I-protein_type are O in O fact O exquisitely O specific O for O the O highly O branched O xyloglucan B-chemical ( O XyG B-chemical ) O polysaccharide B-chemical . O Here O , O we O provide O the O first O biochemical B-experimental_method , I-experimental_method crystallographic I-experimental_method , I-experimental_method and I-experimental_method genetic I-experimental_method insight I-experimental_method into O how O two O surface B-protein_type glycan I-protein_type - I-protein_type binding I-protein_type proteins I-protein_type from O the O complex O Bacteroides B-species ovatus I-species xyloglucan B-gene utilization I-gene locus I-gene ( O XyGUL B-gene ) O enable O recognition O and O uptake O of O this O ubiquitous O vegetable B-taxonomy_domain polysaccharide B-chemical . O This O microbial B-taxonomy_domain community O is O largely O bacterial B-taxonomy_domain , O with O the O Bacteroidetes B-taxonomy_domain , O Firmicutes B-taxonomy_domain , O and O Actinobacteria B-taxonomy_domain comprising O the O dominant O phyla O . O In O the O archetypal O starch B-complex_assembly utilization I-complex_assembly system I-complex_assembly of O B B-species . I-species thetaiotaomicron I-species , O starch O binding O to O the O cell O surface O is O mediated O at O eight O distinct O starch B-site - I-site binding I-site sites I-site distributed O among O four O surface B-protein_type glycan I-protein_type - I-protein_type binding I-protein_type proteins I-protein_type ( O SGBPs B-protein_type ): O two O within O the O amylase B-protein_type SusG B-protein , O one O within O SusD B-protein , O two O within O SusE B-protein , O and O three O within O SusF B-protein . O The O functional O redundancy O of O many O of O these O sites O is O high O : O whereas O SusD B-protein is O essential O for O growth O on O starch B-chemical , O combined O mutations O of O the O SusE B-protein , O SusF B-protein , O and O SusG B-protein binding B-site sites I-site are O required O to O impair O growth O on O the O polysaccharide B-chemical . O Combined O biochemical B-experimental_method , I-experimental_method structural I-experimental_method , I-experimental_method and I-experimental_method reverse I-experimental_method - I-experimental_method genetic I-experimental_method approaches I-experimental_method clearly O illuminate O the O distinct O , O yet O complementary O , O functions O that O these O two O proteins O play O in O XyG B-chemical recognition O as O it O impacts O the O physiology O of O B B-species . I-species ovatus I-species . O Hence O , O there O is O a O critical O need O for O the O elucidation O of O detailed O structure O - O function O relationships O among O PUL B-gene SGBPs B-protein_type , O in O light O of O the O manifold O glycan B-chemical structures O in O nature O . O Formalin O - O fixed O , O nonpermeabilized O B B-species . I-species ovatus I-species cells O were O grown O in O minimal O medium O plus O XyG B-chemical , O probed O with O custom O rabbit O antibodies O to O SGBP B-protein - I-protein A I-protein or O SGBP B-protein - I-protein B I-protein , O and O then O stained O with O Alexa O Fluor O 488 O goat O anti O - O rabbit O IgG O . O ( O A O ) O Overlay B-experimental_method of O bright B-evidence - I-evidence field I-evidence and I-evidence FITC I-evidence images I-evidence of O B B-species . I-species ovatus I-species cells O labeled O with O anti O - O SGBP O - O A O . O ( O B O ) O Overlay B-experimental_method of O bright B-evidence - I-evidence field I-evidence and I-evidence FITC I-evidence images I-evidence of O B B-species . I-species ovatus I-species cells O labeled O with O anti O - O SGBP O - O B O . O ( O C O ) O Bright B-evidence - I-evidence field I-evidence image I-evidence of O ΔSGBP B-mutant - I-mutant B I-mutant cells O labeled O with O anti O - O SGBP O - O B O antibodies O . O In O our O initial O study O focused O on O the O functional O characterization O of O the O glycoside B-protein_type hydrolases I-protein_type of O the O XyGUL B-gene , O we O reported O preliminary O affinity B-experimental_method PAGE I-experimental_method and O isothermal B-experimental_method titration I-experimental_method calorimetry I-experimental_method ( O ITC B-experimental_method ) O data O indicating O that O both O SGBP B-protein - I-protein A I-protein and O SGBP B-protein - I-protein B I-protein are O competent O xyloglucan B-protein_type - I-protein_type binding I-protein_type proteins I-protein_type ( O affinity B-evidence constant I-evidence [ O Ka B-evidence ] O values O of O 3 O . O 74 O × O 105 O M O − O 1 O and O 4 O . O 98 O × O 104 O M O − O 1 O , O respectively O [ O 23 O ]). O Cocrystallization B-experimental_method of O SGBP B-protein - I-protein A I-protein with O XyGO2 B-chemical generated O a O substrate B-complex_assembly complex I-complex_assembly structure B-evidence ( O 2 O . O 3 O Å O , O Rwork B-evidence = O 21 O . O 8 O %, O Rfree B-evidence = O 24 O . O 8 O %, O residues O 36 B-residue_range to I-residue_range 546 I-residue_range ) O ( O Fig O . O 4A O and O B O ; O Table O 2 O ) O that O revealed O the O distinct O binding B-site - I-site site I-site architecture O of O the O XyG B-protein_type binding I-protein_type protein I-protein_type . O Molecular O structure B-evidence of O SGBP B-protein - I-protein A I-protein ( O Bacova_02651 B-gene ). O ( O A O ) O Overlay B-experimental_method of O SGBP B-protein - I-protein A I-protein from O the O apo B-protein_state ( O rainbow O ) O and O XyGO2 B-chemical ( O gray O ) O structures B-evidence . O The O backbone O glucose B-chemical residues O are O numbered O from O the O nonreducing O end O ; O xylose B-chemical residues O are O labeled O X1 B-residue_name_number and O X2 B-residue_name_number . O Most O surprising O in O light O of O the O saccharide B-evidence - I-evidence binding I-evidence data I-evidence , O however O , O was O a O lack O of O extensive O recognition O of O the O XyG B-chemical side O chains O ; O only O Y84 B-residue_name_number appeared O to O provide O a O hydrophobic B-site interface I-site for O a O xylosyl B-chemical residue O ( O Xyl1 B-residue_name_number ). O Protein O name O Ka B-evidence ΔG O ( O kcal O ⋅ O mol O − O 1 O ) O ΔH B-evidence ( O kcal O ⋅ O mol O − O 1 O ) O TΔS B-evidence ( O kcal O ⋅ O mol O − O 1 O ) O Fold O changeb O M O − O 1 O SGBP B-protein - I-protein A I-protein ( O W82A B-mutant W283A B-mutant W306A B-mutant ) O ND O NB O NB O NB O NB O SGBP B-protein - I-protein A I-protein ( O W82A B-mutant ) O c O 4 O . O 9 O 9 O . O 1 O × O 104 O − O 6 O . O 8 O − O 6 O . O 3 O 0 O . O 5 O SGBP B-protein - I-protein A I-protein ( O W306 B-residue_name_number ) O ND O NB O NB O NB O NB O SGBP B-protein - I-protein B I-protein ( O 230 B-residue_range – I-residue_range 489 I-residue_range ) O 0 O . O 7 O ( O 8 O . O 6 O ± O 0 O . O 20 O ) O × O 104 O − O 6 O . O 7 O − O 14 O . O 9 O ± O 0 O . O 1 O − O 8 O . O 2 O SGBP B-protein - I-protein B I-protein ( O Y363A B-mutant ) O 19 O . O 7 O ( O 2 O . O 9 O ± O 0 O . O 10 O ) O × O 103 O − O 4 O . O 7 O − O 18 O . O 1 O ± O 0 O . O 1 O − O 13 O . O 3 O SGBP B-protein - I-protein B I-protein ( O W364A B-mutant ) O ND O Weak O Weak O Weak O Weak O SGBP B-protein - I-protein B I-protein ( O F414A B-mutant ) O 3 O . O 2 O ( O 1 O . O 80 O ± O 0 O . O 03 O ) O × O 104 O − O 5 O . O 8 O − O 11 O . O 4 O ± O 0 O . O 1 O − O 5 O . O 6 O Weak O binding O represents O a O Ka B-evidence of O < O 500 O M O − O 1 O . O SGBP B-protein - I-protein B I-protein has O a O multimodular O structure O with O a O single O , O C O - O terminal O glycan B-structure_element - I-structure_element binding I-structure_element domain I-structure_element . O The O crystal B-evidence structure I-evidence of O full B-protein_state - I-protein_state length I-protein_state SGBP B-protein - I-protein B I-protein in B-protein_state complex I-protein_state with I-protein_state XyGO2 B-chemical ( O 2 O . O 37 O Å O , O Rwork B-evidence = O 19 O . O 9 O %, O Rfree B-evidence = O 23 O . O 9 O %, O residues O 34 B-residue_range to I-residue_range 489 I-residue_range ) O ( O Table O 2 O ) O revealed O an O extended O structure B-evidence composed O of O three O tandem B-structure_element immunoglobulin I-structure_element ( I-structure_element Ig I-structure_element )- I-structure_element like I-structure_element domains I-structure_element ( O domains O A B-structure_element , O B B-structure_element , O and O C B-structure_element ) O followed O at O the O C O terminus O by O a O novel O xyloglucan B-structure_element - I-structure_element binding I-structure_element domain I-structure_element ( O domain O D B-structure_element ) O ( O Fig O . O 5A O ). O Analogously O , O the O outer B-protein_state membrane I-protein_state - I-protein_state anchored I-protein_state endo B-protein_type - I-protein_type xyloglucanase I-protein_type BoGH5 B-protein of O the O XyGUL B-gene contains O a O 100 B-structure_element - I-structure_element amino I-structure_element - I-structure_element acid I-structure_element , I-structure_element all I-structure_element - I-structure_element β I-structure_element - I-structure_element strand I-structure_element , O N B-structure_element - I-structure_element terminal I-structure_element module I-structure_element and O flexible B-structure_element linker I-structure_element that O imparts O conformational O flexibility O and O distances O the O catalytic B-structure_element module I-structure_element from O the O cell O surface O . O The O Y363A B-mutant site B-experimental_method - I-experimental_method directed I-experimental_method mutant I-experimental_method of O SGBP B-protein - I-protein B I-protein displays O a O 20 O - O fold O decrease O in O the O Ka B-evidence for O XyG B-chemical , O while O the O W364A B-mutant mutant B-protein_state lacks B-protein_state XyG I-protein_state binding I-protein_state ( O Table O 3 O ; O see O Fig O . O S6 O in O the O supplemental O material O ). O Hoping O to O achieve O a O higher O - O resolution O view O of O the O SGBP B-protein - I-protein B I-protein – O xyloglucan B-chemical interaction O , O we O solved B-experimental_method the O crystal B-evidence structure I-evidence of O the O fused B-mutant CD I-mutant domains I-mutant in B-protein_state complex I-protein_state with I-protein_state XyGO2 B-chemical ( O 1 O . O 57 O Å O , O Rwork B-evidence = O 15 O . O 6 O %, O Rfree B-evidence = O 17 O . O 1 O %, O residues O 230 B-residue_range to I-residue_range 489 I-residue_range ) O ( O Table O 2 O ). O Growth O on O glucose B-chemical displayed O the O shortest O lag B-evidence time I-evidence for O each O strain O , O and O so O lag B-evidence times I-evidence were O normalized O for O each O carbohydrate B-chemical by O subtracting O the O lag B-evidence time I-evidence of O that O strain O in O glucose B-chemical ( O Fig O . O 6 O ; O see O Fig O . O S8 O in O the O supplemental O material O ). O Complementation B-experimental_method of O the O ΔSGBP B-mutant - I-mutant A I-mutant strain O ( O ΔSGBP B-mutant - I-mutant A I-mutant :: O SGBP B-protein - I-protein A I-protein ) O restores O growth O to O wild B-protein_state - I-protein_state type I-protein_state rates O on O xyloglucan B-chemical and O XyGO1 B-chemical , O yet O the O calculated O rate O of O the O complemented O strain O is O ~ O 72 O % O that O of O the O WT B-protein_state Δtdk B-mutant strain O on O XyGO2 B-chemical ; O similar O results O were O obtained O for O the O SGBP B-protein - I-protein B I-protein complemented O strain O despite O the O fact O that O the O growth O curves O do O not O appear O much O different O ( O see O Fig O . O S8C O and O F O ). O Fig O . O 1B O ) O was O completely O incapable O of O growth O on O XyG B-chemical , O XyGO1 B-chemical , O and O XyGO2 B-chemical , O indicating O that O SGBP B-protein - I-protein A I-protein is O essential O for O XyG B-chemical utilization O ( O Fig O . O 6 O ). O Intriguingly O , O the O ΔSGBP B-mutant - I-mutant B I-mutant strain O ( O ΔBacova_02650 B-mutant ) O ( O cf O . O In O the O BtSus B-gene , O SusD B-protein and O the O TBDT B-protein_type SusC B-protein interact O , O and O we O speculate O that O this O interaction O is O necessary O for O glycan B-chemical uptake O , O as O suggested O by O the O fact O that O a O ΔsusD B-mutant mutant B-protein_state cannot O grow O on O starch B-chemical , O but O a O ΔsusD B-mutant :: O SusD B-mutant * I-mutant strain O regains O this O ability O if O a O transcriptional B-protein_type activator I-protein_type of O the O sus B-gene operon I-gene is O supplied O . O Recent O work O has O elucidated O that O Bacteroidetes B-taxonomy_domain cross O - O feed O during O growth O on O many O glycans B-chemical ; O the O glycoside B-protein_type hydrolases I-protein_type expressed O by O one O species O liberate O oligosaccharides B-chemical for O consumption O by O other O members O of O the O community O . O In O this O instance O , O coexpression O of O the O susD B-gene - O like O gene O nanU B-gene was O not O required O , O nor O did O the O expression O of O the O nanU B-gene gene O enhance O growth O kinetics O . O However O , O the O natural O diversity O of O these O proteins O represents O a O rich O source O for O the O discovery O of O unique O carbohydrate B-structure_element - I-structure_element binding I-structure_element motifs I-structure_element to O both O inform O gut O microbiology O and O generate O new O , O specific O carbohydrate B-chemical analytical O reagents O . O The O ability O of O our O resident O gut O bacteria B-taxonomy_domain to O recognize O polysaccharides B-chemical is O the O first O committed O step O of O glycan B-chemical consumption O by O these O organisms O , O a O critical O process O that O influences O the O community O structure O and O thus O the O metabolic O output O ( O i O . O e O ., O short O - O chain O fatty O acid O and O metabolite O profile O ) O of O these O organisms O . O Mucosal O glycan B-chemical foraging O enhances O fitness O and O transmission O of O a O saccharolytic O human O gut O bacterial O symbiont O Neisseria B-protein adhesin I-protein A I-protein ( O NadA B-protein ) O present O on O the O meningococcal B-taxonomy_domain surface O can O mediate O binding O to O human B-species cells O and O is O one O of O the O three O MenB B-species vaccine O protein O antigens O . O MarR B-protein_type family O proteins O can O promote O bacterial B-taxonomy_domain survival O in O the O presence O of O antibiotics O , O toxic O chemicals O , O organic O solvents O or O reactive O oxygen O species O and O can O regulate O virulence O factor O expression O . O MarR B-protein_type homologues O can O act O either O as O transcriptional O repressors O or O as O activators O . O A O potentially O interesting O exception O comes O from O the O ligand B-protein_state - I-protein_state free I-protein_state and O salicylate B-protein_state - I-protein_state bound I-protein_state forms O of O the O Methanobacterium B-species thermoautotrophicum I-species protein O MTH313 B-protein which O revealed O that O two O salicylate B-chemical molecules O bind O to O one O MTH313 B-protein dimer B-oligomeric_state and O induce O large O conformational O changes O , O apparently O sufficient O to O prevent O DNA O binding O . O We O obtained O detailed O new O insights O into O ligand O specificity O , O how O the O ligand O allosterically O influences O the O DNA O - O binding O ability O of O NadR B-protein , O and O the O regulation O of O nadA B-gene expression O , O thus O also O providing O a O deeper O structural O understanding O of O the O ligand O - O responsive O MarR B-protein_type super O - O family O . O Since O ligand O - O binding O often O increases O protein O stability O , O we O also O investigated O the O effect O of O various O HPAs B-chemical ( O Fig O 1A O ) O on O the O melting B-evidence temperature I-evidence ( O Tm B-evidence ) O of O NadR B-protein . O As O a O control O of O specificity O , O we O also O tested O salicylate B-chemical , O a O known O ligand O of O some O MarR B-protein_type proteins O previously O reported O to O increase O the O Tm B-evidence of O ST1710 B-protein and O MTH313 B-protein . O However O , O an O increased O thermal O stability O was O induced O by O 4 B-chemical - I-chemical HPA I-chemical and O , O to O a O lesser O extent O , O by O 3 B-chemical - I-chemical HPA I-chemical . O ( O A O ) O Molecular O structures O of O 3 B-chemical - I-chemical HPA I-chemical ( O MW O 152 O . O 2 O ), O 4 B-chemical - I-chemical HPA I-chemical ( O MW O 152 O . O 2 O ), O 3Cl B-chemical , I-chemical 4 I-chemical - I-chemical HPA I-chemical ( O MW O 186 O . O 6 O ) O and O salicylic B-chemical acid I-chemical ( O MW O 160 O . O 1 O ). O ( O B O ) O DSC B-experimental_method profiles B-evidence , O colored O as O follows O : O apo B-protein_state - O NadR B-protein ( O violet O ), O NadR B-complex_assembly + I-complex_assembly salicylate I-complex_assembly ( O red O ), O NadR B-complex_assembly + I-complex_assembly 3 I-complex_assembly - I-complex_assembly HPA I-complex_assembly ( O green O ), O NadR B-complex_assembly + I-complex_assembly 4 I-complex_assembly - I-complex_assembly HPA I-complex_assembly ( O blue O ), O NadR B-complex_assembly + I-complex_assembly 3Cl I-complex_assembly , I-complex_assembly 4 I-complex_assembly - I-complex_assembly HPA I-complex_assembly ( O pink O ). O NadR B-protein displays O distinct O binding B-evidence affinities I-evidence for O hydroxyphenylacetate B-chemical ligands O To O fully O characterize O the O NadR B-protein / O HPA B-chemical interactions O , O we O sought O to O determine O crystal B-evidence structures I-evidence of O NadR B-protein in O ligand B-protein_state - I-protein_state bound I-protein_state ( O holo B-protein_state ) O and O ligand B-protein_state - I-protein_state free I-protein_state ( O apo B-protein_state ) O forms O . O First O , O we O crystallized B-experimental_method NadR B-protein ( O a O selenomethionine B-experimental_method - I-experimental_method labelled I-experimental_method derivative I-experimental_method ) O in O the O presence O of O a O 200 O - O fold O molar O excess O of O 4 B-chemical - I-chemical HPA I-chemical . O A O single O conserved B-protein_state leucine B-residue_name residue O ( O L130 B-residue_name_number ) O is O crucial O for O dimerization O The O NadR B-protein dimer B-site interface I-site is O formed O by O at O least O 32 O residues O , O which O establish O numerous O inter O - O chain O salt O bridges O or O hydrogen O bonds O , O and O many O hydrophobic O packing O interactions O ( O Fig O 3A O and O 3B O ). O Only O the O L130K B-mutant mutation O induced O a O notable O change O in O the O oligomeric O state O of O NadR B-protein ( O Fig O 3C O ). O Chain B-structure_element B I-structure_element , O grey O surface O , O is O marked O blue O to O highlight O residues O probed O by O site B-experimental_method - I-experimental_method directed I-experimental_method mutagenesis I-experimental_method ( O E136 B-residue_name_number only O makes O a O salt O bridge O with O K126 B-residue_name_number , O therefore O it O was O sufficient O to O make O the O K126A B-mutant mutation O to O assess O the O importance O of O this O ionic O interaction O ; O the O H7 B-residue_name_number position O is O labelled O for O monomer B-oligomeric_state A B-structure_element , O since O electron B-evidence density I-evidence was O lacking O for O monomer B-oligomeric_state B B-structure_element ). O ( O B O ) O A O zoom O into O the O environment O of O helix B-structure_element α6 B-structure_element to O show O how O residue O L130 B-residue_name_number chain B-structure_element B I-structure_element ( O blue O side O chain O ) O is O a O focus O of O hydrophobic O packing O interactions O with O L130 B-residue_name_number , O L133 B-residue_name_number , O L134 B-residue_name_number and O L137 B-residue_name_number of O chain B-structure_element A I-structure_element ( O red O side O chains O ). O * O Bond O distance O between O the O ligand O carboxylate O group O and O the O water B-chemical molecule O , O which O in O turn O makes O H O - O bond O to O the O SerA9 B-residue_name_number and O AsnA11 B-residue_name_number side O chains O . O Consequently O , O residues O in O the O 4 B-site - I-site HPA I-site binding I-site pocket I-site are O mostly O contributed O by O NadR B-protein chain B-structure_element B I-structure_element , O and O effectively O created O a O polar O ‘ O floor O ’ O and O a O hydrophobic O ‘ O ceiling O ’, O which O house O the O ligand O . O Collectively O , O this O mixed O network O of O polar O and O hydrophobic O interactions O endows O NadR B-protein with O a O strong O recognition O pattern O for O HPAs B-chemical , O with O additional O medium O - O range O interactions O potentially O established O with O the O hydroxyl O group O at O the O 4 O - O position O . O Structure O - O activity O relationships O : O molecular O basis O of O enhanced O stabilization O by O 3Cl B-chemical , I-chemical 4 I-chemical - I-chemical HPA I-chemical We O modelled B-experimental_method the O binding O of O other O HPAs B-chemical by O in B-experimental_method silico I-experimental_method superposition I-experimental_method onto O 4 B-chemical - I-chemical HPA I-chemical in O the O holo B-protein_state - O NadR B-protein structure B-evidence , O and O thereby O obtained O molecular O explanations O for O the O binding O specificities O of O diverse O ligands O . O For O example O , O similar O to O 4 B-chemical - I-chemical HPA I-chemical , O the O binding O of O 3Cl B-chemical , I-chemical 4 I-chemical - I-chemical HPA I-chemical could O involve O multiple O bonds O towards O the O carboxylate O group O of O the O ligand O and O some O to O the O 4 O - O hydroxyl O group O . O Finally O , O salicylate B-chemical is O presumably O unable O to O specifically O bind O NadR B-protein due O to O the O 2 O - O hydroxyl O substitution O and O the O shorter O aliphatic O chain O connecting O its O carboxylate O group O ( O Fig O 1A O ): O the O compound O simply O seems O too O small O to O simultaneously O establish O the O network O of O beneficial O bonds O observed O in O the O NadR B-protein / O HPA B-chemical interactions O . O The O stoichiometry O of O the O NadR B-complex_assembly - I-complex_assembly HPA I-complex_assembly interactions O was O determined O using O Eq O 1 O ( O see O Materials O and O Methods O ), O and O revealed O stoichiometries B-evidence of O 1 O . O 13 O for O 4 B-chemical - I-chemical HPA I-chemical , O 1 O . O 02 O for O 3 B-chemical - I-chemical HPA I-chemical , O and O 1 O . O 21 O for O 3Cl B-chemical , I-chemical 4 I-chemical - I-chemical HPA I-chemical , O strongly O suggesting O that O one O NadR B-protein dimer B-oligomeric_state bound B-protein_state to I-protein_state 1 O HPA B-chemical analyte O molecule O . O The O crystallographic B-evidence data I-evidence , O supported O by O the O SPR B-experimental_method studies O of O binding B-evidence stoichiometry I-evidence , O revealed O the O lack O of O a O second O 4 B-chemical - I-chemical HPA I-chemical molecule O in O the O homodimer B-oligomeric_state , O suggesting O negative O co O - O operativity O , O a O phenomenon O previously O described O for O the O MTH313 B-protein / O salicylate B-chemical interaction O and O for O other O MarR B-protein_type family O proteins O . O However O , O since O residues O of O helix B-structure_element α6 B-structure_element were O not O directly O involved O in O ligand O binding O , O an O explanation O for O the O lack O of O 4 B-chemical - I-chemical HPA I-chemical in O monomer B-oligomeric_state A B-structure_element did O not O emerge O by O analyzing O only O these O backbone O atom O positions O , O suggesting O that O a O more O complex O series O of O allosteric O events O may O occur O . O The O broad O spectral O dispersion O and O the O number O of O peaks O observed O , O which O is O close O to O the O number O of O expected O backbone O amide O N O - O H O groups O for O this O polypeptide O , O confirmed O that O apo B-protein_state - O NadR B-protein is O well B-protein_state - I-protein_state folded I-protein_state under O these O conditions O and O exhibits O one O conformation O appreciable O on O the O NMR B-experimental_method timescale O , O i O . O e O . O in O the O NMR B-experimental_method experiments O at O 25 O ° O C O , O two O or O more O distinct O conformations O of O apo B-protein_state - O NadR B-protein monomers B-oligomeric_state were O not O readily O apparent O . O ( O A O ) O Superposition B-experimental_method of O two O 1H B-experimental_method - I-experimental_method 15N I-experimental_method TROSY I-experimental_method - I-experimental_method HSQC I-experimental_method spectra B-evidence recorded O at O 25 O ° O C O on O apo B-protein_state - O NadR B-protein ( O cyan O ) O and O on O NadR B-protein in O the O presence B-protein_state of I-protein_state 4 B-chemical - I-chemical HPA I-chemical ( O red O ). O Considering O the O small O size O , O fast O diffusion O and O relatively O low O binding B-evidence affinity I-evidence of O 4 B-chemical - I-chemical HPA I-chemical , O it O would O not O be O surprising O if O the O ligand O associates O and O dissociates O rapidly O on O the O NMR B-experimental_method time O scale O , O resulting O in O only O one O set O of O peaks O whose O chemical O shifts O represent O the O average O environment O of O the O bound B-protein_state and O unbound B-protein_state states O . O Overall O apo B-protein_state - O and O holo B-protein_state - O NadR B-protein structures B-evidence are O similar O . O To O further O investigate O the O conformational O rearrangements O of O NadR B-protein , O we O performed O local B-experimental_method structural I-experimental_method alignments I-experimental_method using O only O a O subset O of O residues O in O the O DNA B-structure_element - I-structure_element binding I-structure_element helix I-structure_element ( O α4 B-structure_element ). O By O selecting B-experimental_method and O aligning B-experimental_method residues O Arg64 B-residue_range - I-residue_range Ala77 I-residue_range of O one O α4 B-structure_element helix I-structure_element per O dimer B-oligomeric_state , O superposition B-experimental_method of O the O holo B-protein_state - O homodimer B-oligomeric_state onto O the O two O apo B-protein_state - O homodimers B-oligomeric_state revealed O differences O in O the O monomer B-oligomeric_state conformations O of O each O structure B-evidence . O The O three O homodimers B-oligomeric_state ( O chains O AB B-structure_element holo B-protein_state , O AB B-structure_element apo B-protein_state , O and O CD B-structure_element apo B-protein_state ) O were O overlaid B-experimental_method by O structural B-experimental_method alignment I-experimental_method exclusively O of O all O heavy O atoms O in O residues O R64 B-residue_range - I-residue_range A77 I-residue_range ( O shown O in O red O , O with O side O chain O sticks O ) O of O chains O A B-structure_element holo B-protein_state , O A B-structure_element apo B-protein_state , O and O C B-structure_element apo B-protein_state , O belonging O to O helix B-structure_element α4 B-structure_element ( O left O ). O However O , O structural B-experimental_method comparisons I-experimental_method revealed O that O the O shift O of O holo B-protein_state - O NadR B-protein helix B-structure_element α4 B-structure_element induced O by O the O presence B-protein_state of I-protein_state 4 B-chemical - I-chemical HPA I-chemical was O also O accompanied O by O several O changes O at O the O holo B-protein_state dimer B-site interface I-site , O while O such O extensive O structural O differences O were O not O observed O in O the O apo B-protein_state dimer B-site interfaces I-site , O particularly O notable O when O comparing O the O α6 B-structure_element helices I-structure_element ( O S3 O Fig O ). O Pairwise B-experimental_method superpositions I-experimental_method showed O that O the O NadR B-protein apo B-protein_state - O homodimer B-oligomeric_state AB B-structure_element was O the O most O similar O to O OhrR B-protein ( O rmsd B-evidence 2 O . O 6 O Å O ), O while O the O holo B-protein_state - O homodimer B-oligomeric_state was O the O most O divergent O ( O rmsd B-evidence 3 O . O 3 O Å O ) O ( O Fig O 8C O ). O Interestingly O , O and O on O the O contrary O , O the O nadR B-gene N11A B-mutant complemented O strain O showed O hypo O - O repression O ( O i O . O e O . O exhibited O high O expression O of O nadA B-gene both O in O absence O and O presence O of O 4 B-chemical - I-chemical HPA I-chemical ). O Western B-experimental_method blot I-experimental_method analyses O of O wild B-protein_state - I-protein_state type I-protein_state ( O WT B-protein_state ) O strain O ( O lanes O 1 O – O 2 O ) O or O isogenic O nadR B-gene knockout O strains O ( O ΔNadR B-mutant ) O complemented O to O express O the O indicated O NadR B-protein WT B-protein_state or O mutant B-protein_state proteins O ( O lanes O 3 O – O 12 O ) O or O not O complemented O ( O lanes O 13 O – O 14 O ), O grown O in O the O presence O ( O even O lanes O ) O or O absence O ( O odd O lanes O ) O of O 5mM O 4 B-chemical - I-chemical HPA I-chemical , O showing O NadA B-protein and O NadR B-protein expression O . O Complementation O of O ΔNadR B-mutant with O WT B-protein_state NadR B-protein enables O induction O of O nadA B-gene expression O by O 4 B-chemical - I-chemical HPA I-chemical . O Here O , O we O determined O the O first O crystal B-evidence structures I-evidence of O apo B-protein_state - O NadR B-protein and O holo B-protein_state - O NadR B-protein . O These O experimentally O - O determined O structures B-evidence enabled O a O new O detailed O characterization O of O the O ligand B-site - I-site binding I-site pocket I-site . O Subsequently O , O we O established O the O functional O importance O of O His7 B-residue_name_number , O Ser9 B-residue_name_number , O Asn11 B-residue_name_number and O Phe25 B-residue_name_number in O the O in O vitro O response O of O meningococcus B-taxonomy_domain to O 4 B-chemical - I-chemical HPA I-chemical , O via O site B-experimental_method - I-experimental_method directed I-experimental_method mutagenesis I-experimental_method . O ( O B O ) O A O structural B-experimental_method alignment I-experimental_method of O MTH313 B-protein chain B-structure_element A I-structure_element and O ST1710 B-protein ( O pink O ) O ( O Cα O rmsd B-evidence 2 O . O 3Å O ), O shows O that O they O bind O salicylate B-chemical in O equivalent O sites O ( O differing O by O only O ~ O 3Å O ) O and O with O the O same O orientation O . O In O an O alternative O and O less O extensive O manner O , O the O binding O of O two O salicylate B-chemical molecules O to O the O M B-species . I-species thermoautotrophicum I-species protein O MTH313 B-protein appeared O to O induce O large O changes O in O the O wHTH B-structure_element domain I-structure_element , O which O was O associated O with O reduced O DNA O - O binding O activity O . O Here O , O we O report O two O high O - O resolution O PduL B-protein_type crystal B-evidence structures I-evidence with B-protein_state bound I-protein_state substrates I-protein_state . O This O reaction O directly O links O an O acyl B-chemical - I-chemical CoA I-chemical with O ATP B-chemical generation O via O substrate O - O level O phosphorylation O , O producing O short B-chemical - I-chemical chain I-chemical fatty I-chemical acids I-chemical ( O e O . O g O ., O acetate B-chemical ), O and O also O provides O a O path O for O short B-chemical - I-chemical chain I-chemical fatty I-chemical acids I-chemical to O enter O central O metabolism O . O Not O only O does O PduL B-protein_type facilitate O substrate O level O phosphorylation O , O but O it O also O is O critical O for O cofactor O recycling O within O , O and O product O efflux O from O , O the O organelle O . O More O recently O , O bioinformatic B-experimental_method studies I-experimental_method have O demonstrated O the O widespread O distribution O of O BMCs B-complex_assembly among O diverse O bacterial B-taxonomy_domain phyla I-taxonomy_domain and O grouped O them O into O 23 O different O functional O types O . O They O can O also O work O in O the O reverse O direction O to O activate O acetate B-chemical to O the O CoA B-chemical - I-chemical thioester I-chemical . O Another O distinctive O feature O of O BMC B-protein_state - I-protein_state associated I-protein_state PduL B-protein_type homologs O is O an O N O - O terminal O encapsulation B-structure_element peptide I-structure_element ( O EP B-structure_element ) O that O is O thought O to O “ O target O ” O proteins O for O encapsulation O by O the O BMC B-complex_assembly shell B-structure_element . O The O primary O structure O of O PduL B-protein_type homologs O is O subdivided O into O two O PF06130 B-structure_element domains O , O each O roughly O 80 B-residue_range residues I-residue_range in I-residue_range length I-residue_range . O Structure B-experimental_method Determination I-experimental_method of O PduL B-protein_type While O purifying O full B-protein_state - I-protein_state length I-protein_state sPduL B-protein , O we O observed O a O tendency O to O aggregation O as O described O previously O , O with O a O large O fraction O of O the O expressed O protein O found O in O the O insoluble O fraction O in O a O white O , O cake O - O like O pellet O . O ( O a O ) O Primary O and O secondary O structure O of O rPduL B-protein ( O tubes O represent O α B-structure_element - I-structure_element helices I-structure_element , O arrows O β B-structure_element - I-structure_element sheets I-structure_element and O dashed O line O residues O disordered O in O the O structure B-evidence . O The O first B-residue_range 33 I-residue_range amino I-residue_range acids I-residue_range are O present O only O in O the O wildtype O construct O and O contains O the O predicted O EP B-structure_element alpha B-structure_element helix I-structure_element , O α0 B-structure_element ); O the O truncated B-protein_state rPduLΔEP B-mutant that O was O crystallized B-experimental_method begins O with O M B-residue_name - O G B-residue_name - O V B-residue_name . O Coloring O is O according O to O structural O domains O ( O domain B-structure_element 1 I-structure_element D36 B-residue_range - I-residue_range N46 I-residue_range / O Q155 B-residue_range - I-residue_range C224 I-residue_range , O blue O ; O loop B-structure_element insertion I-structure_element G61 B-residue_range - I-residue_range E81 I-residue_range , O grey O ; O domain B-structure_element 2 I-structure_element R47 B-residue_range - I-residue_range F60 I-residue_range / O E82 B-residue_range - I-residue_range A154 I-residue_range , O red O ). O Using O a O mercury B-experimental_method - I-experimental_method derivative I-experimental_method crystal I-experimental_method form O diffracting O to O 1 O . O 99 O Å O ( O Table O 2 O ), O we O obtained O high O quality O electron B-evidence density I-evidence for O model O building O and O used O the O initial O model O to O refine O against O the O native O data O to O Rwork B-evidence / O Rfree B-evidence values O of O 18 O . O 9 O / O 22 O . O 1 O %. O There O are O two O PduL B-protein_type molecules O in O the O asymmetric O unit O of O the O P212121 O unit O cell O . O Structurally O , O PduL B-protein_type consists O of O two O domains B-structure_element ( O Fig O 2 O , O blue O / O red O ), O each O a O beta B-structure_element - I-structure_element barrel I-structure_element that O is O capped O on O both O ends O by O short O α B-structure_element - I-structure_element helices I-structure_element . O Consistent O with O this O , O results O from O size B-experimental_method exclusion I-experimental_method chromatography I-experimental_method of O rPduLΔEP B-mutant suggest O that O it O is O a O dimer B-oligomeric_state in O solution O ( O Fig O 5e O ). O The O asterisk O and O double O arrow O marks O the O location O of O the O π O – O π O interaction O between O F116 B-residue_name_number and O the O CoA B-chemical base O of O the O other O dimer B-oligomeric_state chain O . O CoA B-chemical and O the O metal O ions O bind O between O the O two O domains O , O presumably O in O the O active B-site site I-site ( O Figs O 2b O and O 4a O ). O The O large O differences O between O the O anomalous O signals O confirm O the O presence O of O zinc B-chemical at O both O metal O sites O ( O S3 O Fig O ). O The O first O zinc B-chemical ion O ( O Zn1 B-chemical ) O is O in O a O tetrahedral O coordination O state O with O His48 B-residue_name_number , O His50 B-residue_name_number , O Glu109 B-residue_name_number , O and O the O CoA B-chemical sulfur B-chemical ( O Fig O 4a O ). O Oligomeric O States O of O PduL B-protein_type Orthologs O Are O Influenced O by O the O EP B-structure_element In O contrast O , O both O full B-protein_state - I-protein_state length I-protein_state rPduL B-protein and O pPduL B-protein appeared O to O exist O in O two O distinct O oligomeric O states O ( O Fig O 5b O and O 5c O respectively O , O orange O curves O ), O one O form O of O the O approximate O size O of O a O dimer B-oligomeric_state and O the O second O , O a O higher O molecular O weight O oligomer B-oligomeric_state (~ O 150 O kDa O ). O In O contrast O , O rPduLΔEP B-mutant eluted O as O one O smaller O oligomer O , O possibly O a O dimer B-oligomeric_state . O Homologs O of O the O predominant O cofactor O utilizer O ( O aldehyde B-protein_type dehydrogenase I-protein_type ) O and O NAD B-chemical + I-chemical regenerator O ( O alcohol B-protein_type dehydrogenase I-protein_type ) O have O been O structurally O characterized O , O but O until O now O structural O information O was O lacking O for O PduL B-protein_type , O which O recycles O CoA B-chemical in O the O organelle O lumen O . O The O PduL B-protein_type signature O primary O structure O , O two O PF06130 B-structure_element domains O , O occurs O in O some O multidomain O proteins O , O most O of O them O annotated O as O Acks B-protein_type , O suggesting O that O PduL B-protein_type may O also O replace O Pta B-protein_type in O variants O of O the O phosphotransacetylase B-protein_type - O Ack B-protein_type pathway O . O For O BMC B-complex_assembly - O encapsulated O proteins O to O properly O function O together O , O they O must O be O targeted O to O the O lumen O and O assemble O into O an O organization O that O facilitates O substrate O / O product O channeling O among O the O different O catalytic B-site sites I-site of O the O signature O and O core O enzymes O . O Structured O aggregation O of O the O core O enzymes O has O been O proposed O to O be O the O initial O step O in O metabolosome B-complex_assembly assembly O and O is O known O to O be O the O first O step O of O β O - O carboxysome O biogenesis O , O where O the O core O enzyme O Ribulose B-protein_type Bisphosphate I-protein_type Carboxylase I-protein_type / I-protein_type Oxygenase I-protein_type ( O RuBisCO B-protein_type ) O is O aggregated O by O the O CcmM B-protein_type protein O . O The O close O resemblance O between O the O structures O binding O CoA B-chemical and O phosphate B-chemical likely O indicates O that O no O large O changes O in O protein O conformation O are O involved O in O catalysis O , O and O that O our O crystal B-evidence structures I-evidence are O representative O of O the O active B-protein_state form O . O This O hypothesis O is O strengthened O by O the O fact O that O the O CoA B-protein_state - I-protein_state bound I-protein_state crystals B-evidence were O obtained O without O added O CoA B-chemical , O indicating O that O the O protein O bound B-protein_state CoA B-chemical from O the O E B-species . I-species coli I-species expression O strain O and O retained O it O throughout O purification O and O crystallization O . O PduL B-protein_type and O Pta B-protein_type are O mechanistically O and O structurally O distinct O enzymes O that O catalyze O the O same O reaction O , O a O prime O example O of O evolutionary O convergence O upon O a O function O . O This O is O not O surprising O , O as O β B-protein_type - I-protein_type lactamases I-protein_type are O not O so O widespread O among O bacteria B-taxonomy_domain and O therefore O would O be O expected O to O have O evolved O independently O several O times O as O a O defense O mechanism O against O β O - O lactam O antibiotics O . O These O results O suggest O that O Regnase B-protein - I-protein 1 I-protein RNase B-protein_type activity O is O tightly O controlled O by O both O intramolecular O ( O NTD B-structure_element - O PIN B-structure_element ) O and O intermolecular O ( O PIN B-structure_element - O PIN B-structure_element ) O interactions O . O The O initial O sensing O of O infection O is O mediated O by O a O set O of O pattern B-protein_type - I-protein_type recognition I-protein_type receptors I-protein_type ( O PRRs B-protein_type ) O such O Toll B-protein_type - I-protein_type like I-protein_type receptors I-protein_type ( O TLRs B-protein_type ) O and O the O intracellular O signaling O cascades O triggered O by O TLRs B-protein_type evoke O transcriptional O expression O of O inflammatory O mediators O that O coordinate O the O elimination O of O pathogens O and O infected O cells O . O Our O data O revealed O that O the O catalytic O activity O of O Regnase B-protein - I-protein 1 I-protein is O regulated O through O both O intra O and O intermolecular O domain O interactions O in O vitro O . O X B-experimental_method - I-experimental_method ray I-experimental_method crystallography I-experimental_method was O attempted O for O the O fragment O containing O both O the O PIN B-structure_element and O ZF B-structure_element domains O , O however O , O electron B-evidence density I-evidence was O observed O only O for O the O PIN B-structure_element domain O ( O Fig O . O 1c O ), O consistent O with O a O previous O report O on O Regnase B-protein - I-protein 1 I-protein derived O from O Homo B-species sapiens I-species . O The O domain O structures B-evidence of O NTD B-structure_element , O ZF B-structure_element , O and O CTD B-structure_element were O determined O by O NMR B-experimental_method ( O Fig O . O 1b O , O d O , O e O ). O Although O the O PIN B-structure_element domain O is O responsible O for O the O catalytic O activity O of O Regnase B-protein - I-protein 1 I-protein , O the O roles O of O the O other O domains O are O largely O unknown O . O Upon O addition O of O a O larger O amount O of O Regnase B-protein - I-protein 1 I-protein , O the O fluorescence B-evidence of O free B-protein_state RNA B-chemical decreased O , O indicating O that O Regnase B-protein - I-protein 1 I-protein bound B-protein_state to I-protein_state the O RNA B-chemical . O Direct O binding O of O the O ZF B-structure_element domain O and O RNA B-chemical were O confirmed O by O NMR B-experimental_method spectral B-evidence changes I-evidence . O Dimer B-oligomeric_state formation O of O the O PIN B-structure_element domains O Mutation B-experimental_method of O Arg215 B-residue_name_number , O whose O side O chain O faces O to O the O opposite O side O of O the O oligomeric B-site surface I-site , O to O Glu B-residue_name preserved O the O monomer B-oligomeric_state / O dimer B-oligomeric_state equilibrium O , O similar O to O the O wild B-protein_state type I-protein_state . O Based O on O the O titration B-evidence curve I-evidence for O the O chemical B-evidence shift I-evidence changes I-evidence of O L58 B-residue_name_number , O the O apparent O Kd B-evidence between O the O isolated O NTD B-structure_element and O PIN B-structure_element was O estimated O to O be O 110 O ± O 5 O . O 8 O μM O . O Considering O the O fact O that O the O NTD B-structure_element and O PIN B-structure_element domains O are O attached O by O a O linker B-structure_element , O the O actual O binding B-evidence affinity I-evidence is O expected O much O higher O in O the O native B-protein_state protein O . O An O in B-experimental_method silico I-experimental_method docking I-experimental_method of O the O NTD B-structure_element and O PIN B-structure_element domains O using O chemical B-evidence shift I-evidence restraints I-evidence provided O a O model O consistent O with O the O NMR B-experimental_method experiments O ( O Fig O . O 3c O ). O When O any O members O of O the O two O groups O are O mixed O , O two O kinds O of O heterodimers B-oligomeric_state can O be O formed O : O one O is O composed O of O a O DDNN B-mutant primary B-protein_state PIN B-structure_element and O a O basic O residue O mutant B-protein_state secondary B-protein_state PIN B-structure_element and O is O expected O to O exhibit O no O RNase B-protein_type activity O ; O the O other O is O composed O of O a O basic O residue O mutant B-protein_state primary B-protein_state PIN B-structure_element and O a O DDNN B-mutant secondary B-protein_state PIN B-structure_element and O is O predicted O to O rescue O RNase B-protein_type activity O ( O Fig O . O 5a O ). O When O we O compared O the O fluorescence B-evidence intensity I-evidence of O uncleaved B-protein_state IL B-protein_type - I-protein_type 6 I-protein_type mRNA B-chemical , O basic O residue O mutants B-protein_state W182A B-mutant , O K184A B-mutant , O R214A B-mutant , O and O R220A B-mutant were O rescued O upon O addition O of O the O DDNN B-mutant mutant B-protein_state ( O Fig O . O 5b O ). O Rescue O of O K184A B-mutant and O R214A B-mutant by O the O DDNN B-mutant mutant B-protein_state was O also O confirmed O by O a O significant O increase O in O the O cleaved O products O . O R214 B-residue_name_number is O an O important O residue O for O dimer B-oligomeric_state formation O as O shown O in O Fig O . O 2 O , O therefore O , O R214A B-mutant in O the O secondary B-protein_state PIN B-structure_element cannot O dimerize O . O Due O to O this O limitation O , O it O is O difficult O to O perform O further O structural B-experimental_method analyses I-experimental_method of O mRNA B-complex_assembly - I-complex_assembly Regnase I-complex_assembly - I-complex_assembly 1 I-complex_assembly complexes O by O X B-experimental_method - I-experimental_method ray I-experimental_method crystallography I-experimental_method or O NMR B-experimental_method . O Moreover O , O our O structure B-experimental_method - I-experimental_method based I-experimental_method mutational I-experimental_method analyses I-experimental_method showed O these O two O Regnase B-protein - I-protein 1 I-protein specific O basic O regions O were O essential O for O target O mRNA B-chemical cleavage O in O vitro O . O The O affinity B-evidence of O the O domain O - O domain O interaction O between O two O PIN B-structure_element domains O ( O Kd B-evidence = O ~ O 10 O − O 4 O M O ) O is O similar O to O that O of O the O NTD B-structure_element - O PIN B-structure_element ( O Kd B-evidence = O 110 O ± O 5 O . O 8 O μM O ) O interactions O ; O however O , O the O covalent O connection O corresponding O to O residues O 90 B-residue_range – I-residue_range 133 I-residue_range between O the O NTD B-structure_element and O the O primary B-protein_state PIN B-structure_element will O greatly O enhance O the O intramolecular O domain O interaction O in O the O case O of O full B-protein_state - I-protein_state length I-protein_state Regnase B-protein - I-protein 1 I-protein . O In O this O context O , O it O is O interesting O that O , O in O response O to O TCR O stimulation O , O Malt1 B-protein cleaves O Regnase B-protein - I-protein 1 I-protein at O R111 B-residue_name_number to O control O immune O responses O in O vivo O . O Two O PIN B-structure_element molecules O in O the O crystal B-evidence were O colored O white O and O green O , O respectively O . O Eukaryotic B-taxonomy_domain ribosome O biogenesis O is O highly O complex O and O requires O a O large O number O of O non O - O ribosomal O proteins O and O small B-chemical non I-chemical - I-chemical coding I-chemical RNAs I-chemical in O addition O to O ribosomal B-chemical RNAs I-chemical ( O rRNAs B-chemical ) O and O proteins O . O In O addition O , O 18S B-chemical and O 25S B-chemical ( O yeast B-taxonomy_domain )/ O 28S B-chemical ( O humans B-species ) O rRNAs B-chemical contain O several O base O modifications O catalyzed O by O site O - O specific O and O snoRNA B-chemical - O independent O enzymes O . O In O Saccharomyces B-species cerevisiae I-species 18S B-chemical rRNA I-chemical contains O four O base O methylations B-ptm , O two O acetylations B-ptm and O a O single O 3 B-chemical - I-chemical amino I-chemical - I-chemical 3 I-chemical - I-chemical carboxypropyl I-chemical ( O acp B-chemical ) O modification O , O whereas O six O base O methylations B-ptm are O present O in O the O 25S B-chemical rRNA I-chemical . O Defects O of O rRNA B-chemical modification O enzymes O often O lead O to O disturbed O ribosome O biogenesis O or O functionally O impaired O ribosomes O , O although O the O lack O of O individual O rRNA B-chemical modifications O often O has O no O or O only O a O slight O influence O on O the O cell O . O Wild B-protein_state type I-protein_state ( O WT B-protein_state ) O and O plasmid O encoded O 18S B-chemical rRNA I-chemical ( O U1191U B-mutant ) O show O the O 14C B-chemical - I-chemical acp I-chemical signal O , O whereas O the O 14C B-chemical - I-chemical acp I-chemical signal O is O missing O in O the O U1191A B-mutant mutant B-protein_state plasmid O encoded O 18S B-chemical rRNA I-chemical ( O U1191A B-mutant ) O and O Δtsr3 B-mutant mutants O ( O Δtsr3 B-mutant ). O The O primer O extension O arrest O is O reduced O in O HTC116 O cells O transfected O with O siRNAs B-chemical 544 O and O 545 O . O For O the O Δtsr3 B-mutant deletion O strain O the O HPLC B-evidence elution I-evidence profile I-evidence of O 18S B-chemical rRNA I-chemical nucleosides B-chemical ( O Figure O 1B O ) O was O very O similar O to O that O of O the O pseudouridine B-protein_type - I-protein_type N1 I-protein_type methyltransferase I-protein_type mutant B-protein_state Δnep1 B-mutant , O where O a O shoulder O at O ∼ O 7 O . O 4 O min O elution O time O was O missing O in O the O elution O profile O . O As O previously O reported O this O shoulder O was O identified O by O ESI B-experimental_method - I-experimental_method MS I-experimental_method as O corresponding O to O m1acp3Ψ B-chemical . O Similar O to O yeast B-taxonomy_domain , O siRNA B-experimental_method - I-experimental_method mediated I-experimental_method depletion I-experimental_method of O the O Ψ1248 B-protein_type N1 I-protein_type - I-protein_type methyltransferase I-protein_type Nep1 B-protein / O Emg1 B-protein had O no O influence O on O the O primer B-evidence extension I-evidence arrest I-evidence ( O Figure O 1E O ). O However O , O the O Δtsr3 B-mutant deletion O was O synthetic O sick O with O a O Δsnr35 B-mutant deletion O preventing O pseudouridylation B-ptm and O Nep1 B-protein - O catalyzed O methylation O of O nucleotide O 1191 B-residue_number ( O Figure O 2A O ). O Phenotypic O characterization O of O yeast B-taxonomy_domain TSR3 B-protein deletion O ( O Δtrs3 B-mutant ) O and O human B-species TSR3 B-protein depletion O ( O siRNAs B-chemical 544 O and O 545 O ) O and O cellular O localization O of O yeast B-taxonomy_domain Tsr3 B-protein . O ( O A O ) O Growth O of O yeast B-taxonomy_domain wild B-protein_state type I-protein_state , O Δtsr3 B-mutant , O Δsnr35 B-mutant and O Δtsr3 B-mutant Δsnr35 I-mutant segregants O after O meiosis O and O tetrad O dissection O of O Δtsr3 B-mutant / O TSR3 B-protein Δsnr35 B-mutant / O SNR35 B-protein heterozygous O diploids O . O Consistent O with O its O role O in O late O 18S B-chemical rRNA I-chemical processing O , O TSR3 B-protein deletion O leads O to O a O ribosomal O subunit O imbalance O with O a O reduced O 40S B-complex_assembly to O 60S B-complex_assembly ratio O of O 0 O . O 81 O ( O σ O = O 0 O . O 024 O ) O which O was O further O increased O in O a O Δtsr3 B-mutant Δsnr35 I-mutant recombinant O to O 0 O . O 73 O ( O σ O = O 0 O . O 023 O ) O ( O Supplementary O Figure O S2F O ). O N O - O terminal O deletions B-experimental_method of O 36 B-residue_range or O 45 B-residue_range amino O acids O and O C O - O terminal O deletions B-experimental_method of O 43 B-residue_range or O 76 B-residue_range residues O show O a O primer B-evidence extension I-evidence stop I-evidence comparable O to O the O wild B-protein_state type I-protein_state . O Strong O 20S O rRNA O accumulation O similar O to O that O of O the O Δtsr3 B-mutant deletion B-experimental_method is O observed O for O Tsr3 B-protein fragments O 37 B-residue_range – I-residue_range 223 I-residue_range or O 46 B-residue_range – I-residue_range 223 I-residue_range . O Well O diffracting O crystals B-evidence were O obtained O for O Tsr3 B-protein homologs O from O the O two O crenarchaeal B-taxonomy_domain species O Vulcanisaeta B-species distributa I-species ( O VdTsr3 B-protein ) O and O Sulfolobus B-species solfataricus I-species ( O SsTsr3 B-protein ) O which O share O 36 O % O ( O VdTsr3 B-protein ) O and O 38 O % O ( O SsTsr3 B-protein ) O identity O with O the O ScTsr3 B-protein core B-structure_element region I-structure_element ( O ScTsr3 B-protein aa O 46 B-residue_range – I-residue_range 223 I-residue_range ). O Crystals B-evidence of O VdTsr3 B-protein diffracted O to O a O resolution O of O 1 O . O 6 O Å O whereas O crystals B-evidence of O SsTsr3 B-protein diffracted O to O 2 O . O 25 O Å O . O Serendipitously O , O VdTsr3 B-protein was O purified O and O crystallized B-experimental_method in B-protein_state complex I-protein_state with I-protein_state endogenous B-protein_state ( O E B-species . I-species coli I-species ) O SAM B-chemical ( O Supplementary O Figure O S4 O ) O while O SsTsr3 B-protein crystals B-evidence contained O the O protein O in O the O apo B-protein_state state O . O The O structure B-evidence of O VdTsr3 B-protein can O be O divided O into O two O domains O ( O Figure O 4A O ). O A O red O arrow O marks O the O location O of O the O topological B-structure_element knot I-structure_element in O the O structure B-evidence . O ( O B O ) O Secondary O structure O representation O of O the O VdTsr3 B-protein structure B-evidence . O Gel B-experimental_method filtration I-experimental_method experiments O with O both O VdTsr3 B-protein and O SsTsr3 B-protein ( O Figure O 4E O ) O showed O that O both O proteins O are O monomeric B-oligomeric_state in O solution O thereby O extending O the O structural O similarities O to O Trm10 B-protein . O This O enzyme O , O Tyw2 B-protein , O is O part O of O the O biosynthesis O pathway O of O wybutosine B-chemical nucleotides I-chemical in O tRNAs B-chemical . O SAM B-chemical - O binding O by O Tsr3 B-protein . O 3xHA B-protein_state tagged I-protein_state Tsr3 B-protein mutants B-protein_state are O expressed O comparable O to O the O wild B-protein_state type I-protein_state as O shown O by O western B-experimental_method blot I-experimental_method ( O lower O left O ). O Accordingly O , O a O W66A B-mutant - O mutation B-experimental_method ( O W73 B-residue_name_number in O VdTsr3 B-protein ) O of O SsTsr3 B-protein significantly O diminished O SAM B-evidence - I-evidence binding I-evidence in O a O filter B-experimental_method binding I-experimental_method assay I-experimental_method compared O to O the O wild B-protein_state type I-protein_state ( O Figure O 5E O ). O Furthermore O , O a O W B-experimental_method to I-experimental_method A I-experimental_method mutation I-experimental_method at O the O equivalent O position O W114 B-residue_name_number in O ScTsr3 B-protein strongly O reduced O the O in O vivo O acp B-protein_type transferase I-protein_type activity O ( O Figure O 5F O ). O Furthermore O , O a O negatively O charged O MES B-chemical - O ion O is O found O in O the O crystal B-evidence structure I-evidence of O VdTsr3 B-protein complexed B-protein_state to I-protein_state the O side O chain O of O K22 B-residue_name_number in O helix B-structure_element α1 B-structure_element . O In O the O C B-structure_element - I-structure_element terminal I-structure_element domain I-structure_element , O the O surface O exposed O α B-structure_element - I-structure_element helices I-structure_element α5 B-structure_element and O α7 B-structure_element carry O a O significant O amount O of O positively O charged O amino O acids O . O For O S B-species . I-species solfataricus I-species the O chemical O identity O of O the O hypermodified B-protein_state nucleotide B-chemical is O not O known O but O the O existence O of O NEP1 B-protein and O TSR3 B-protein homologs O suggest O that O it O is O indeed O N1 B-chemical - I-chemical methyl I-chemical - I-chemical N3 I-chemical - I-chemical acp I-chemical - I-chemical pseudouridine I-chemical . O 5 O ′- O fluoresceine B-chemical labeled O RNA B-chemical oligonucleotides O corresponding O either O to O the O native B-protein_state ( O 20mer B-oligomeric_state – O see O inset O ) O or O a O stabilized B-protein_state ( O 20mer_GC B-oligomeric_state - O inset O ) O helix B-structure_element 31 I-structure_element of O the O small O ribosomal O subunit O rRNA B-chemical from O S B-species . I-species solfataricus I-species were O titrated B-experimental_method with I-experimental_method increasing I-experimental_method amounts I-experimental_method of O SsTsr3 B-protein and O the O changes O in O the O fluoresceine B-chemical fluorescence B-evidence anisotropy I-evidence were O measured O and O fitted O to O a O binding B-evidence curve I-evidence ( O 20mer B-oligomeric_state – O red O , O 20mer_GC B-oligomeric_state – O blue O ). O This O suggests O that O Tsr3 B-protein is O not O stably O incorporated O into O pre B-complex_assembly - I-complex_assembly ribosomal I-complex_assembly particles I-complex_assembly and O that O its O binding O to O the O nascent O ribosomal B-complex_assembly subunit I-complex_assembly possibly O requires O additional O interactions O with O other O pre O - O ribosomal O components O . O The O cleavage O step O most O likely O acts O as O a O quality O control O check O that O ensures O the O proper O 40S B-complex_assembly subunit I-complex_assembly assembly O with O only O completely O processed O precursors O . O Finally O , O termination B-protein_type factor I-protein_type Rli1 B-protein , O an O ATPase B-protein_type , O promotes O the O dissociation O of O assembly O factors O and O the O 80S B-complex_assembly - I-complex_assembly like I-complex_assembly complex I-complex_assembly dissociates O and O releases O the O mature B-protein_state 40S B-complex_assembly subunit I-complex_assembly . O Thus O , O the O acp B-chemical transfer O to O m1Ψ1191 B-residue_name_number occurs O during O the O step O at O which O Rio2 B-protein leaves O the O pre B-complex_assembly - I-complex_assembly 40S I-complex_assembly particle I-complex_assembly . O The O current O data O together O with O the O finding O that O acp B-chemical modification O takes O place O at O the O very O last O step O in O pre B-complex_assembly - I-complex_assembly 40S I-complex_assembly subunit I-complex_assembly maturation O indicate O that O the O acp B-chemical modification O probably O supports O the O formation O of O the O decoding B-site site I-site and O efficient O 20S B-chemical pre I-chemical - I-chemical rRNA I-chemical D B-site - I-site site I-site cleavage O . O These O studies O also O revealed O a O well O ordered O break O in O the O polypeptide O chain O at O Lys147 B-residue_name_number , O resulting O in O a O large O conformational O rearrangement O close O to O the O active B-site site I-site . O PmC11 B-protein has O an O acidic B-site binding I-site pocket I-site and O a O preference O for O basic O substrates O , O and O accepts O substrates O with O Arg B-residue_name and O Lys B-residue_name in O P1 B-residue_number and O does O not O require O Ca2 B-chemical + I-chemical for O activity O . O Clan B-protein_type CD I-protein_type families I-protein_type are O typically O described O using O the O name O of O their O archetypal O , O or O founding O , O member O and O also O given O an O identification O number O preceded O by O a O “ O C O ,” O to O denote O cysteine B-protein_type peptidase I-protein_type . O Although O seven O families O ( O C14 O is O additionally O split O into O three O subfamilies O ) O have O been O described O for O this O clan O , O crystal B-evidence structures I-evidence have O only O been O determined O from O four O : O legumain B-protein ( O C13 B-protein_type ), O caspase B-protein ( O C14a B-protein_type ), O paracaspase B-protein ( O C14b B-protein_type ( I-protein_type P I-protein_type ), O metacaspase B-protein ( O C14b B-protein_type ( I-protein_type M I-protein_type ), O gingipain B-protein ( O C25 B-protein_type ), O and O the O cysteine B-structure_element peptidase I-structure_element domain I-structure_element ( O CPD B-structure_element ) O of O various O toxins O ( O C80 B-protein_type ). O Clan B-protein_type CD I-protein_type enzymes I-protein_type have O a O highly B-protein_state conserved I-protein_state His B-site / I-site Cys I-site catalytic I-site dyad I-site and O exhibit O strict O specificity O for O the O P1 B-residue_number residue O of O their O substrates O . O Structure B-evidence of O PmC11 B-protein The O position O of O the O catalytic B-site dyad I-site ( O H B-residue_name , O C B-residue_name ) O and O the O processing B-site site I-site ( O Lys147 B-residue_name_number ) O are O highlighted O . O Helices O ( O 1 O – O 14 O ) O and O β B-structure_element - I-structure_element strands I-structure_element ( O 1 O – O 9 O and O A O - O F O ) O are O numbered O from O the O N O terminus O . O The O N O and O C O termini O ( O N O and O C O ) O of O PmC11 B-protein along O with O the O central O β B-structure_element - I-structure_element sheet I-structure_element ( O 1 O – O 9 O ), O helix B-structure_element α5 B-structure_element , O and O helices B-structure_element α8 B-structure_element , O α11 B-structure_element , O and O α13 B-structure_element from O the O C B-structure_element - I-structure_element terminal I-structure_element domain I-structure_element , O are O all O labeled O . O Of O the O interacting O secondary O structure O elements O , O α5 B-structure_element is O perhaps O the O most O interesting O . O This B-structure_element helix I-structure_element makes O a O total O of O eight O hydrogen O bonds O with O the O CTD B-structure_element , O including O one O salt O bridge O ( O Arg191 B-residue_name_number - O Asp255 B-residue_name_number ) O and O is O surrounded O by O the O CTD B-structure_element on O one O side O and O the O main B-structure_element core I-structure_element of O the O enzyme O on O the O other O , O acting O like O a O linchpin O holding O both O components O together O ( O Fig O . O 1C O ). O The O two O ends O of O the O autolytic B-site cleavage I-site site I-site ( O Lys147 B-residue_name_number and O Ala148 B-residue_name_number , O green O ) O are O displaced O by O 19 O . O 5 O Å O ( O thin O black O line O ) O from O one O another O and O residues O in O the O potential O substrate B-site binding I-site pocket I-site are O highlighted O in O blue O . O B O , O size B-experimental_method exclusion I-experimental_method chromatography I-experimental_method of O PmC11 B-protein . O Elution O fractions O across O the O major O peak O ( O 1 O – O 6 O ) O were O analyzed O by O SDS B-experimental_method - I-experimental_method PAGE I-experimental_method on O a O 4 O – O 12 O % O gel O in O MES O buffer O . O E O , O intermolecular B-ptm processing I-ptm of O PmC11C179A B-mutant by O PmC11 B-protein . O PmC11C179A O ( O 20 O μg O ) O was O incubated O overnight O at O 37 O ° O C O with O increasing O amounts O of O processed O PmC11 B-protein and O analyzed O on O a O 10 O % O SDS B-experimental_method - I-experimental_method PAGE I-experimental_method gel O . O A O single O lane O of O 20 O μg O of O active B-protein_state PmC11 B-protein ( O labeled O 20 O ) O is O shown O for O comparison O . O The O position O of O the O catalytic B-site dyad I-site , O one O potential O key B-site substrate I-site binding I-site residue I-site Asp177 B-residue_name_number , O and O the O ends O of O the O cleavage B-site site I-site Lys147 B-residue_name_number and O Ala148 B-residue_name_number are O indicated O . O To O investigate O this O possibility O , O two O mutant O forms O of O the O enzyme O were O created O : O PmC11C179A B-mutant ( O a O catalytically B-protein_state inactive I-protein_state mutant I-protein_state ) O and O PmC11K147A B-mutant ( O a O cleavage B-protein_state - I-protein_state site I-protein_state mutant I-protein_state ). O The O PmC11K147A B-mutant mutant B-protein_state enzyme O had O a O markedly O different O reaction B-evidence rate I-evidence ( O Vmax B-evidence ) O compared O with O WT B-protein_state , O where O the O reaction B-evidence velocity I-evidence of O PmC11 B-protein was O 10 O times O greater O than O that O of O PmC11K147A B-mutant ( O Fig O . O 2D O ). O Thus O , O Asn50 B-residue_name_number , O Asp177 B-residue_name_number , O and O Asp207 B-residue_name_number are O most O likely O responsible O for O the O substrate O specificity O of O PmC11 B-protein . O Furthermore O , O Cu2 B-chemical +, I-chemical Fe2 B-chemical +, I-chemical and O Zn2 B-chemical + I-chemical appear O to O inhibit B-protein_state PmC11 B-protein . O The O structural O similarity O of O PmC11 B-protein with O its O nearest O structural O neighbors O in O the O PDB O is O decidedly O low O , O overlaying O better O with O six O - O stranded O caspase B-protein - I-protein 7 I-protein than O any O of O the O other O larger O members O of O the O clan O ( O Table O 2 O ). O PmC11 B-protein differs O from O clostripain B-protein in O that O is O does O not O appear O to O require O divalent O cations O for O activation O . O In O addition O , O several O members O of O clan B-protein_type CD I-protein_type exhibit O self O - O inhibition O , O whereby O regions B-structure_element of O the O enzyme O block O access O to O the O active B-site site I-site . O Recently O , O we O solved O the O crystal B-evidence structure I-evidence of O YfiR B-protein in O both O the O non B-protein_state - I-protein_state oxidized I-protein_state and O the O oxidized B-protein_state states O , O revealing O breakage O / O formation O of O one O disulfide B-ptm bond I-ptm ( O Cys71 B-residue_name_number - O Cys110 B-residue_name_number ) O and O local O conformational O change O around O the O other O one O ( O Cys145 B-residue_name_number - O Cys152 B-residue_name_number ), O indicating O that O Cys145 B-residue_name_number - O Cys152 B-residue_name_number plays O an O important O role O in O maintaining O the O correct O folding O of O YfiR B-protein ( O Yang O et O al O .,). O In O the O present O study O , O we O solved O the O crystal B-evidence structures I-evidence of O an O N O - O terminal O truncated B-protein_state form O of O YfiB B-protein ( O 34 B-residue_range – I-residue_range 168 I-residue_range ) O and O YfiR B-protein in B-protein_state complex I-protein_state with I-protein_state an O active B-protein_state mutant B-protein_state YfiBL43P B-mutant . O Compared O with O the O reported O complex O structure O , O YfiBL43P B-mutant in O our O YfiB B-complex_assembly - I-complex_assembly YfiR I-complex_assembly complex O structure B-evidence has O additional O visible O N O - O terminal O residues O 44 B-residue_range – I-residue_range 58 I-residue_range that O are O shown O to O play O essential O roles O in O YfiB B-protein activation O and O biofilm O formation O . O In O addition O , O there O is O a O short O helix B-structure_element turn I-structure_element connecting O the O β4 B-structure_element strand I-structure_element and O α4 B-structure_element helix I-structure_element ( O Fig O . O 1A O and O 1B O ). O The O YfiR B-protein molecules O are O shown O in O green O and O magenta O . O YfiBL43P B-mutant and O YfiR B-protein are O shown O in O cyan O and O green O , O respectively O . O ( O E O and O F O ) O The O conserved B-site surface I-site in O YfiR B-protein contributes O to O the O interaction O with O YfiB B-protein . O ( O G O ) O The O residues B-structure_element of O YfiR B-protein responsible O for O interacting O with O YfiB B-protein are O shown O in O green O sticks O , O and O the O proposed O YfiN B-site - I-site interacting I-site residues I-site are O shown O in O yellow O sticks O . O The O YfiB B-complex_assembly - I-complex_assembly YfiR I-complex_assembly complex O is O a O 2 O : O 2 O heterotetramer B-oligomeric_state ( O Fig O . O 3A O ) O in O which O the O YfiR B-protein dimer B-oligomeric_state is O clamped O by O two O separated O YfiBL43P B-mutant molecules O with O a O total O buried O surface O area O of O 3161 O . O 2 O Å2 O . O The O observed O changes O in O conformation O of O YfiB B-protein and O the O results O of O mutagenesis B-experimental_method suggest O a O mechanism O by O which O YfiB B-protein sequesters O YfiR B-protein . O Region B-structure_element I I-structure_element is O formed O by O numerous O main O - O chain O and O side O - O chain O hydrophilic O interactions O between O residues O E45 B-residue_name_number , O G47 B-residue_name_number and O E53 B-residue_name_number from O the O N O - O terminal O extended O loop B-structure_element of O YfiB B-protein and O residues O S57 B-residue_name_number , O R60 B-residue_name_number , O A89 B-residue_name_number and O H177 B-residue_name_number from O YfiR B-protein ( O Fig O . O 3D O - O I O ( O i O )). O Additionally O , O three O hydrophobic B-site anchoring I-site sites I-site exist O in O region B-structure_element I I-structure_element . O The O residues O F48 B-residue_name_number and O W55 B-residue_name_number of O YfiB B-protein are O inserted O into O the O hydrophobic B-site cores I-site mainly O formed O by O the O main O chain O and O side O chain O carbon O atoms O of O residues O S57 B-residue_name_number / O Q88 B-residue_name_number / O A89 B-residue_name_number / O N90 B-residue_name_number and O R60 B-residue_name_number / O R175 B-residue_name_number / O H177 B-residue_name_number of O YfiR B-protein , O respectively O ; O and O F57 B-residue_name_number of O YfiB B-protein is O inserted O into O the O hydrophobic B-site pocket I-site formed O by O L166 B-residue_name_number / O I169 B-residue_name_number / O V176 B-residue_name_number / O P178 B-residue_name_number / O L181 B-residue_name_number of O YfiR B-protein ( O Fig O . O 3D O - O I O ( O ii O )). O The O results O indicated O that O the O PG B-evidence - I-evidence binding I-evidence affinity I-evidence of O YfiBL43P B-mutant is O 65 O . O 5 O μmol O / O L O , O which O is O about O 16 O - O fold O stronger O than O that O of O wild B-protein_state - I-protein_state type I-protein_state YfiB B-protein ( O Kd O = O 1 O . O 1 O mmol O / O L O ) O ( O Fig O . O 4E O – O F O ). O As O the O experiment O is O performed O in B-protein_state the I-protein_state absence I-protein_state of I-protein_state YfiR B-protein , O it O suggests O that O an O increase O in O the O PG B-evidence - I-evidence binding I-evidence affinity I-evidence of O YfiB B-protein is O not O a O result O of O YfiB B-complex_assembly - I-complex_assembly YfiR I-complex_assembly interaction O and O is O highly O coupled O to O the O activation O of O YfiB B-protein characterized O by O a O stretched B-protein_state N I-protein_state - I-protein_state terminal I-protein_state conformation I-protein_state . O Calculation O using O the O ConSurf B-experimental_method Server I-experimental_method ( O http O :// O consurf O . O tau O . O ac O . O il O /), O which O estimates O the O evolutionary B-evidence conservation I-evidence of O amino O acid O positions O and O visualizes O information O on O the O structure B-site surface I-site , O revealed O a O conserved B-site surface I-site on O YfiR B-protein that O contributes O to O the O interaction O with O YfiB B-protein ( O Fig O . O 3E O and O 3F O ). O F151 B-residue_name_number , O E163 B-residue_name_number and O I169 B-residue_name_number form O a O hydrophobic B-site core I-site while O , O Q187 B-residue_name_number is O located O at O the O end O of O the O α6 B-structure_element helix I-structure_element . O YfiR B-protein binds O small O molecules O The O results O showed O Kd B-evidence values O of O 1 O . O 4 O × O 10 O − O 7 O mol O / O L O and O 5 O . O 3 O × O 10 O − O 7 O mol O / O L O for O YfiBL43P B-mutant and O YfiBL43P B-mutant / O F57A B-mutant , O respectively O , O revealing O that O the O YfiBL43P B-mutant / O F57A B-mutant mutant B-protein_state caused O a O 3 O . O 8 O - O fold O reduction O in O the O binding B-evidence affinity I-evidence compared O with O the O YfiBL43P B-mutant mutant B-protein_state ( O Fig O . O 6F O and O 6G O ). O Here O , O we O report O the O crystal B-evidence structures I-evidence of O YfiB B-protein alone B-protein_state and O an O active B-protein_state mutant B-protein_state YfiBL43P B-mutant in B-protein_state complex I-protein_state with I-protein_state YfiR B-protein , O indicating O that O YfiR B-protein forms O a O 2 O : O 2 O complex B-protein_state with I-protein_state YfiB B-protein via O a O region O composed O of O conserved O residues O . O Thus O , O YfiB B-protein alone B-protein_state represents O an O inactive B-protein_state form O that O may O only O partially O insert O into O the O PG O matrix O . O The O periplasmic B-structure_element domain I-structure_element of O YfiB B-protein and O the O YfiB B-complex_assembly - I-complex_assembly YfiR I-complex_assembly complex O are O depicted O according O to O the O crystal B-evidence structures I-evidence . O The O lipid O acceptor O Cys26 B-residue_name_number is O indicated O as O blue O ball O . O These O results O , O together O with O our O observation O that O activated B-protein_state YfiB B-protein has O a O much O higher O cell B-evidence wall I-evidence binding I-evidence affinity I-evidence , O and O previous O mutagenesis O data O showing O that O ( O 1 O ) O both O PG B-chemical binding O and O membrane O anchoring O are O required O for O YfiB B-protein activity O and O ( O 2 O ) O activating O mutations O possessing O an O altered O N O - O terminal O loop B-structure_element length O are O dominant O over O the O loss O of O PG B-chemical binding O ( O Malone O et O al O .,), O suggest O an O updated O regulatory O model O of O the O YfiBNR B-complex_assembly system O ( O Fig O . O 7 O ). O In O this O model O , O in O response O to O a O particular O cell O stress O that O is O yet O to O be O identified O , O the O dimeric B-oligomeric_state YfiB B-protein is O activated B-protein_state from O a O compact B-protein_state , O inactive B-protein_state conformation B-protein_state to O a O stretched B-protein_state conformation I-protein_state , O which O possesses O increased O PG B-chemical binding O affinity O . O Ligands O that O regulate O the O dynamics O and O stability O of O the O coactivator B-site ‐ I-site binding I-site site I-site in O the O C O ‐ O terminal O ligand B-structure_element ‐ I-structure_element binding I-structure_element domain I-structure_element , O called O activation B-structure_element function I-structure_element ‐ I-structure_element 2 I-structure_element ( O AF B-structure_element ‐ I-structure_element 2 I-structure_element ), O showed O similar O activity O profiles O in O different O cell O types O . O For O some O ligand O series O , O a O single O inter B-evidence ‐ I-evidence atomic I-evidence distance I-evidence in O the O ligand B-structure_element ‐ I-structure_element binding I-structure_element domain I-structure_element predicted O their O proliferative O effects O . O AF B-structure_element ‐ I-structure_element 1 I-structure_element binds O a O separate O surface O on O these O coactivators O ( O Webb O et O al O , O 1998 O ; O Yi O et O al O , O 2015 O ). O However O , O ERα B-protein ‐ O mediated O proliferative O responses O vary O in O a O ligand O ‐ O dependent O manner O ( O Srinivasan O et O al O , O 2013 O ); O thus O , O it O is O not O known O whether O this O canonical O model O is O widely O applicable O across O diverse O ERα B-protein ligands O . O Summary O of O ligand B-experimental_method screening I-experimental_method assays I-experimental_method used O to O measure O ER O ‐ O mediated O activities O . O This O wide O variance O enabled O us O to O probe O specific O features O of O ERα B-protein signaling O using O ligand B-experimental_method class I-experimental_method analyses I-experimental_method , O and O identify O signaling O patterns O shared O by O specific O ligand O series O or O scaffolds O . O The O ERα B-protein ligand O library O contains O 241 O ligands O representing O 15 O indirect O modulator O scaffolds O , O plus O 4 O direct O modulator O scaffolds O . O Ligand O ‐ O specific O signaling O underlies O ERα B-protein ‐ O mediated O cell O proliferation O To O test O this O idea O , O we O compared O the O average B-evidence L I-evidence ‐ I-evidence Luc I-evidence activities I-evidence of O each O scaffold O in O HepG2 O cells O co B-experimental_method ‐ I-experimental_method transfected I-experimental_method with O wild B-protein_state ‐ I-protein_state type I-protein_state ERα B-protein or O with O ERα B-protein lacking B-protein_state the I-protein_state AB B-structure_element domain O ( O Figs O 1B O and O EV1 O ). O Deletion B-experimental_method of I-experimental_method the O AB B-structure_element domain O significantly O reduced O the O average B-evidence L I-evidence ‐ I-evidence Luc I-evidence activities I-evidence of O 14 O scaffolds O ( O Student B-experimental_method ' I-experimental_method s I-experimental_method t I-experimental_method ‐ I-experimental_method test I-experimental_method , O P B-evidence ≤ O 0 O . O 05 O ) O ( O Fig O 3B O ). O For O example O , O 3 B-chemical , I-chemical 4 I-chemical ‐ I-chemical DTP I-chemical , O furan B-chemical , O and O S B-chemical ‐ I-chemical OBHS I-chemical ‐ I-chemical 2 I-chemical drove O positively O correlated O GREB1 B-protein levels O and O E B-experimental_method ‐ I-experimental_method Luc I-experimental_method but O not O L B-experimental_method ‐ I-experimental_method Luc I-experimental_method ERα B-protein ‐ O WT B-protein_state activity O ( O Fig O 3C O lanes O 5 O – O 7 O ). O This O is O demonstrated O by O directly O comparing O the O signaling O specificities O of O matched O OBHS B-chemical ( O indirect O modulator O , O cluster O 1 O ) O and O OBHS B-chemical ‐ I-chemical BSC I-chemical analogs O ( O direct O modulator O , O cluster O 3 O ), O which O differ O only O in O the O basic O side O chain O ( O Fig O 2E O ). O Thus O , O examining O the O correlated O patterns O of O ERα B-protein activity O within O each O scaffold O demonstrates O that O an O extended O side O chain O is O not O required O for O cell O ‐ O specific O signaling O . O Similarly O , O deletion B-experimental_method of I-experimental_method the O F B-structure_element domain O did O not O abolish O correlations O between O the O L B-experimental_method ‐ I-experimental_method Luc I-experimental_method and O E B-experimental_method ‐ I-experimental_method Luc I-experimental_method or O GREB1 B-protein levels O induced O by O OBHS B-chemical analogs O ( O Fig O EV3F O ). O Thus O , O ligands O in O cluster O 2 O rely O on O AF B-structure_element ‐ I-structure_element 1 I-structure_element for O both O activity O ( O Fig O 3B O ) O and O signaling O specificity O ( O Fig O 3D O ). O Direct O modulators O showed O low O NCOA1 B-protein / I-protein 2 I-protein / I-protein 3 I-protein recruitment O ( O Fig O EV2F O – O H O ), O but O only O OBHS B-chemical ‐ I-chemical ASC I-chemical analogs O had O NCOA2 B-protein recruitment O profiles O that O predicted O a O full O range O of O effects O on O GREB1 B-protein levels O ( O Figs O 3E O lanes O 9 O , O 11 O , O 18 O – O 19 O , O and O EV2A O ). O Out O of O 11 O indirect O modulator O series O in O cluster O 2 O or O 3 O , O only O the O S B-chemical ‐ I-chemical OBHS I-chemical ‐ I-chemical 3 I-chemical class O had O NCOA1 B-protein / I-protein 2 I-protein / I-protein 3 I-protein recruitment O profiles O that O predicted O GREB1 B-protein levels O ( O Fig O 3E O lane O 12 O ). O The O significant O correlations O with O GREB1 B-protein expression O and O NCOA1 B-protein / I-protein 2 I-protein / I-protein 3 I-protein recruitment O observed O in O this O cluster O are O consistent O with O the O canonical O signaling O model O ( O Fig O 1D O ), O where O NCOA1 B-protein / I-protein 2 I-protein / I-protein 3 I-protein recruitment O determines O GREB1 B-protein expression O , O which O then O drives O proliferation O . O Therefore O , O we O first O performed O a O time B-experimental_method ‐ I-experimental_method course I-experimental_method study I-experimental_method , O and O found O that O E2 B-chemical and O the O WAY B-chemical ‐ I-chemical C I-chemical analog O , O AAPII B-chemical ‐ I-chemical 151 I-chemical ‐ I-chemical 4 I-chemical , O induced O recruitment O of O NCOA3 B-protein to O the O GREB1 B-protein promoter O in O a O temporal O cycle O that O peaked O after O 45 O min O in O MCF O ‐ O 7 O cells O ( O Fig O 4A O ). O Kinetic B-experimental_method ChIP I-experimental_method assay I-experimental_method examining O recruitment O of O NCOA3 B-protein to O the O GREB1 B-protein gene O in O MCF O ‐ O 7 O cells O stimulated O with O E2 B-chemical or O the O indicated O WAY B-chemical ‐ I-chemical C I-chemical analog O . O The O M2H B-experimental_method assay I-experimental_method for O NCOA3 B-protein recruitment O broadly O correlated O with O the O other O assays O , O and O was O predictive O for O GREB1 B-protein expression O and O cell O proliferation O ( O Fig O 3E O ). O However O , O the O ChIP B-experimental_method assays I-experimental_method for O WAY B-chemical ‐ I-chemical C I-chemical ‐ O induced O recruitment O of O NCOA3 B-protein to O the O GREB1 B-protein promoter O did O not O correlate O with O any O of O the O other O WAY B-chemical ‐ I-chemical C I-chemical activity O profiles O ( O Fig O 4D O ), O although O the O positive O correlation O between O ChIP B-experimental_method assays I-experimental_method and O NCOA3 B-protein recruitment O via O M2H B-experimental_method assay I-experimental_method showed O a O trend O toward O significance O with O r B-evidence 2 I-evidence = O 0 O . O 36 O and O P B-evidence = O 0 O . O 09 O ( O F B-experimental_method ‐ I-experimental_method test I-experimental_method for O nonzero O slope O ). O Nevertheless O , O the O E B-experimental_method ‐ I-experimental_method Luc I-experimental_method activities O of O both O 2 B-chemical , I-chemical 5 I-chemical ‐ I-chemical DTP I-chemical and O cyclofenil B-chemical analogs O were O better O predicted O by O their O L B-experimental_method ‐ I-experimental_method Luc I-experimental_method ERα B-protein ‐ O WT B-protein_state than O L B-experimental_method ‐ I-experimental_method Luc I-experimental_method ERβ B-protein activities O ( O Fig O EV4A O and O B O ). O ERα B-protein activity O of O 2 B-chemical , I-chemical 5 I-chemical ‐ I-chemical DTP I-chemical and O cyclofenil B-chemical analogs O correlates O with O E B-experimental_method ‐ I-experimental_method Luc I-experimental_method activity O . O Based O on O our O original O OBHS B-chemical structure B-evidence , O the O OBHS B-chemical , O OBHS B-chemical ‐ I-chemical N I-chemical , O and O triaryl B-chemical ‐ I-chemical ethylene I-chemical compounds O were O modified O with O h11 B-structure_element ‐ O directed O pendant O groups O ( O Zheng O et O al O , O 2012 O ; O Zhu O et O al O , O 2012 O ; O Liao O et O al O , O 2014 O ). O For O the O triaryl B-chemical ‐ I-chemical ethylene I-chemical analogs O , O the O displacement O of O h11 B-structure_element was O in O a O perpendicular O direction O , O away O from O Ile424 B-residue_name_number in O h8 B-structure_element and O toward O h12 B-structure_element . O Structure B-experimental_method ‐ I-experimental_method class I-experimental_method analysis I-experimental_method of O triaryl B-chemical ‐ I-chemical ethylene I-chemical analogs O . O Triaryl B-chemical ‐ I-chemical ethylene I-chemical analogs O bound B-protein_state to I-protein_state the O superposed B-experimental_method crystal B-evidence structures I-evidence of O the O ERα B-protein LBD B-structure_element are O shown O . O Triaryl B-chemical ‐ I-chemical ethylene I-chemical analogs O induce O variance O of O ERα B-protein conformations O at O the O C O ‐ O terminal O region O of O h11 B-structure_element . O WAY B-chemical ‐ I-chemical C I-chemical side O groups O subtly O nudge O h12 B-structure_element Leu540 B-residue_name_number . O Structure B-experimental_method ‐ I-experimental_method class I-experimental_method analysis I-experimental_method of O indirect O modulators O in O cluster O 1 O . O Crystal B-evidence structures I-evidence of O the O ERα B-protein LBD B-structure_element bound B-protein_state to I-protein_state OBHS B-chemical and O OBHS B-chemical ‐ I-chemical N I-chemical analogs O were O superposed B-experimental_method . O As O visualized O in O four O LBD B-structure_element structures B-evidence ( O Srinivasan O et O al O , O 2013 O ), O WAY B-chemical ‐ I-chemical C I-chemical analogs O were O designed O with O small O substitutions O that O slightly O nudge O h12 B-structure_element Leu540 B-residue_name_number , O without O exiting O the O ligand B-site ‐ I-site binding I-site pocket I-site ( O Fig O 5G O and O H O ). O This O difference O in O ligand O positioning O altered O the O AF B-site ‐ I-site 2 I-site surface I-site via O a O shift O in O the O N O ‐ O terminus O of O h12 B-structure_element , O which O directly O contacts O the O coactivator O . O Crystal B-evidence structures I-evidence show O that O a O 3 B-chemical , I-chemical 4 I-chemical ‐ I-chemical DTPD I-chemical analog O shifts O h3 B-structure_element ( O F B-structure_element ) O and O the O NCOA2 B-protein ( O G O ) O peptide O compared O to O an O A B-chemical ‐ I-chemical CD I-chemical ‐ O ring O estrogen B-chemical ( O PDB O 4PPS O , O 5DTV O ). O The O 2 B-chemical , I-chemical 5 I-chemical ‐ I-chemical DTP I-chemical analogs O showed O perturbation O of O h11 B-structure_element , O as O well O as O h3 B-structure_element , O which O forms O part O of O the O AF B-site ‐ I-site 2 I-site surface I-site . O We O observed O a O difference O of O 0 O . O 4 O Å O that O was O significant O ( O two O ‐ O tailed O Student B-experimental_method ' I-experimental_method s I-experimental_method t I-experimental_method ‐ I-experimental_method test I-experimental_method , O P B-evidence = O 0 O . O 002 O ) O due O to O the O very O tight O clustering O of O the O 2 B-chemical , I-chemical 5 I-chemical ‐ I-chemical DTP I-chemical ‐ O induced O LBD B-structure_element conformation O . O The O 3 B-chemical , I-chemical 4 I-chemical ‐ I-chemical DTPD I-chemical analogs O also O induced O a O shift O in O h3 B-structure_element positioning O , O which O translated O again O into O a O shift O in O the O bound O coactivator O peptide O ( O Fig O 6F O ). O Despite O the O similar O average O activities O of O these O ligand O classes O ( O Fig O 3A O and O B O ), O 2 B-chemical , I-chemical 5 I-chemical ‐ I-chemical DTP I-chemical and O 3 B-chemical , I-chemical 4 I-chemical ‐ I-chemical DTP I-chemical analogs O displayed O remarkably O different O peptide O recruitment O patterns O ( O Fig O 6H O ), O consistent O with O the O structural B-experimental_method analyses I-experimental_method . O This O finding O can O be O explained O by O the O fact O that O NCOA1 B-protein / I-protein 2 I-protein / I-protein 3 I-protein contain O distinct O binding B-site sites I-site for O interaction O with O AF B-structure_element ‐ I-structure_element 1 I-structure_element and O AF B-structure_element ‐ I-structure_element 2 I-structure_element ( O McInerney O et O al O , O 1996 O ; O Webb O et O al O , O 1998 O ), O which O allows O ligands O to O nucleate O ERα B-complex_assembly – I-complex_assembly NCOA1 I-complex_assembly / I-complex_assembly 2 I-complex_assembly / I-complex_assembly 3 I-complex_assembly interaction O through O AF B-structure_element ‐ I-structure_element 2 I-structure_element , O and O reinforce O this O interaction O with O additional O binding O to O AF B-structure_element ‐ I-structure_element 1 I-structure_element . O Also O , O we O have O used O siRNA B-experimental_method screening I-experimental_method to O identify O a O number O of O coregulators O required O for O ERα B-protein ‐ O mediated O repression O of O the O IL O ‐ O 6 O gene O ( O Nwachukwu O et O al O , O 2014 O ). O Secondly O , O our O finding O that O WAY B-chemical ‐ I-chemical C I-chemical compounds O do O not O rely O of O AF B-structure_element ‐ I-structure_element 1 I-structure_element for O signaling O efficacy O may O derive O from O the O slight O contacts O with O h12 B-structure_element observed O in O crystal B-evidence structures I-evidence ( O Figs O 3B O and O 5H O ), O unlike O other O compounds O in O cluster O 1 O that O dislocate O h11 B-structure_element and O rely O on O AF B-structure_element ‐ I-structure_element 1 I-structure_element for O signaling O efficacy O ( O Figs O 3B O and O 5C O , O and O EV5B O ). O We O have O also O investigated O the O binding O of O the O TOCA B-protein HR1 B-structure_element domain O to O Cdc42 B-protein and O the O potential O ternary O complex O between O Cdc42 B-protein and O the O G B-site protein I-site - I-site binding I-site regions I-site of O TOCA1 B-protein and O a O member O of O the O Wiskott B-protein_type - I-protein_type Aldrich I-protein_type syndrome I-protein_type protein I-protein_type family I-protein_type , O N B-protein - I-protein WASP I-protein . O The O guanine B-protein_type nucleotide I-protein_type exchange I-protein_type factors I-protein_type mediate O formation O of O the O active B-protein_state state O by O promoting O the O dissociation O of O GDP B-chemical , O allowing O GTP B-chemical to O bind O . O The O Rho B-protein_type family I-protein_type comprises O 20 O members O , O of O which O three O , O RhoA B-protein , O Rac1 B-protein , O and O Cdc42 B-protein , O have O been O relatively O well O studied O . O Following O their O release O , O the O C B-structure_element - I-structure_element terminal I-structure_element regions I-structure_element of O N B-protein - I-protein WASP I-protein are O free O to O interact O with O G B-protein_type - I-protein_type actin I-protein_type and O a O known O nucleator O of O actin O assembly O , O the O Arp2 B-complex_assembly / I-complex_assembly 3 I-complex_assembly complex O . O The O structures B-evidence of O the O PRK1 B-protein HR1a B-structure_element domain O in O complex B-protein_state with I-protein_state RhoA B-protein and O the O HR1b B-structure_element domain O in O complex B-protein_state with I-protein_state Rac1 B-protein show O that O the O HR1 B-structure_element domain O comprises O an O anti B-structure_element - I-structure_element parallel I-structure_element coiled I-structure_element - I-structure_element coil I-structure_element that O interacts O with O its O G B-protein_type protein I-protein_type binding O partner O via O both O helices B-structure_element . O Both O of O the O G B-site protein I-site switch I-site regions I-site are O involved O in O the O interaction O . O The O coiled B-structure_element - I-structure_element coil I-structure_element fold I-structure_element is O shared O by O the O HR1 B-structure_element domain O of O the O TOCA B-protein_type family I-protein_type protein I-protein_type , O CIP4 B-protein , O and O , O based O on O sequence O homology O , O by O TOCA1 B-protein itself O . O How O different O HR1 B-structure_element domain O proteins O distinguish O their O specific O G B-protein_type protein I-protein_type partners O remains O only O partially O understood O , O and O structural O characterization O of O a O novel O G B-protein_type protein I-protein_type - O HR1 B-structure_element domain O interaction O would O add O to O the O growing O body O of O information O pertaining O to O these O protein O complexes O . O The O interactions O of O TOCA1 B-protein and O N B-protein - I-protein WASP I-protein with O Cdc42 B-protein as O well O as O with O each O other O have O raised O questions O as O to O whether O the O two O Cdc42 B-protein effectors O can O interact O with O a O single O molecule O of O Cdc42 B-protein simultaneously O . O We O also O present O data O pertaining O to O binding O of O the O TOCA B-protein_type HR1 B-structure_element domain O to O Cdc42 B-protein , O which O is O the O first O biophysical O description O of O an O HR1 B-structure_element domain O binding O this O particular O Rho B-protein_type family I-protein_type small I-protein_type G I-protein_type protein I-protein_type . O Finally O , O we O investigate O the O potential O ternary O complex O between O Cdc42 B-protein and O the O G B-site protein I-site - I-site binding I-site regions I-site of O TOCA1 B-protein and O N B-protein - I-protein WASP I-protein , O contributing O to O our O understanding O of O G B-protein_type protein I-protein_type - O effector O interactions O as O well O as O the O roles O of O Cdc42 B-protein , O N B-protein - I-protein WASP I-protein , O and O TOCA1 B-protein in O the O pathways O that O govern O actin O dynamics O . O TOCA1 B-protein was O identified O in O Xenopus B-taxonomy_domain extracts O as O a O protein O necessary O for O Cdc42 B-protein - O dependent O actin O assembly O and O was O shown O to O bind O to O Cdc42 B-complex_assembly · I-complex_assembly GTPγS I-complex_assembly but O not O to O Cdc42 B-complex_assembly · I-complex_assembly GDP I-complex_assembly or O to O Rac1 B-protein and O RhoA B-protein . O Given O its O homology O to O other O Rho B-site family I-site binding I-site modules I-site , O it O is O likely O that O the O HR1 B-structure_element domain O of O TOCA1 B-protein is O sufficient O to O bind O Cdc42 B-protein . O The O binding O of O TOCA1 B-protein HR1 B-structure_element to O Cdc42 B-protein was O unexpectedly O weak O , O with O a O Kd B-evidence of O > O 1 O μm O . O A O , O curves O derived O from O direct B-experimental_method binding I-experimental_method assays I-experimental_method in O which O the O indicated O concentrations O of O Cdc42Δ7Q61L B-complex_assembly ·[ I-complex_assembly 3H I-complex_assembly ] I-complex_assembly GTP I-complex_assembly were O incubated B-experimental_method with O 30 O nm O GST B-mutant - I-mutant PAK I-mutant or O HR1 B-mutant - I-mutant His6 I-mutant in O SPAs B-experimental_method . O The O data O were O fitted O to O a O binding B-evidence isotherm I-evidence to O give O an O apparent O Kd B-evidence and O are O expressed O as O a O percentage O of O the O maximum O signal O ; O B O and O C O , O competition B-experimental_method SPA I-experimental_method experiments O were O carried O out O with O the O indicated O concentrations O of O ACK B-protein GBD B-structure_element ( O B O ) O or O HR1 B-structure_element domain O ( O C O ) O titrated B-experimental_method into O 30 O nm O GST B-mutant - I-mutant ACK I-mutant and O either O 30 O nm O Cdc42Δ7Q61L B-complex_assembly ·[ I-complex_assembly 3H I-complex_assembly ] I-complex_assembly GTP I-complex_assembly or O full B-protein_state - I-protein_state length I-protein_state Cdc42Q61L B-complex_assembly ·[ I-complex_assembly 3H I-complex_assembly ] I-complex_assembly GTP I-complex_assembly . O Isothermal B-experimental_method titration I-experimental_method calorimetry I-experimental_method was O carried O out O , O but O no O heat O changes O were O observed O at O a O range O of O concentrations O and O temperatures O ( O data O not O shown O ), O suggesting O that O the O interaction O is O predominantly O entropically O driven O . O The O binding B-experimental_method experiments I-experimental_method were O repeated O with O full B-protein_state - I-protein_state length I-protein_state [ B-complex_assembly 3H I-complex_assembly ] I-complex_assembly GTP I-complex_assembly · I-complex_assembly Cdc42 I-complex_assembly , O but O the O affinity B-evidence of O the O HR1 B-structure_element domain O for O full B-protein_state - I-protein_state length I-protein_state Cdc42 B-protein was O similar O to O its O affinity B-evidence for O truncated B-protein_state Cdc42 B-protein ( O Kd B-evidence ≈ O 5 O μm O ; O Fig O . O 1C O ). O Full B-protein_state - I-protein_state length I-protein_state TOCA1 B-protein and O ΔSH3 B-mutant TOCA1 B-protein bound B-protein_state with O micromolar O affinity O ( O Fig O . O 2B O ), O in O a O similar O manner O to O the O isolated O HR1 B-structure_element domain O ( O Fig O . O 1A O ). O There O were O 1 O , O 845 O unambiguous O NOEs B-evidence and O 757 O ambiguous O NOEs B-evidence after O eight O iterations O . O a O < O SA O >, O the O average B-evidence root I-evidence mean I-evidence square I-evidence deviations I-evidence for O the O ensemble O ± O S O . O D O . O B O , O a O sequence B-experimental_method alignment I-experimental_method of O the O HR1 B-structure_element domains O from O TOCA1 B-protein , O CIP4 B-protein , O and O PRK1 B-protein . O A O series O of O 15N B-experimental_method HSQC I-experimental_method experiments O was O recorded O on O 15N B-chemical - O labeled B-protein_state TOCA1 B-protein HR1 B-structure_element domain O in O the O presence B-protein_state of I-protein_state increasing B-experimental_method concentrations I-experimental_method of O unlabeled B-protein_state Cdc42Δ7Q61L B-complex_assembly · I-complex_assembly GMPPNP I-complex_assembly to O map O the O Cdc42 B-site - I-site binding I-site surface I-site . O Residues O with O significantly O affected O backbone O or O side O chain O chemical O shifts O when O Cdc42 B-protein_state bound I-protein_state and O that O are O buried O are O colored O dark O blue O , O whereas O those O that O are O solvent B-protein_state - I-protein_state accessible I-protein_state are O colored O yellow O . O Therefore O , O 13C B-experimental_method HSQC I-experimental_method and O methyl B-experimental_method - I-experimental_method selective I-experimental_method SOFAST I-experimental_method - I-experimental_method HMQC I-experimental_method experiments O were O also O recorded O on O 15N B-chemical , O 13C B-chemical - O labeled B-protein_state TOCA1 B-protein HR1 B-structure_element to O yield O more O information O on O side O chain O involvement O . O As O was O the O case O when O labeled B-protein_state HR1 B-structure_element was O observed O , O several O peaks O were O shifted O in O the O complex O , O but O many O disappeared O , O indicating O exchange O on O an O unfavorable O , O millisecond O time O scale O ( O Fig O . O 5A O ). O B O , O CSPs B-experimental_method are O shown O for O backbone O NH O groups O . O C O , O the O residues O with O significantly O affected O backbone O and O side O chain O groups O are O highlighted O on O an O NMR B-experimental_method structure B-evidence of O free B-protein_state Cdc42Δ7Q61L B-complex_assembly · I-complex_assembly GMPPNP I-complex_assembly ; O those O that O are O buried O are O colored O dark O blue O , O whereas O those O that O are O solvent B-protein_state - I-protein_state accessible I-protein_state are O colored O red O . O Although O the O binding B-site interface I-site may O be O overestimated O , O this O suggests O that O the O switch B-site regions I-site are O involved O in O binding O to O TOCA1 B-protein . O HADDOCK B-experimental_method was O therefore O used O to O perform O rigid O body B-experimental_method docking I-experimental_method based O on O the O structures B-evidence of O free B-protein_state HR1 B-structure_element domain O and O Cdc42 B-protein and O ambiguous O interaction O restraints O derived O from O the O titration B-experimental_method experiments I-experimental_method described O above O . O The O cluster O with O the O lowest O root B-evidence mean I-evidence square I-evidence deviation I-evidence from O the O lowest O energy O structure B-evidence is O assumed O to O be O the O best O model O . O Residues O of O Cdc42 B-protein that O are O affected O in O the O presence B-protein_state of I-protein_state the O HR1 B-structure_element domain O but O are O not O in O close O proximity O to O it O are O colored O in O red O and O labeled O . O B O , O structure B-evidence of O Rac1 B-protein in B-protein_state complex I-protein_state with I-protein_state the O HR1b B-structure_element domain O of O PRK1 B-protein ( O PDB O code O 2RMK O ). O Cdc42 O is O shown O in O cyan O , O and O TOCA1 B-protein is O shown O in O purple O . O D O , O selected O regions O of O the O 15N B-experimental_method HSQC I-experimental_method of O 600 O μm O TOCA1 B-protein HR1 B-structure_element domain O in B-protein_state complex I-protein_state with I-protein_state Cdc42 B-protein in O the O absence B-protein_state and O presence B-protein_state of I-protein_state the O N B-protein - I-protein WASP I-protein GBD B-structure_element , O showing O displacement O of O Cdc42 B-protein from O the O HR1 B-structure_element domain O by O N B-protein - I-protein WASP I-protein . O The O Kd B-evidence that O was O determined O ( O 37 O nm O ) O is O consistent O with O the O previously O reported O affinity B-evidence . O A O comparison O of O the O HSQC B-experimental_method experiments O recorded O on O 15N B-chemical - O Cdc42 B-protein alone B-protein_state , O in O the O presence B-protein_state of I-protein_state TOCA1 B-protein HR1 B-structure_element , O N B-protein - I-protein WASP I-protein GBD B-structure_element , O or O both O , O shows O that O the O spectra B-evidence in O the O presence B-protein_state of I-protein_state N B-protein - I-protein WASP I-protein and O in O the O presence B-protein_state of I-protein_state both O N B-protein - I-protein WASP I-protein and O TOCA1 B-protein HR1 B-structure_element are O identical O ( O Fig O . O 7C O ). O These O assays O , O described O in O detail O elsewhere O , O were O carried O out O using O pyrene B-chemical actin I-chemical - O supplemented O Xenopus B-taxonomy_domain extracts O into O which O exogenous O TOCA1 B-protein HR1 B-structure_element domain O or O N B-protein - I-protein WASP I-protein GBD B-structure_element was O added O , O to O assess O their O effects O on O actin B-protein_type polymerization O . O The O corresponding O sequence O in O CIP4 B-protein also O includes O a O series O of O turns O but O is O flexible O , O whereas O in O the O HR1a B-structure_element domain O of O PRK1 B-protein , O the O equivalent O region O adopts O an O α B-structure_element - I-structure_element helical I-structure_element structure I-structure_element that O packs O against O the O coiled B-structure_element - I-structure_element coil I-structure_element . O The O lowest O energy O model B-evidence produced O by O HADDOCK B-experimental_method using O ambiguous O interaction O restraints O from O the O titration B-evidence data O resembled O the O NMR B-experimental_method structures B-evidence of O RhoA B-protein and O Rac1 B-protein in B-protein_state complex I-protein_state with I-protein_state their O HR1 B-structure_element domain O partners O . O For O example O , O Phe B-residue_name_number - I-residue_name_number 56Cdc42 I-residue_name_number , O which O is O not O visible O in O free B-protein_state Cdc42 B-protein or O Cdc42 B-complex_assembly · I-complex_assembly HR1TOCA1 I-complex_assembly , O is O close O to O the O TOCA1 B-protein HR1 B-structure_element ( O Fig O . O 6A O ). O Phe B-residue_name_number - I-residue_name_number 56Cdc42 I-residue_name_number is O therefore O likely O to O be O involved O in O the O Cdc42 B-protein - O TOCA1 B-protein interaction O , O probably O by O stabilizing O the O position O of O switch B-site I I-site . O Thr B-residue_name_number - I-residue_name_number 52Cdc42 I-residue_name_number , O which O has O also O been O identified O as O making O minor O contacts O with O ACK B-protein , O falls O near O the O side O chains O of O HR1TOCA1 B-structure_element helix B-structure_element 1 I-structure_element , O particularly O Lys B-residue_name_number - I-residue_name_number 372TOCA1 I-residue_name_number , O whereas O the O equivalent O position O in O Rac1 B-protein is O Asn B-residue_name_number - I-residue_name_number 52Rac1 I-residue_name_number . O In O contrast O , O the O best O estimate O of O the O affinity B-evidence of O full B-protein_state - I-protein_state length I-protein_state WASP B-protein_type for O Cdc42 B-protein is O low O micromolar O . O WIP B-protein inhibits O the O activation O of O N B-protein - I-protein WASP I-protein by O Cdc42 B-protein , O an O effect O that O is O reversed O by O TOCA1 B-protein . O It O has O been O postulated O that O the O initial O interactions O between O this O basic O region O and O Cdc42 B-protein could O stabilize O the O active B-protein_state conformation O of O WASP B-protein , O leading O to O high O affinity O binding O between O the O core O CRIB B-structure_element and O Cdc42 B-protein . O We O envisage O a O complex O interplay O of O equilibria O between O free B-protein_state and O bound B-protein_state , O active B-protein_state and O inactive B-protein_state Cdc42 B-protein , O TOCA B-protein_type family I-protein_type , O and O WASP B-protein_type family O proteins O , O facilitating O a O tightly O spatially O and O temporally O regulated O pathway O requiring O numerous O simultaneous O events O in O order O to O achieve O appropriate O and O robust O activation O of O the O downstream O pathway O . O It O is O clear O from O the O data O presented O here O that O TOCA1 B-protein and O N B-protein - I-protein WASP I-protein do O not O bind O Cdc42 B-protein simultaneously O and O that O N B-protein - I-protein WASP I-protein is O likely O to O outcompete O TOCA1 B-protein for O Cdc42 B-protein binding O . O Furthermore O , O elevated O ACC B-protein_type activity O is O observed O in O malignant O tumours O . O The O principal O functional O protein O components O of O ACCs B-protein_type have O been O described O already O in O the O late O 1960s O for O Escherichia B-species coli I-species ( O E B-species . I-species coli I-species ) O ACC B-protein_type : O Biotin B-protein_type carboxylase I-protein_type ( O BC B-protein_type ) O catalyses O the O ATP B-chemical - O dependent O carboxylation O of O a O biotin B-chemical moiety O , O which O is O covalently O linked O to O the O biotin B-protein_type carboxyl I-protein_type carrier I-protein_type protein I-protein_type ( O BCCP B-protein_type ). O Human B-species ACC1 B-protein is O further O regulated O by O specific O phosphorylation B-ptm - O dependent O binding O of O BRCA1 B-protein to O Ser1263 B-residue_name_number in O the O CD B-structure_element . O Furthermore O , O phosphorylation B-ptm by O AMP B-protein - I-protein activated I-protein protein I-protein kinase I-protein ( O AMPK B-protein ) O and O cAMP B-protein - I-protein dependent I-protein protein I-protein kinase I-protein ( O PKA B-protein ) O leads O to O a O decrease O in O ACC1 B-protein activity O . O The O regulatory O Ser1201 B-residue_name_number shows O only O moderate B-protein_state conservation I-protein_state across O higher B-taxonomy_domain eukaryotes I-taxonomy_domain , O while O the O phosphorylated B-protein_state Ser1216 B-residue_name_number is O highly B-protein_state conserved I-protein_state across O all O eukaryotes B-taxonomy_domain . O In O yeast B-taxonomy_domain ACC B-protein_type , O phosphorylation B-site sites I-site have O been O identified O at O Ser2 B-residue_name_number , O Ser735 B-residue_name_number , O Ser1148 B-residue_name_number , O Ser1157 B-residue_name_number and O Ser1162 B-residue_name_number ( O ref O .). O SceCD B-species comprises O four O distinct O domains O , O an O N O - O terminal O α B-structure_element - I-structure_element helical I-structure_element domain I-structure_element ( O CDN B-structure_element ), O and O a O central O four B-structure_element - I-structure_element helix I-structure_element bundle I-structure_element linker I-structure_element domain I-structure_element ( O CDL B-structure_element ), O followed O by O two O α B-structure_element – I-structure_element β I-structure_element - I-structure_element fold I-structure_element C I-structure_element - I-structure_element terminal I-structure_element domains I-structure_element ( O CDC1 B-structure_element / O CDC2 B-structure_element ). O In O insect B-experimental_method - I-experimental_method cell I-experimental_method - I-experimental_method expressed I-experimental_method full B-protein_state - I-protein_state length I-protein_state SceACC B-protein , O the O highly B-protein_state conserved I-protein_state Ser1157 B-residue_name_number is O the O only O fully B-protein_state occupied I-protein_state phosphorylation B-site site I-site with O functional O relevance O in O S B-species . I-species cerevisiae I-species . O Additional O phosphorylation B-ptm was O detected O for O Ser2101 B-residue_name_number and O Tyr2179 B-residue_name_number ; O however O , O these O sites O are O neither B-protein_state conserved I-protein_state across O fungal B-taxonomy_domain ACC B-protein_type nor B-protein_state natively I-protein_state phosphorylated I-protein_state in O yeast B-taxonomy_domain . O Already O the O binding O of O phosphorylated B-protein_state Ser1157 B-residue_name_number apparently O stabilizes O the O regulatory B-structure_element loop I-structure_element conformation O ; O the O accessory O phosphorylation B-site sites I-site Ser1148 B-residue_name_number and O Ser1162 B-residue_name_number in O the O same B-structure_element loop I-structure_element may O further O modulate O the O strength O of O interaction O between O the O regulatory B-structure_element loop I-structure_element and O the O CDC1 B-structure_element and O CDC2 B-structure_element domains O . O The O variable O CD B-structure_element is O conserved B-protein_state between O yeast B-taxonomy_domain and O human B-species To O compare O the O organization O of O fungal B-taxonomy_domain and O human B-species ACC B-protein_type CD B-structure_element , O we O determined B-experimental_method the I-experimental_method structure I-experimental_method of O a O human B-species ACC1 B-mutant fragment I-mutant that O comprises O the O BT B-structure_element and O CD B-structure_element domains O ( O HsaBT B-mutant - I-mutant CD I-mutant ), O but O lacks B-protein_state the O mobile O BCCP B-structure_element in O between O ( O Fig O . O 1a O ). O Besides O the O regulatory B-structure_element loop I-structure_element , O also O the O phosphopeptide B-site target I-site region I-site for O BRCA1 B-protein interaction O is O not O resolved O presumably O because O of O pronounced O flexibility O . O The O neighbouring O loop B-structure_element on O the O CT B-structure_element side O ( O between O CT B-structure_element β1 B-structure_element / O β2 B-structure_element ) O is O displaced O by O 2 O . O 5 O Å O compared O to O isolated B-protein_state CT B-structure_element structures B-evidence ( O Supplementary O Fig O . O 3c O ). O The O interface B-site between O CDC2 B-structure_element and O CDL B-structure_element / O CDC1 B-structure_element , O which O is O mediated O by O the O phosphorylated B-protein_state regulatory B-structure_element loop I-structure_element in O the O SceCD B-species structure B-evidence , O is O less O variable O than O the O CD B-structure_element – I-structure_element CT I-structure_element junction I-structure_element , O and O permits O only O limited O rotation O and O tilting O ( O Fig O . O 3b O ). O The O BC B-structure_element domain O is O not O completely O disordered O , O but O laterally O attached O to O BT B-structure_element / O CDN B-structure_element in O a O generally B-protein_state conserved I-protein_state position I-protein_state , O albeit O with O increased O flexibility O . O The O most O relevant O candidate O site O for O mediating O such O additional O flexibility O and O permitting O an O extended O set O of O conformations O is O the O CDC1 B-site / I-site CDC2 I-site interface I-site , O which O is O rigidified O by O the O Ser1157 B-residue_name_number - O phosphorylated B-protein_state regulatory B-structure_element loop I-structure_element , O as O depicted O in O the O SceCD B-species crystal B-evidence structure I-evidence . O In O flACC B-mutant , O the O ACC B-protein_type dimer B-oligomeric_state obeys O twofold O symmetry O and O assembles O in O a O triangular B-protein_state architecture I-protein_state with O dimeric B-oligomeric_state BC B-structure_element domains O ( O Supplementary O Fig O . O 5a O ). O On O the O basis O of O a O superposition B-experimental_method of O CDC2 B-structure_element , O CDC1 B-structure_element of O the O phosphorylated B-protein_state SceCD B-species is O rotated O by O 30 O ° O relative O to O CDC1 B-structure_element of O the O non B-protein_state - I-protein_state phosphorylated I-protein_state flACC B-mutant ( O Supplementary O Fig O . O 5d O ), O similar O to O what O we O have O observed O for O the O non B-protein_state - I-protein_state phosphorylated I-protein_state HsaBT B-mutant - I-mutant CD I-mutant ( O Supplementary O Fig O . O 1d O ). O When O inspecting B-experimental_method all O individual O protomer B-oligomeric_state and O fragment B-mutant structures B-evidence in O their O study O , O Wei O and O Tong O also O identify O the O CDN B-structure_element / I-structure_element CDC1 I-structure_element connection I-structure_element as O a O highly B-protein_state flexible I-protein_state hinge B-structure_element , O in O agreement O with O our O observations O . O The O only O bona O fide O regulatory B-protein_state phophorylation B-site site I-site of O fungal B-taxonomy_domain ACC B-protein_type in O the O regulatory B-structure_element loop I-structure_element is O directly O participating O in O CDC1 B-structure_element / O CDC2 B-structure_element domain O interactions O and O thus O stabilizes O the O hinge B-structure_element conformation I-structure_element . O The O phosphorylated B-protein_state regulatory B-structure_element loop I-structure_element binds O to O an O allosteric B-site site I-site at O the O interface B-site of O two O non B-protein_state - I-protein_state catalytic I-protein_state domains O and O restricts O conformational O freedom O at O several O hinges B-structure_element in O the O dynamic B-protein_state ACC B-protein_type . O However O , O the O example O of O ACC B-protein_type now O demonstrates O the O possibility O of O regulating O activity O by O controlled O dynamics O of O non B-structure_element - I-structure_element enzymatic I-structure_element linker I-structure_element regions I-structure_element also O in O other O families O of O carrier B-protein_type - I-protein_type dependent I-protein_type multienzymes I-protein_type . O CDN B-structure_element is O linked O by O a O four B-structure_element - I-structure_element helix I-structure_element bundle I-structure_element ( O CDL B-structure_element ) O to O two B-structure_element α I-structure_element – I-structure_element β I-structure_element - I-structure_element fold I-structure_element domains I-structure_element ( O CDC1 B-structure_element and O CDC2 B-structure_element ). O ( O e O ) O Structural O overview O of O HsaBT B-mutant - I-mutant CD I-mutant . O ( O a O – O c O ) O Large O - O scale O conformational O variability O of O the O CDN B-structure_element domain O relative O to O the O CDL B-structure_element / O CDC1 B-structure_element domain O . O Domains O other O than O CDN B-structure_element and O CDL B-structure_element / O CDC1 B-structure_element are O omitted O for O clarity O . O Structural O insights O into O the O Escherichia B-species coli I-species lysine B-protein_type decarboxylases I-protein_type and O molecular O determinants O of O interaction O with O the O AAA B-protein_type + I-protein_type ATPase I-protein_type RavA B-protein Previously O , O we O proposed O a O pseudoatomic B-evidence model I-evidence of O the O LdcI B-complex_assembly - I-complex_assembly RavA I-complex_assembly cage O based O on O its O cryo B-experimental_method - I-experimental_method electron I-experimental_method microscopy I-experimental_method map B-evidence and O crystal B-evidence structures I-evidence of O an O inactive B-protein_state LdcI B-protein decamer B-oligomeric_state and O a O RavA B-protein monomer B-oligomeric_state . O Enterobacterial B-taxonomy_domain inducible B-protein_state decarboxylases B-protein_type of O basic B-protein_state amino B-chemical acids I-chemical lysine B-residue_name , O arginine B-residue_name and O ornithine B-residue_name have O a O common O evolutionary O origin O and O belong O to O the O α B-protein_type - I-protein_type family I-protein_type of O pyridoxal B-chemical - I-chemical 5 I-chemical ′- I-chemical phosphate I-chemical ( O PLP B-chemical )- O dependent O enzymes O . O Inducible B-protein_state enterobacterial B-taxonomy_domain amino B-protein_type acid I-protein_type decarboxylases I-protein_type have O been O intensively O studied O since O the O early O 1940 O because O the O ability O of O bacteria B-taxonomy_domain to O withstand O acid O stress O can O be O linked O to O their O pathogenicity O in O humans B-species . O Each O monomer B-oligomeric_state is O composed O of O three O domains O – O an O N O - O terminal O wing B-structure_element domain I-structure_element ( O residues O 1 B-residue_range – I-residue_range 129 I-residue_range ), O a O PLP B-structure_element - I-structure_element binding I-structure_element core I-structure_element domain I-structure_element ( O residues O 130 B-residue_range – I-residue_range 563 I-residue_range ), O and O a O C B-structure_element - I-structure_element terminal I-structure_element domain I-structure_element ( O CTD B-structure_element , O residues O 564 B-residue_range – I-residue_range 715 I-residue_range ). O Monomers B-oligomeric_state tightly O associate O via O their O core B-structure_element domains I-structure_element into O 2 B-protein_state - I-protein_state fold I-protein_state symmetrical I-protein_state dimers B-oligomeric_state with O two O complete O active B-site sites I-site , O and O further O build O a O toroidal B-structure_element D5 I-structure_element - I-structure_element symmetrical I-structure_element structure I-structure_element held O by O the O wing B-structure_element and O core B-structure_element domain I-structure_element interactions O around O the O central B-structure_element pore I-structure_element , O with O the O CTDs B-structure_element at O the O periphery O . O Furthermore O , O we O recently O solved B-experimental_method the I-experimental_method structure I-experimental_method of O the O E B-species . I-species coli I-species LdcI B-complex_assembly - I-complex_assembly RavA I-complex_assembly complex O by O cryo B-experimental_method - I-experimental_method electron I-experimental_method microscopy I-experimental_method ( O cryoEM B-experimental_method ) O and O combined O it O with O the O crystal B-evidence structures I-evidence of O the O individual O proteins O . O To O solve O this O discrepancy O , O in O the O present O work O we O provided O a O three O - O dimensional O ( O 3D O ) O cryoEM B-experimental_method reconstruction B-evidence of O LdcC B-protein and O compared O it O with O the O available O LdcI B-protein and O LdcI B-complex_assembly - I-complex_assembly RavA I-complex_assembly structures B-evidence . O Given O that O the O LdcI B-protein crystal B-evidence structures I-evidence were O obtained O at O high B-protein_state pH I-protein_state where O the O enzyme O is O inactive B-protein_state ( O LdcIi B-protein , O pH B-protein_state 8 I-protein_state . I-protein_state 5 I-protein_state ), O whereas O the O cryoEM B-experimental_method reconstructions B-evidence of O LdcI B-complex_assembly - I-complex_assembly RavA I-complex_assembly and O LdcI B-complex_assembly - I-complex_assembly LARA I-complex_assembly were O done O at O acidic B-protein_state pH I-protein_state optimal I-protein_state for O the O enzymatic O activity O , O for O a O meaningful O comparison O , O we O also O produced O a O 3D B-evidence reconstruction I-evidence of O the O LdcI B-protein at O active B-protein_state pH I-protein_state ( O LdcIa B-protein , O pH B-protein_state 6 I-protein_state . I-protein_state 2 I-protein_state ). O As O common O for O the O α B-protein_type family I-protein_type of O the O PLP B-protein_type - I-protein_type dependent I-protein_type decarboxylases I-protein_type , O dimerization O is O required O for O the O enzymatic O activity O because O the O active B-site site I-site is O buried O in O the O dimer B-site interface I-site ( O Fig O . O 3A O , O B O ). O In O addition O , O our O earlier O biochemical B-experimental_method observation I-experimental_method that O the O enzymatic O activity O of O LdcIa B-protein is O unaffected O by O RavA B-protein binding O is O consistent O with O the O relatively O small O changes O undergone O by O the O active B-site site I-site upon O transition O from O LdcIa B-protein to O LdcI B-complex_assembly - I-complex_assembly LARA I-complex_assembly . O Second O , O the O phylogenetic B-experimental_method analysis I-experimental_method clearly O split O the O lysine B-protein_type decarboxylases I-protein_type into O two O groups O ( O Fig O . O 6A O ). O Inspection O of O these O consensus B-evidence sequences I-evidence revealed O important O differences O between O the O groups O regarding O charge O , O size O and O hydrophobicity O of O several O residues O precisely O at O the O level O of O the O C O - O terminal O β B-structure_element - I-structure_element sheet I-structure_element that O is O responsible O for O the O interaction O with O RavA B-protein ( O Fig O . O 6B O – O D O ). O For O example O , O in O our O previous O study O , O site B-experimental_method - I-experimental_method directed I-experimental_method mutations I-experimental_method identified O Y697 B-residue_name_number as O critically O required O for O the O RavA B-protein binding O . O Our O current O analysis O shows O that O Y697 B-residue_name_number is O strictly B-protein_state conserved I-protein_state in O the O “ O LdcI B-protein_type - I-protein_type like I-protein_type ” O group O whereas O the O “ O LdcC B-protein_type - I-protein_type like I-protein_type ” O enzymes O always B-protein_state have I-protein_state a O lysine B-residue_name in O this O position O ; O it O also O uncovers O several O other O residues O potentially O essential O for O the O interaction O with O RavA B-protein which O can O now O be O addressed O by O site B-experimental_method - I-experimental_method directed I-experimental_method mutagenesis I-experimental_method . O Superposition B-experimental_method of O the O pseudoatomic B-evidence models I-evidence of O LdcC B-protein , O LdcI B-protein from O LdcI B-complex_assembly - I-complex_assembly LARA I-complex_assembly and O LdcIa B-protein colored O as O in O Fig O . O 1 O , O and O the O crystal B-evidence structure I-evidence of O LdcIi B-protein in O shades O of O yellow O . O ( O B O ) O The O LdcIi B-protein dimer B-oligomeric_state extracted O from O the O crystal B-evidence structure I-evidence of O the O decamer B-oligomeric_state . O ( O A O ) O A O slice O through O the O pseudoatomic B-evidence models I-evidence of O the O LdcIa B-protein ( O purple O ) O and O LdcC B-protein ( O green O ) O monomers B-oligomeric_state extracted O from O the O superimposed B-experimental_method decamers B-oligomeric_state ( O Fig O . O 2 O ). O ( O B O ) O The O C O - O terminal O β B-structure_element - I-structure_element sheet I-structure_element in O LdcIa B-protein and O LdcC B-protein enlarged O from O ( O A O , O C O ) O Exchanged O primary O sequences O ( O capital O letters O ) O and O their O immediate O vicinity O ( O lower O case O letters O ) O colored O as O in O ( O A O , O B O ), O with O the O corresponding O secondary O structure O elements O and O the O amino O acid O numbering O shown O . O Sequence B-experimental_method alignment I-experimental_method suggests O that O both O kinases B-protein_type belong O to O the O ribulokinase B-protein_type - I-protein_type like I-protein_type carbohydrate I-protein_type kinases I-protein_type , O a O sub O - O family O of O FGGY B-protein_type family I-protein_type carbohydrate I-protein_type kinases I-protein_type . O In O addition O , O our O enzymatic B-experimental_method assays I-experimental_method suggested O that O SePSK B-protein has O the O capability O to O phosphorylate O D B-chemical - I-chemical ribulose I-chemical . O These O kinases B-protein_type exhibit O considerable O differences O in O their O folding O pattern O and O substrate O specificity O . O Domain B-structure_element I I-structure_element exhibits O a O ribonuclease B-structure_element H I-structure_element - I-structure_element like I-structure_element folding I-structure_element pattern I-structure_element , O and O is O responsible O for O the O substrate O binding O , O while O domain B-structure_element II I-structure_element possesses O an O actin B-structure_element - I-structure_element like I-structure_element ATPase I-structure_element domain I-structure_element that O binds O cofactor O ATP B-chemical . O 2 B-residue_range – I-residue_range 228 I-residue_range and O aa O . O Domain B-structure_element II I-structure_element is O comprised O of O aa O . O 229 B-residue_range – I-residue_range 401 I-residue_range and O classified O into O B2 B-structure_element ( O β31 B-structure_element / O β29 B-structure_element / O β22 B-structure_element / O β23 B-structure_element / O β25 B-structure_element / O β24 B-structure_element ) O and O A3 B-structure_element ( O α26 B-structure_element / O α27 B-structure_element / O α28 B-structure_element / O α30 B-structure_element ) O ( O Fig O 1A O and O S1 O Fig O ). O ( O A O ) O Three O - O dimensional O structure B-evidence of O apo B-protein_state - O SePSK B-protein . O ( O B O ) O Three O - O dimensional O structure B-evidence of O apo B-protein_state - O AtXK B-protein - I-protein 1 I-protein . O In O order O to O understand O the O function O of O these O two O kinases O , O we O performed O structural B-experimental_method comparison I-experimental_method using O Dali B-experimental_method server I-experimental_method . O Both O SePSK B-protein and O AtXK B-protein - I-protein 1 I-protein showed O ATP B-chemical hydrolysis O activity O in O the O absence B-protein_state of I-protein_state substrate O . O This O result O was O consistent O with O our O enzymatic B-experimental_method activity I-experimental_method assays I-experimental_method where O SePSK B-protein and O AtXK B-protein - I-protein 1 I-protein showed O ATP B-chemical hydrolysis O activity O without O adding O any O substrates O ( O Fig O 2A O and O 2C O ). O ( O A O ) O The O electron B-evidence density I-evidence of O AMP B-chemical - I-chemical PNP I-chemical . O To O better O understand O the O interaction O pattern O between O SePSK B-protein and O D B-chemical - I-chemical ribulose I-chemical , O the O apo B-protein_state - O SePSK B-protein crystals B-experimental_method were I-experimental_method soaked I-experimental_method into I-experimental_method the O reservoir B-experimental_method with O 10 O mM O D B-chemical - I-chemical ribulose I-chemical ( O RBL B-chemical ) O and O the O RBL B-complex_assembly - I-complex_assembly SePSK I-complex_assembly structure B-evidence was O solved B-experimental_method . O As O shown O in O Fig O 4A O , O the O nearest O distance O between O the O carbon O skeleton O of O two O D B-chemical - I-chemical ribulose I-chemical molecules O are O approx O . O Furthermore O , O the O O2 O of O RBL1 B-residue_name_number interacts O with O the O main O chain O amide O nitrogen O of O Ser72 B-residue_name_number ( O Fig O 4B O ). O ( O A O ) O The O electrostatic B-evidence potential I-evidence surface I-evidence map I-evidence of O RBL B-complex_assembly - I-complex_assembly SePSK I-complex_assembly and O a O zoom O - O in O view O of O RBL B-site binding I-site site I-site . O The O RBL B-chemical molecules O ( O carbon O atoms O colored O yellow O ) O and O amino O acid O residues O of O SePSK B-protein ( O carbon O atoms O colored O green O ) O involved O in O RBL B-chemical interaction O are O shown O as O sticks O . O Structural B-experimental_method comparison I-experimental_method of O SePSK B-protein and O AtXK B-protein - I-protein 1 I-protein showed O that O while O the O RBL1 B-site binding I-site pocket I-site is O conserved B-protein_state , O the O RBL2 B-site pocket I-site is O disrupted O in O AtXK B-protein - I-protein 1 I-protein structure B-evidence , O despite O the O fact O that O the O residues O interacting O with O RBL2 B-residue_name_number are O highly B-protein_state conserved I-protein_state between O the O two O proteins O . O To O further O verified O this O result O , O we O measured O the O binding B-evidence affinity I-evidence for O D B-chemical - I-chemical ribulose I-chemical of O both O wild B-protein_state type I-protein_state ( O WT B-protein_state ) O and O D8A B-mutant mutant B-protein_state of O SePSK B-protein using O a O surface B-experimental_method plasmon I-experimental_method resonance I-experimental_method method I-experimental_method . O Dissociation B-evidence rate I-evidence constant I-evidence ( O Kd B-evidence ) O of O wild B-protein_state type I-protein_state and O D8A B-mutant - O SePSK B-protein are O 3 O ms O - O 1 O and O 9 O ms O - O 1 O , O respectively O . O Simulated O conformational O change O of O SePSK B-protein during O the O catalytic O process O . O The O crystal B-evidence structure I-evidence of O phosphorylation B-protein_state - I-protein_state mimicking I-protein_state Mep2 B-mutant variants I-mutant from O C B-species . I-species albicans I-species show O large O conformational O changes O in O a O conserved B-protein_state and O functionally O important O region O of O the O CTR B-structure_element . O Mep2 B-protein_type proteins I-protein_type are O tightly O regulated O fungal B-taxonomy_domain ammonium B-protein_type transporters I-protein_type . O While O most O studies O have O focused O on O the O Saccharomyces B-species cerevisiae I-species transceptors B-protein_type for O phosphate B-chemical ( O Pho84 B-protein ), O amino B-chemical acids I-chemical ( O Gap1 B-protein ) O and O ammonium B-chemical ( O Mep2 B-protein ), O transceptors B-protein_type are O found O in O higher B-taxonomy_domain eukaryotes I-taxonomy_domain as O well O ( O for O example O , O the O mammalian B-taxonomy_domain SNAT2 B-protein amino B-protein_type - I-protein_type acid I-protein_type transporter I-protein_type and O the O GLUT2 B-protein glucose B-protein_type transporter I-protein_type ). O With O the O exception O of O the O human B-species RhCG B-protein structure B-evidence , O no O structural O information O is O available O for O eukaryotic B-taxonomy_domain ammonium B-protein_type transporters I-protein_type . O Ammonium B-chemical transport O is O tightly O regulated O . O In O bacteria B-taxonomy_domain , O amt B-gene genes O are O present O in O an O operon O with O glnK B-gene , O encoding O a O PII B-protein_type - I-protein_type like I-protein_type signal I-protein_type transduction I-protein_type class I-protein_type protein I-protein_type . O In O plants B-taxonomy_domain , O transporter B-protein_type phosphorylation B-ptm and O dephosphorylation B-ptm are O known O to O regulate O activity O . O In O S B-species . I-species cerevisiae I-species , O phosphorylation B-ptm of O Ser457 B-residue_name_number within O the O C B-structure_element - I-structure_element terminal I-structure_element region I-structure_element ( O CTR B-structure_element ) O in O the O cytoplasm O was O recently O proposed O to O cause O Mep2 B-protein_type opening O , O possibly O via O inducing O a O conformational O change O . O The O most O striking O difference O is O the O fact O that O the O Mep2 B-protein_type proteins I-protein_type have O closed B-protein_state conformations O . O Electron B-evidence density I-evidence is O visible O for O the O entire O polypeptide O chains O , O with O the O exception O of O the O C O - O terminal O 43 B-residue_range ( O ScMep2 B-protein ) O and O 25 B-residue_range residues O ( O CaMep2 B-protein ), O which O are O poorly B-protein_state conserved I-protein_state and O presumably O disordered B-protein_state . O Together O with O additional O , O smaller O differences O in O other O extracellular B-structure_element loops I-structure_element , O these O changes O generate O a O distinct O vestibule B-structure_element leading O to O the O ammonium B-site binding I-site site I-site that O is O much O more O pronounced O than O in O the O bacterial B-taxonomy_domain proteins O . O The O largest O backbone O movements O of O equivalent O residues O within O ICL1 B-structure_element are O ∼ O 10 O Å O , O markedly O affecting O the O conserved B-protein_state basic B-protein_state RxK B-structure_element motif I-structure_element ( O Fig O . O 4 O ). O The O head O group O of O Arg54 B-residue_name_number has O moved O ∼ O 11 O Å O relative O to O that O in O Amt B-protein - I-protein 1 I-protein , O whereas O the O shift O of O the O head O group O of O the O variable O Lys55 B-residue_name_number residue O is O almost O 20 O Å O . O The O side O chain O of O Lys56 B-residue_name_number in O the O basic B-protein_state motif B-structure_element points O in O an O opposite O direction O in O the O Mep2 B-protein structures B-evidence compared O with O that O of O , O for O example O , O Amt B-protein - I-protein 1 I-protein ( O Fig O . O 4 O ). O Compared O with O ICL1 B-structure_element , O the O backbone O conformational O changes O observed O for O the O neighbouring O ICL2 B-structure_element are O smaller O , O but O large O shifts O are O nevertheless O observed O for O the O conserved B-protein_state residues O Glu140 B-residue_name_number and O Arg141 B-residue_name_number ( O Fig O . O 4 O ). O The O closed B-protein_state state O of O the O channel B-site might O also O explain O why O no B-evidence density I-evidence , O which O could O correspond O to O ammonium B-chemical ( O or O water B-chemical ), O is O observed O in O the O hydrophobic O part O of O the O Mep2 B-protein channel B-site close O to O the O twin B-structure_element - I-structure_element His I-structure_element motif I-structure_element . O The O final O region O in O Mep2 B-protein that O shows O large O differences O compared O with O the O bacterial B-taxonomy_domain transporters B-protein_type is O the O CTR B-structure_element . O In O Mep2 B-protein , O the O CTR B-structure_element has O moved O away O and O makes O relatively O few O contacts O with O the O main B-structure_element body I-structure_element of O the O transporter B-protein_type , O generating O a O more O elongated B-protein_state protein O ( O Figs O 1 O and O 4 O ). O This O is O illustrated O by O the O positions O of O the O five O universally B-protein_state conserved I-protein_state residues O within O the O CTR B-structure_element , O that O is O , O Arg415 B-residue_name_number ( O 370 B-residue_number ), O Glu421 B-residue_name_number ( O 376 B-residue_number ), O Gly424 B-residue_name_number ( O 379 B-residue_number ), O Asp426 B-residue_name_number ( O 381 B-residue_number ) O and O Tyr B-residue_name_number 435 I-residue_name_number ( O 390 B-residue_number ) O in O CaMep2 B-protein ( O Amt B-protein - I-protein 1 I-protein ) O ( O Fig O . O 2 O ). O On O one O side O , O the O Tyr390 B-residue_name_number hydroxyl O in O Amt B-protein - I-protein 1 I-protein is O hydrogen O bonded O with O the O side O chain O of O the O conserved B-protein_state His185 B-residue_name_number at O the O C O - O terminal O end O of O loop B-structure_element ICL3 B-structure_element . O In O the O Mep2 B-protein structures B-evidence , O none O of O the O interactions O mentioned O above O are O present O . O In O the O absence B-protein_state of I-protein_state Npr1 B-protein , O plasmid B-experimental_method - I-experimental_method encoded I-experimental_method WT B-protein_state Mep2 B-protein in O a O S B-species . I-species cerevisiae I-species mep1 B-mutant - I-mutant 3Δ I-mutant strain O ( O triple B-mutant mepΔ I-mutant ) O does O not O allow O growth O on O low O concentrations O of O ammonium B-chemical , O suggesting O that O the O transporter B-protein_type is O inactive B-protein_state ( O Fig O . O 3 O and O Supplementary O Fig O . O 1 O ). O Conversely O , O the O phosphorylation B-protein_state - I-protein_state mimicking I-protein_state S457D B-mutant variant O is O active B-protein_state both O in O the O triple B-mutant mepΔ I-mutant background O and O in O a O triple B-mutant mepΔ I-mutant npr1Δ I-mutant strain O ( O Fig O . O 3 O ). O Mutation B-experimental_method of O other O potential O phosphorylation B-site sites I-site in O the O CTR B-structure_element did O not O support O growth O in O the O npr1Δ B-mutant background O . O In O CaMep2 B-protein , O the O visible O part O of O the O sequence O extends O for O two O residues O beyond O Ser453 B-residue_name_number ( O Fig O . O 6 O ). O Boeckstaens O et O al O . O proposed O that O phosphorylation B-ptm does O not O affect O channel O activity O directly O , O but O instead O relieves O inhibition O by O the O AI B-structure_element region I-structure_element . O The O first O one O is O that O the O open B-protein_state state O is O disfavoured O by O crystallization B-experimental_method because O of O lower O stability O or O due O to O crystal O packing O constraints O . O The O side O - O chain O hydroxyl O of O Ser457 B-residue_name_number / O 453 B-residue_number is O located O in O a O well O - O defined O electronegative B-site pocket I-site that O is O solvent B-protein_state accessible I-protein_state ( O Fig O . O 6 O ). O In O the O WT B-protein_state structure B-evidence , O the O acidic O residues O Asp419 B-residue_name_number , O Glu420 B-residue_name_number and O Glu421 B-residue_name_number are O within O hydrogen O bonding O distance O of O Ser453 B-residue_name_number . O Finally O , O the O S453J B-mutant mutant B-protein_state is O also O stable B-protein_state throughout O the O 200 O - O ns O simulation B-experimental_method and O has O an O average O backbone O deviation O of O ∼ O 3 O . O 8 O Å O , O which O is O similar O to O the O DD B-mutant mutant I-mutant . O The O distance B-evidence between O the O phosphate B-chemical of O Sep453 B-residue_name_number and O the O acidic O oxygen O atoms O of O Glu420 B-residue_name_number is O initially O ∼ O 11 O Å O , O but O increases O to O > O 30 O Å O after O 200 O ns O . O These O efforts O have O advanced O our O knowledge O considerably O but O have O not O yet O yielded O atomic O - O level O answers O to O several O important O mechanistic O questions O , O including O how O ammonium B-chemical transport O is O regulated O in O eukaryotes B-taxonomy_domain and O the O mechanism O of O ammonium B-chemical signalling O . O In O Arabidopsis B-species thaliana I-species Amt B-protein - I-protein 1 I-protein ; I-protein 1 I-protein , O phosphorylation B-ptm of O the O CTR B-structure_element residue O T460 B-residue_name_number under O conditions O of O high O ammonium B-chemical inhibits O transport O activity O , O that O is O , O the O default O ( O non B-protein_state - I-protein_state phosphorylated I-protein_state ) O state O of O the O plant B-taxonomy_domain transporter B-protein_type is O open B-protein_state . O Interestingly O , O phosphomimetic B-mutant mutations I-mutant introduced O into O one O monomer B-oligomeric_state inactivate O the O entire O trimer B-oligomeric_state , O indicating O that O ( O i O ) O heterotrimerization O occurs O and O ( O ii O ) O the O CTR B-structure_element mediates O allosteric O regulation O of O ammonium B-chemical transport O activity O via O phosphorylation B-ptm . O More O specifically O , O the O close O interactions O between O the O CTR B-structure_element and O ICL1 B-structure_element / O ICL3 B-structure_element present O in O open B-protein_state transporters B-protein_type are O disrupted O , O causing O ICL3 B-structure_element to O move O outwards O and O block O the O channel B-site ( O Figs O 4 O and O 9a O ). O How O exactly O the O channel B-site opens O and O whether O opening O is O intra O - O monomeric O are O still O open B-protein_state questions O ; O it O is O possible O that O the O change O in O the O CTR B-structure_element may O disrupt O its O interactions O with O ICL3 B-structure_element of O the O neighbouring O monomer B-oligomeric_state ( O Fig O . O 9b O ), O which O could O result O in O opening O of O the O neighbouring O channel B-site via O inward O movement O of O its O ICL3 B-structure_element . O Is O our O model O for O opening O and O closing O of O Mep2 B-protein channels B-site valid O for O other O eukaryotic B-taxonomy_domain ammonium B-protein_type transporters I-protein_type ? O Our O structural B-evidence data I-evidence support O previous O studies O and O clarify O the O central O role O of O the O CTR B-structure_element and O cytoplasmic B-structure_element loops I-structure_element in O the O transition O between O closed B-protein_state and O open B-protein_state states O . O There O is O generally O no O equivalent O for O CaMep2 B-protein Tyr49 B-residue_name_number in O plant B-taxonomy_domain AMTs B-protein_type , O indicating O that O a O Tyr B-site – I-site His2 I-site hydrogen I-site bond I-site as O observed O in O Mep2 B-protein may O not O contribute O to O the O closed B-protein_state state O in O plant B-taxonomy_domain transporters B-protein_type . O The O need O to O regulate O in O opposite O ways O may O be O the O reason O why O the O phosphorylation B-site sites I-site are O in O different O parts O of O the O CTR B-structure_element , O that O is O , O centrally O located O close O to O the O ExxGxD B-structure_element motif I-structure_element in O AMTs B-protein_type and O peripherally O in O Mep2 B-protein . O With O respect O to O ammonium B-chemical transport O , O phosphorylation B-ptm has O thus O far O only O been O shown O for O A B-species . I-species thaliana I-species AMTs B-protein_type and O for O S B-species . I-species cerevisiae I-species Mep2 B-protein ( O refs O ). O In O one O model O , O signalling O is O proposed O to O depend O on O the O nature O of O the O transported O substrate O , O which O might O be O different O in O certain O subfamilies O of O ammonium B-protein_type transporters I-protein_type ( O for O example O , O Mep1 B-protein / O Mep3 B-protein versus O Mep2 B-protein ). O In O the O other O model O , O signalling O is O thought O to O require O a O distinct O conformation O of O the O Mep2 B-protein transporter B-protein_type occurring O during O the O transport O cycle O . O The O region O showing O ICL1 B-structure_element ( O blue O ), O ICL3 B-structure_element ( O green O ) O and O the O CTR B-structure_element ( O red O ) O is O boxed O for O comparison O . O ( O a O ) O ICL1 B-structure_element in O AfAmt B-protein - I-protein 1 I-protein ( O light O blue O ) O and O CaMep2 B-protein ( O dark O blue O ), O showing O unwinding O and O inward O movement O in O the O fungal B-taxonomy_domain protein O . O ( O b O ) O Stereo O diagram O viewed O from O the O cytosol O of O ICL1 B-structure_element , O ICL3 B-structure_element ( O green O ) O and O the O CTR B-structure_element ( O red O ) O in O AfAmt B-protein - I-protein 1 I-protein ( O light O colours O ) O and O CaMep2 B-protein ( O dark O colours O ). O The O labelled O residues O are O analogous O within O both O structures B-evidence . O Channel O closures O in O Mep2 B-protein . O The O Npr1 B-protein kinase B-protein_type target O Ser453 B-residue_name_number is O dephosphorylated B-protein_state and O located O in O an O electronegative B-site pocket I-site . O ( O a O ) O Stereoviews O of O CaMep2 B-protein showing O 2Fo O – O Fc O electron O density O ( O contoured O at O 1 O . O 0 O σ O ) O for O CTR B-structure_element residues O Asp419 B-residue_range - I-residue_range Met422 I-residue_range and O for O Tyr446 B-residue_range - I-residue_range Thr455 I-residue_range of O the O AI B-structure_element region I-structure_element . O Phosphorylation B-ptm causes O conformational O changes O in O the O CTR B-structure_element . O ( O a O ) O In O the O closed B-protein_state , O non B-protein_state - I-protein_state phosphorylated I-protein_state state O ( O i O ), O the O CTR B-structure_element ( O magenta O ) O and O ICL3 B-structure_element ( O green O ) O are O far O apart O with O the O latter O blocking O the O intracellular O channel B-site exit I-site ( O indicated O with O a O hatched O circle O ). O Visualizing O chaperone B-protein_type - O assisted O protein O folding O READ B-experimental_method enabled O us O to O visualize O even O sparsely O populated O conformations O of O the O substrate O protein O immunity B-protein protein I-protein 7 I-protein ( O Im7 B-protein ) O in B-protein_state complex I-protein_state with I-protein_state the O E B-species . I-species coli I-species chaperone B-protein_type Spy B-protein . O It O is O clear O that O molecular O chaperones B-protein_type aid O in O protein O folding O . O Structural B-evidence models I-evidence of O chaperone B-protein_type - O substrate O complexes O have O recently O begun O to O provide O information O as O to O how O a O chaperone B-protein_type can O recognize O its O substrate O . O For O most O chaperones B-protein_type , O it O is O still O unclear O whether O the O chaperone B-protein_type actively O participates O in O and O affects O the O folding O of O the O substrate O proteins O , O or O merely O provides O a O suitable O microenvironment O enabling O the O substrate O to O fold O on O its O own O . O We O therefore O screened B-experimental_method crystallization B-experimental_method conditions I-experimental_method for O Spy B-protein with O four O different O substrate O proteins O : O a O fragment O of O the O largely O unfolded B-protein_state bovine B-taxonomy_domain α B-chemical - I-chemical casein I-chemical protein O , O wild B-protein_state - I-protein_state type I-protein_state ( O WT B-protein_state ) O E B-species . I-species coli I-species Im7 B-protein , O an O unfolded B-protein_state variant O of O Im7 B-protein ( O L18A B-mutant L19A B-mutant L37A B-mutant ), O and O the O N B-structure_element - I-structure_element terminal I-structure_element half I-structure_element of O Im7 B-protein ( O Im76 B-mutant - I-mutant 45 I-mutant ), O which O encompasses O the O entire O Spy B-structure_element - I-structure_element binding I-structure_element portion I-structure_element of O Im7 B-protein . O Subsequent O crystal B-experimental_method washing I-experimental_method and I-experimental_method dissolution I-experimental_method experiments O confirmed O the O presence O of O the O substrates O in O the O co B-experimental_method - I-experimental_method crystals I-experimental_method ( O Supplementary O Fig O . O 2 O ). O We O split O this O approach O into O five O steps O : O ( O 1 O ) O By O using O a O well O - O diffracting O Spy B-protein : O substrate O co B-evidence - I-evidence crystal I-evidence , O we O first O determined O the O structure B-evidence of O the O folded B-protein_state domain B-structure_element of O Spy B-protein and O obtained O high O quality O residual B-evidence electron I-evidence density I-evidence within O the O dynamic B-protein_state regions O of O the O substrate O . O The O READ B-experimental_method sample B-experimental_method - I-experimental_method and I-experimental_method - I-experimental_method select I-experimental_method algorithm I-experimental_method is O diagrammed O in O Fig O . O 2 O . O To O make O the O electron B-experimental_method density I-experimental_method selection I-experimental_method practical O , O we O needed O to O develop O a O method O to O rapidly O evaluate O the O agreement O between O the O selected O sub O - O ensembles O and O the O experimental O electron B-evidence density I-evidence on O - O the O - O fly O during O the O selection O procedure O . O To O reduce O the O extent O of O 3D O space O to O be O explored O , O this O compressed O map B-evidence was O created O by O only O using O density B-evidence from O regions O of O space O significantly O sampled O by O Im76 B-mutant - I-mutant 45 I-mutant in O the O Spy B-complex_assembly : I-complex_assembly Im76 I-complex_assembly - I-complex_assembly 45 I-complex_assembly MD B-experimental_method simulations B-experimental_method . O We O were O particularly O interested O in O finding O answers O to O one O of O the O most O fundamental O questions O in O chaperone B-protein_type biology O — O how O does O chaperone B-protein_type binding O affect O substrate O structure O and O vice O versa O . O We O constructed O a O contact B-evidence map I-evidence of O the O complex O , O which O shows O the O frequency O of O interactions O for O chaperone B-protein_type - O substrate O residue O pairs O ( O Fig O . O 4 O ). O This O twist O yields O asymmetry O and O results O in O substantially O different O interaction O patterns O in O the O two O Spy B-protein monomers B-oligomeric_state ( O Fig O . O 4b O ). O Additionally O , O we O observed O that O the O linker B-structure_element region I-structure_element ( O residues O 47 B-residue_range – I-residue_range 57 I-residue_range ) O of O Spy B-protein , O which O participates O in O substrate O interaction O , O becomes O mostly O disordered B-protein_state upon O binding O the O substrate O . O Importantly O , O we O observed O the O same O structural O changes O in O Spy B-protein regardless O of O which O of O the O four O substrates O was O bound O ( O Fig O . O 5b O , O Table O 1 O ). O We O recently O showed O that O Im7 B-protein can O fold O while O remaining O continuously B-protein_state bound I-protein_state to I-protein_state Spy B-protein . O This O model O is O consistent O with O previous O studies O postulating O that O the O flexible O binding O of O chaperones B-protein_type allows O for O substrate O protein O folding O . O The O amphipathic O concave B-site surface I-site of O Spy B-protein likely O facilitates O this O flexible O binding O and O may O be O a O crucial O feature O for O Spy B-protein and O potentially O other O chaperones B-protein_type , O allowing O them O to O bind O multiple O conformations O of O many O different O substrates O . O The O negatively O charged O Im7 B-protein residues O Glu21 B-residue_name_number , O Asp32 B-residue_name_number , O and O Asp35 B-residue_name_number reside O on O the O surface O of O Im7 B-protein and O form O interactions O with O Spy B-protein ’ O s O positively O charged O cradle B-site in O both O the O unfolded B-protein_state and O native B-protein_state - I-protein_state like I-protein_state states O . O This O selection O resulted O in O “ O Super O Spy B-protein ” O variants B-protein_state that O were O more O effective O at O both O preventing O aggregation O and O promoting O protein O folding O . O By O sampling O multiple O conformations O , O this O linker B-structure_element region I-structure_element may O allow O diverse O substrate O conformations O to O be O accommodated O . O Overall O , O comparison O of O our O ensemble B-evidence to O the O Super O Spy B-protein variants B-protein_state provides O specific O examples O to O corroborate O the O importance O of O conformational O flexibility O in O chaperone B-protein_type - O substrate O interactions O . O ATP B-chemical and O co O - O chaperone B-protein_type dependencies O may O have O emerged O later O through O evolution O to O better O modulate O and O control O chaperone B-protein_type action O . O As O the O residues O involved O in O contacts O are O more O evenly O distributed O in O Im76 B-mutant - I-mutant 45 I-mutant compared O to O Spy B-protein , O its O contact B-evidence map I-evidence was O amplified O . O ( O b O ) O Detailed O contact B-evidence maps I-evidence of O Spy B-complex_assembly : I-complex_assembly Im76 I-complex_assembly - I-complex_assembly 45 I-complex_assembly . O The O Super O Spy B-protein mutants O F115L B-mutant , O F115I B-mutant , O and O L32P B-mutant are O proposed O to O gain O activity O by O increasing O the O flexibility O or O size O of O this O linker B-structure_element region I-structure_element . O To O support O antibody B-protein_type therapeutic O development O , O the O crystal B-evidence structures I-evidence of O a O set O of O 16 O germline O variants O composed O of O 4 O different O kappa B-structure_element light I-structure_element chains I-structure_element paired O with O 4 O different O heavy B-structure_element chains I-structure_element have O been O determined O . O The O longer B-protein_state CDRs B-structure_element with O tandem O glycines B-residue_name or O serines B-residue_name have O more O conformational O diversity O than O the O others O . O Two O of O 16 O structures B-evidence showed O particularly O large O variations O in O the O tilt B-evidence angles I-evidence when O compared O with O the O other O pairings O . O These O domains O have O a O common O folding O pattern O often O referred O to O as O the O “ O immunoglobulin B-structure_element fold I-structure_element ,” O formed O by O the O packing O together O of O 2 O anti B-structure_element - I-structure_element parallel I-structure_element β I-structure_element - I-structure_element sheets I-structure_element . O All O immunoglobulin B-protein_type chains I-protein_type have O an O N O - O terminal O V B-structure_element domain I-structure_element followed O by O 1 O to O 4 O C B-structure_element domains I-structure_element , O depending O upon O the O chain O type O . O The O cataloging O and O development O of O the O rules O for O predicting O the O conformation O of O the O anchor B-structure_element region I-structure_element of O CDR B-structure_element H3 B-structure_element continue O to O be O refined O , O producing O new O insight O into O the O CDR B-structure_element H3 B-structure_element conformations O and O new O tools O for O antibody B-protein_type engineering O . O One O important O finding O of O the O antibody B-experimental_method modeling I-experimental_method assessments I-experimental_method was O that O errors O in O the O structural O templates O that O are O used O as O the O basis O for O homology B-experimental_method models I-experimental_method can O propagate O into O the O final O models O , O producing O inaccuracies O that O may O negatively O influence O the O predictive O nature O of O the O V B-structure_element region I-structure_element model O . O The O structures B-evidence and O their O analyses O provide O a O foundation O for O future O antibody B-protein_type engineering O and O structure O determination O efforts O . O The O similarity O in O the O crystal B-evidence forms I-evidence is O attributed O in O part O to O cross O - O seeding O using O the O microseed B-experimental_method matrix I-experimental_method screening I-experimental_method for O groups O 2 O and O 3 O . O The O number O of O Fab B-structure_element molecules O in O the O crystallographic O asymmetric O unit O varies O from O 1 O ( O for O 12 O Fabs B-structure_element ) O to O 2 O ( O for O 4 O Fabs B-structure_element ). O For O the O LC B-structure_element , O the O disorder B-protein_state is O observed O at O 2 O of O the O C O - O terminal O residues O with O few O exceptions O . O CDR B-structure_element H1 B-structure_element The O canonical O structures O of O CDR B-structure_element H2 B-structure_element have O fairly O consistent O conformations O ( O Table O 2 O , O Fig O . O 2 O ). O In O one O case O , O in O the O second O Fab B-structure_element of O H1 B-complex_assembly - I-complex_assembly 69 I-complex_assembly : I-complex_assembly L3 I-complex_assembly - I-complex_assembly 20 I-complex_assembly , O CDR B-structure_element H2 B-structure_element is O partially B-protein_state disordered I-protein_state ( O Δ55 B-mutant - I-mutant 60 I-mutant ). O Despite O this O , O the O conformations O are O tightly O clustered O ( O rmsd B-evidence is O 0 O . O 20 O Å O ). O L3 B-mutant - I-mutant 20 I-mutant is O the O most O variable O in O CDR B-structure_element L1 B-structure_element among O the O 4 O germlines O as O indicated O by O an O rmsd B-evidence of O 0 O . O 54 O Å O ( O Fig O . O 3C O ). O The O CDR B-structure_element L2 B-structure_element conformations O for O each O of O the O LCs B-structure_element paired O with O the O 4 O HCs B-structure_element are O clustered O more O tightly O than O any O of O the O other O CDRs B-structure_element ( O rmsd B-evidence values O are O in O the O range O 0 O . O 09 O - O 0 O . O 16 O Å O ), O and O all O 4 O sets O have O virtually O the O same O conformation O despite O the O sequence O diversity O of O the O loop B-structure_element . O The O superposition B-experimental_method of O CDR B-structure_element L3 B-structure_element backbones O for O all O HC B-complex_assembly : I-complex_assembly LC I-complex_assembly pairs O with O light B-structure_element chains I-structure_element : O ( O A O ) O L1 B-mutant - I-mutant 39 I-mutant , O ( O B O ) O L3 B-mutant - I-mutant 11 I-mutant , O ( O C O ) O L3 B-mutant - I-mutant 20 I-mutant and O ( O D O ) O L4 B-mutant - I-mutant 1 I-mutant . O An O interesting O feature O of O these O CDR B-structure_element H3 B-structure_element structures B-evidence is O the O presence O of O a O water B-chemical molecule O that O interacts O with O the O peptide O nitrogens O and O carbonyl O oxygens O near O the O bridging O loop B-structure_element connecting O the O 2 O β B-structure_element - I-structure_element strands I-structure_element . O A O representative O CDR B-structure_element H3 B-structure_element structure B-evidence for O H1 B-complex_assembly - I-complex_assembly 69 I-complex_assembly : I-complex_assembly L1 I-complex_assembly - I-complex_assembly 39 I-complex_assembly illustrating O this O is O shown O in O Fig O . O 7A O . O The O stem B-structure_element regions I-structure_element in O these O 3 O cases O are O in O the O ‘ O kinked B-protein_state ’ O conformation O consistent O with O that O observed O for O 4DN3 O . O The O stem B-structure_element regions I-structure_element of O CDR B-structure_element H3 B-structure_element for O the O H5 B-complex_assembly - I-complex_assembly 51 I-complex_assembly : I-complex_assembly L4 I-complex_assembly - I-complex_assembly 1 I-complex_assembly Fabs B-structure_element are O in O the O ‘ O kinked B-protein_state ’ O conformation O while O , O surprisingly O , O those O of O the O H1 B-complex_assembly - I-complex_assembly 69 I-complex_assembly : I-complex_assembly L3 I-complex_assembly - I-complex_assembly 20 I-complex_assembly pair O and O H3 B-complex_assembly - I-complex_assembly 53 I-complex_assembly : I-complex_assembly L4 I-complex_assembly - I-complex_assembly 1 I-complex_assembly are O in O the O ‘ O extended B-protein_state ’ O conformation O ( O Fig O . O 7B O ). O The O two O domains O pack O together O such O that O the O 5 B-structure_element - I-structure_element stranded I-structure_element β I-structure_element - I-structure_element sheets I-structure_element , O which O have O hydrophobic O surfaces O , O interact O with O each O other O bringing O the O CDRs B-structure_element from O both O the O VH B-structure_element and O VL B-structure_element domains O into O close O proximity O . O VH B-site : I-site VL I-site interface I-site amino O acid O residue O interactions O Position O 43 B-residue_number may O be O alternatively O occupied O by O Ser B-residue_name , O Val B-residue_name or O Pro B-residue_name ( O as O in O L4 B-mutant - I-mutant 1 I-mutant ), O but O the O hydrophobic O interaction O with O H B-structure_element - O Tyr91 B-residue_name_number is O preserved O . O These O core O interactions O provide O enough O stability O to O the O VH B-complex_assembly : I-complex_assembly VL I-complex_assembly dimer B-oligomeric_state so O that O additional O VH B-site - I-site VL I-site contacts I-site can O tolerate O amino O acid O sequence O variations O in O CDRs B-structure_element H3 B-structure_element and O L3 B-structure_element that O form O part O of O the O VH B-site : I-site VL I-site interface I-site . O One O notable O exception O is O H B-structure_element - O Trp47 B-residue_name_number , O which O exhibits O 2 O conformations O of O the O indole O ring O . O Apparently O , O residues O flanking O CDR B-structure_element H3 B-structure_element in O the O 2 O VH B-complex_assembly : I-complex_assembly VL I-complex_assembly pairings O are O inconsistent O with O any O stable B-protein_state conformation O of O CDR B-structure_element H3 B-structure_element , O which O translates O into O a O less O restricted O conformational O space O for O some O of O them O , O including O H B-structure_element - O Trp47 B-residue_name_number . O Differences O in O VH B-complex_assembly : I-complex_assembly VL I-complex_assembly tilt B-evidence angles I-evidence . O The O differences B-evidence in O the O tilt B-evidence angle I-evidence are O shown O for O all O pairs O of O V B-structure_element regions I-structure_element in O Table O 3 O . O Residues O in O CDR B-structure_element H3 B-structure_element are O missing O : O YGE B-structure_element in O H5 B-complex_assembly - I-complex_assembly 51 I-complex_assembly : I-complex_assembly L3 I-complex_assembly - I-complex_assembly 11 I-complex_assembly , O GIY B-structure_element in O H5 B-complex_assembly - I-complex_assembly 51 I-complex_assembly : I-complex_assembly L3 I-complex_assembly - I-complex_assembly 20 I-complex_assembly . O Interestingly O , O the O 2 O structures B-evidence that O have O the O largest O tilt B-evidence angle I-evidence differences I-evidence with O the O other O variants O , O H3 B-complex_assembly - I-complex_assembly 23 I-complex_assembly : I-complex_assembly L3 I-complex_assembly - I-complex_assembly 20 I-complex_assembly and O H1 B-complex_assembly - I-complex_assembly 69 I-complex_assembly : I-complex_assembly L3 I-complex_assembly - I-complex_assembly 20 I-complex_assembly , O have O the O smallest O VH B-site : I-site VL I-site interfaces I-site , O 684 O and O 725 O Å2 O , O respectively O . O It O appears O that O for O each O given O LC B-structure_element , O the O Fabs B-structure_element with O germlines O H1 B-mutant - I-mutant 69 I-mutant and O H3 B-mutant - I-mutant 23 I-mutant are O substantially O more O stable B-protein_state than O those O with O germlines O H3 B-mutant - I-mutant 53 I-mutant and O H5 B-mutant - I-mutant 51 I-mutant . O Parts O of O CDR B-structure_element H3 B-structure_element main O chain O are O completely O disordered B-protein_state , O and O were O not O modeled O in O Fabs B-structure_element H5 B-complex_assembly - I-complex_assembly 51 I-complex_assembly : I-complex_assembly L3 I-complex_assembly - I-complex_assembly 20 I-complex_assembly and O H5 B-complex_assembly - I-complex_assembly 51 I-complex_assembly : I-complex_assembly L3 I-complex_assembly - I-complex_assembly 11 I-complex_assembly that O have O the O lowest O Tms B-evidence in O the O set O . O All O those O molecules O are O relatively O unstable O , O as O is O reflected O in O their O low O Tms B-evidence . O Of O the O 4 O HCs B-structure_element , O H1 B-mutant - I-mutant 69 I-mutant has O the O greatest O number O of O canonical O structure O assignments O ( O Table O 2 O ). O The O remaining O 8 O structures B-evidence exhibit O “ O non O - O parental O ” O conformations O , O indicating O that O the O VH B-structure_element and O VL B-structure_element context O can O also O be O a O dominating O factor O influencing O CDR B-structure_element H3 B-structure_element . O Thus O , O no O patterns O of O conformational O preference O for O a O particular O HC B-structure_element or O LC B-structure_element emerge O to O shed O any O direct O light O on O what O drives O the O conformational O differences O . O One O of O the O variants O , O H3 B-complex_assembly - I-complex_assembly 23 I-complex_assembly : I-complex_assembly L3 I-complex_assembly - I-complex_assembly 20 I-complex_assembly , O has O the O CDR B-structure_element H3 B-structure_element conformation O similar O to O the O parent O , O but O the O other O , O H1 B-complex_assembly - I-complex_assembly 69 I-complex_assembly : I-complex_assembly L3 I-complex_assembly - I-complex_assembly 20 I-complex_assembly , O is O different O . O These O differences O undoubtedly O influence O the O conformation O of O the O CDRs B-structure_element , O in O particular O CDR B-structure_element H1 B-structure_element ( O Fig O . O 1A O ) O and O CDR B-structure_element L1 B-structure_element ( O Fig O . O 3C O ), O especially O with O the O tandem O glycines B-residue_name and O multiple O serines B-residue_name present O , O respectively O . O Pairing O of O different O germlines O yields O antibodies B-protein_type with O various O degrees O of O stability O . O Other O germlines O have O bulky O residues O , O Tyr B-residue_name , O Arg B-residue_name and O Trp B-residue_name , O at O these O positions O , O whereas O L1 B-mutant - I-mutant 39 I-mutant has O Ser B-residue_name and O Thr B-residue_name . O The O set O of O 16 O germline O Fab B-structure_element structures B-evidence offers O a O unique O dataset O to O facilitate O software O development O for O antibody B-protein_type modeling O . O An O extended B-protein_state U2AF65 B-structure_element – I-structure_element RNA I-structure_element - I-structure_element binding I-structure_element domain I-structure_element recognizes O the O 3 B-site ′ I-site splice I-site site I-site signal O The O U2AF65 B-protein linker B-structure_element residues O between O the O dual O RNA B-structure_element recognition I-structure_element motifs I-structure_element ( O RRMs B-structure_element ) O recognize O the O central O nucleotide B-chemical , O whereas O the O N O - O and O C O - O terminal O RRM B-structure_element extensions I-structure_element recognize O the O 3 B-site ′ I-site terminus I-site and O third B-residue_number nucleotide B-chemical . O The O splice B-site sites I-site are O marked O by O relatively O short B-structure_element consensus I-structure_element sequences I-structure_element and O are O regulated O by O additional O pre B-structure_element - I-structure_element mRNA I-structure_element motifs I-structure_element ( O reviewed O in O ref O .). O The O early O - O stage O pre B-protein_type - I-protein_type mRNA I-protein_type splicing I-protein_type factor I-protein_type U2AF65 B-protein is O essential O for O viability O in O vertebrates B-taxonomy_domain and O other O model O organisms O ( O for O example O , O ref O .). O A O tightly O controlled O assembly B-complex_assembly among O U2AF65 B-protein , O the O pre B-chemical - I-chemical mRNA I-chemical , O and O partner O proteins O sequentially O identifies O the O 3 B-site ′ I-site splice I-site site I-site and O promotes O association O of O the O spliceosome B-complex_assembly , O which O ultimately O accomplishes O the O task O of O splicing O . O We O use O single B-experimental_method - I-experimental_method molecule I-experimental_method Förster I-experimental_method resonance I-experimental_method energy I-experimental_method transfer I-experimental_method ( O smFRET B-experimental_method ) O to O characterize O the O conformational B-evidence dynamics I-evidence of O this O extended B-protein_state U2AF65 B-structure_element – I-structure_element RNA I-structure_element - I-structure_element binding I-structure_element domain I-structure_element during O Py B-chemical - I-chemical tract I-chemical recognition O . O Likewise O , O both O U2AF651 B-mutant , I-mutant 2L I-mutant and O full B-protein_state - I-protein_state length I-protein_state U2AF65 B-protein showed O similar O sequence B-evidence specificity I-evidence for O U B-structure_element - I-structure_element rich I-structure_element stretches I-structure_element in O the O 5 B-site ′- I-site region I-site of O the O Py B-chemical tract I-chemical and O promiscuity O for O C B-structure_element - I-structure_element rich I-structure_element regions I-structure_element in O the O 3 B-site ′- I-site region I-site ( O Fig O . O 1c O , O Supplementary O Fig O . O 1e O – O h O ). O We O compare O the O global O conformation O of O the O U2AF651 B-mutant , I-mutant 2L I-mutant structures B-evidence with O the O prior O dU2AF651 B-mutant , I-mutant 2 I-mutant crystal B-evidence structure I-evidence and O U2AF651 B-mutant , I-mutant 2 I-mutant NMR B-experimental_method structure B-evidence in O the O Supplementary O Discussion O and O Supplementary O Fig O . O 2 O . O Otherwise O , O the O rU4 B-residue_name_number nucleotide B-chemical packs O against O F304 B-residue_name_number in O the O signature O ribonucleoprotein B-structure_element consensus I-structure_element motif I-structure_element ( I-structure_element RNP I-structure_element )- I-structure_element 2 I-structure_element of O RRM2 B-structure_element . O This O nucleotide B-chemical twists O to O face O away O from O the O U2AF65 B-protein linker B-structure_element and O instead O inserts O the O rU6 B-residue_name_number - O uracil B-residue_name into O a O sandwich O between O the O β2 B-structure_element / I-structure_element β3 I-structure_element loops I-structure_element of O RRM1 B-structure_element and O RRM2 B-structure_element . O The O rU6 B-residue_name_number base O edge O is O relatively O solvent B-protein_state exposed I-protein_state ; O accordingly O , O the O rU6 B-residue_name_number hydrogen O bonds O with O U2AF65 B-protein are O water B-chemical mediated O apart O from O a O single O direct O interaction O by O the O RRM1 B-structure_element - O N196 B-residue_name_number side O chain O . O Consistent O with O loss O of O a O hydrogen O bond O with O the O ninth B-residue_number pyrimidine B-chemical - O O2 O ( O ΔΔG B-evidence 1 O . O 0 O kcal O mol O − O 1 O ), O mutation B-experimental_method of O the O Q147 B-residue_name_number to O an O alanine B-residue_name reduced O U2AF651 B-evidence , I-evidence 2L I-evidence affinity I-evidence for O the O AdML B-gene Py B-chemical tract I-chemical by O five O - O fold O ( O Fig O . O 3i O ; O Supplementary O Fig O . O 4c O ). O Despite O 12 B-experimental_method concurrent I-experimental_method mutations I-experimental_method , O the O AdML B-gene RNA B-evidence affinity I-evidence of O the O U2AF651 B-mutant , I-mutant 2L I-mutant - I-mutant 12Gly I-mutant variant B-protein_state was O reduced O by O only O three O - O fold O relative O to O the O unmodified B-protein_state protein B-protein ( O Fig O . O 4b O ), O which O is O less O than O the O penalty O of O the O V254P B-mutant mutation O that O disrupts O the O rU5 B-residue_name_number hydrogen O bond O ( O Fig O . O 3d O , O i O ). O This O difference O indicates O that O the O linearly B-protein_state distant I-protein_state regions B-structure_element of O the O U2AF65 B-protein primary O sequence O , O including O Q147 B-residue_name_number in O the O N O - O terminal O RRM1 B-structure_element extension I-structure_element and O R227 B-residue_name_number / O V254 B-residue_name_number in O the O N O -/ O C O - O terminal O linker B-structure_element regions I-structure_element at O the O fifth B-site nucleotide I-site site I-site , O cooperatively O recognize O the O Py B-chemical tract I-chemical . O When O transfected B-experimental_method into O HEK293T O cells O containing O only O endogenous B-protein_state U2AF65 B-protein , O the O PY B-site splice I-site site I-site is O used O and O the O remaining O transcript O remains O unspliced O . O Co B-experimental_method - I-experimental_method transfection I-experimental_method of O the O U2AF65 B-mutant - I-mutant 3Mut I-mutant with O the O pyPY B-chemical splicing O substrate O significantly O reduced O splicing O of O the O weak O ‘ B-site py I-site ' I-site splice I-site site I-site relative O to O wild B-protein_state - I-protein_state type I-protein_state U2AF65 B-protein ( O Fig O . O 5b O , O c O ). O Paramagnetic B-experimental_method resonance I-experimental_method enhancement I-experimental_method ( O PRE B-experimental_method ) O measurements O previously O had O suggested O a O predominant O back B-protein_state - I-protein_state to I-protein_state - I-protein_state back I-protein_state , O or O ‘ O closed B-protein_state ' O conformation O of O the O apo B-protein_state - O U2AF651 B-mutant , I-mutant 2 I-mutant RRM1 B-structure_element and O RRM2 B-structure_element in O equilibrium O with O a O minor O ‘ O open B-protein_state ' O conformation O resembling O the O RNA B-protein_state - I-protein_state bound I-protein_state inter B-structure_element - I-structure_element RRM I-structure_element arrangement O . O To O complement O the O static O portraits O of O U2AF651 B-mutant , I-mutant 2L I-mutant structure B-evidence that O we O had O determined O by O X B-experimental_method - I-experimental_method ray I-experimental_method crystallography I-experimental_method , O we O used O smFRET B-experimental_method to O characterize O the O probability B-evidence distribution I-evidence functions I-evidence and O time O dependence O of O U2AF65 B-protein inter B-structure_element - I-structure_element RRM I-structure_element conformational O dynamics O in O solution O . O The O positions O of O single O cysteine B-residue_name mutations B-experimental_method for O fluorophore B-chemical attachment O ( O A181C B-mutant in O RRM1 B-structure_element and O Q324C B-mutant in O RRM2 B-structure_element ) O were O chosen O based O on O inspection O of O the O U2AF651 B-mutant , I-mutant 2L I-mutant structures B-evidence and O the O ‘ O closed B-protein_state ' O model O of O apo B-protein_state - O U2AF651 B-mutant , I-mutant 2 I-mutant . O Approximately O 70 O % O of O observed O fluctuations O were O interchanges O between O the O ∼ O 0 O . O 65 O and O ∼ O 0 O . O 45 O FRET B-evidence values I-evidence ( O Supplementary O Fig O . O 7b O ). O However O , O the O presence O of O repetitive O fluctuations O between O particular O FRET B-evidence values I-evidence supports O the O hypothesis O that O RNA B-protein_state - I-protein_state free I-protein_state U2AF65 B-protein samples O several O distinct O conformations O . O U2AF65 B-protein conformational O selection O and O induced O fit O by O bound B-protein_state RNA B-chemical Insertion B-experimental_method of O adenine B-chemical nucleotides I-chemical decreased O binding B-evidence affinity I-evidence of O U2AF65 B-protein to O RNA B-chemical by O approximately O five O - O fold O . O Further O research O will O be O needed O to O understand O the O roles O of O SF1 B-protein and O U2AF35 B-protein subunits O in O the O conformational O equilibria O underlying O U2AF65 B-protein association O with O Py B-chemical tracts I-chemical . O Residues O V249 B-residue_name_number , O V250 B-residue_name_number , O V254 B-residue_name_number ( O yellow O ) O are O mutated B-experimental_method to O V249G B-mutant / O V250G B-mutant / O V254G B-mutant in O the O 3Gly B-mutant mutant I-mutant ; O residues O S251 B-residue_name_number , O T252 B-residue_name_number , O V253 B-residue_name_number , O P255 B-residue_name_number ( O red O ) O along O with O V254 B-residue_name_number are O mutated B-experimental_method to O S251G B-mutant / O T252G B-mutant / O V253G B-mutant / O V254G B-mutant / O P255G B-mutant in O the O 5Gly B-mutant mutant I-mutant or O to O S251N B-mutant / O T252L B-mutant / O V253A B-mutant / O V254L B-mutant / O P255A B-mutant in O the O NLALA B-mutant mutant I-mutant ; O residues O M144 B-residue_name_number , O L235 B-residue_name_number , O M238 B-residue_name_number , O V244 B-residue_name_number , O V246 B-residue_name_number ( O orange O ) O along O with O V249 B-residue_name_number , O V250 B-residue_name_number , O S251 B-residue_name_number , O T252 B-residue_name_number , O V253 B-residue_name_number , O V254 B-residue_name_number , O P255 B-residue_name_number are O mutated B-experimental_method to O M144G B-mutant / O L235G B-mutant / O M238G B-mutant / O V244G B-mutant / O V246G B-mutant / O V249G B-mutant / O V250G B-mutant / O S251G B-mutant / O T252G B-mutant / O V253G B-mutant / O V254G B-mutant / O P255G B-mutant in O the O 12Gly B-mutant mutant I-mutant . O Other O linker B-structure_element residues O are O coloured O either O dark O blue O for O new O residues O in O the O U2AF651 B-mutant , I-mutant 2L I-mutant structure O or O light O blue O for O the O remaining O inter B-structure_element - I-structure_element RRM I-structure_element residues O . O The O central O panel O shows O an O overall O view O with O stick O diagrams O for O mutated O residues O ; O boxed O regions O are O expanded O to O show O the O C O - O terminal O ( O bottom O left O ) O and O central B-structure_element linker I-structure_element regions I-structure_element ( O top O ) O at O the O inter B-structure_element - I-structure_element RRM I-structure_element interfaces I-structure_element , O and O N O - O terminal O linker O region O contacts O with O RRM1 B-structure_element ( O bottom O right O ). O The O fitted O fluorescence O anisotropy O RNA B-evidence - I-evidence binding I-evidence curves I-evidence are O shown O in O Supplementary O Fig O . O 4d O – O j O . O ( O c O ) O Close O view O of O the O U2AF65 B-protein RRM1 B-site / I-site RRM2 I-site interface I-site following O a O two O - O fold O rotation O about O the O x O - O axis O relative O to O a O . O ( O a O , O b O ) O Views O of O FRET B-experimental_method pairs O chosen O to O follow O the O relative O movement O of O RRM1 B-structure_element and O RRM2 B-structure_element on O the O crystal B-evidence structure I-evidence of O ‘ O side B-protein_state - I-protein_state by I-protein_state - I-protein_state side I-protein_state ' O U2AF651 B-mutant , I-mutant 2L I-mutant RRMs B-structure_element bound B-protein_state to I-protein_state a O Py B-chemical - I-chemical tract I-chemical oligonucleotide I-chemical ( O a O , O representative O structure O iv O ) O or O ‘ O closed B-protein_state ' O NMR B-experimental_method / O PRE B-experimental_method - O based O model O of O U2AF651 B-mutant , I-mutant 2 I-mutant ( O b O , O PDB O ID O 2YH0 O ) O in O identical O orientations O of O RRM2 B-structure_element . O ( O c O – O f O , O i O , O j O ) O The O U2AF651 B-mutant , I-mutant 2LFRET I-mutant ( O Cy3 B-chemical / O Cy5 B-chemical ) O protein O was O immobilized O on O the O microscope O slide O via O biotin B-chemical - I-chemical NTA I-chemical / I-chemical Ni I-chemical + I-chemical 2 I-chemical ( O orange O line O ) O on O a O neutravidin O ( O black O X O )- O biotin O - O PEG O ( O orange O triangle O )- O treated O surface O and O imaged O either O in O the O absence B-protein_state of I-protein_state ligands B-chemical ( O c O , O d O ), O in O the O presence O of O 5 O μM O AdML B-gene Py B-chemical - I-chemical tract I-chemical RNA I-chemical ( O 5 B-chemical ′- I-chemical CCUUUUUUUUCC I-chemical - I-chemical 3 I-chemical ′) I-chemical ( O e O , O f O ), O or O in O the O presence O of O 10 O μM O adenosine B-residue_name - O interrupted O variant O RNA B-chemical ( O 5 B-chemical ′- I-chemical CUUUUUAAUUUCCA I-chemical - I-chemical 3 I-chemical ′) I-chemical ( O i O , O j O ). O The O untethered B-protein_state U2AF651 B-mutant , I-mutant 2LFRET I-mutant ( O Cy3 B-chemical / O Cy5 B-chemical ) O protein O ( O 1 O nM O ) O was O added O to O AdML B-gene RNA B-chemical – I-chemical polyethylene I-chemical - I-chemical glycol I-chemical - I-chemical linker I-chemical – I-chemical DNA I-chemical oligonucleotide I-chemical ( O 10 O nM O ), O which O was O immobilized O on O the O microscope O slide O by O annealing O with O a O complementary O biotinyl B-chemical - I-chemical DNA I-chemical oligonucleotide I-chemical ( O black O vertical O line O ). O ( O b O ) O Following O binding O to O the O Py B-chemical - I-chemical tract I-chemical RNA I-chemical , O a O conformation O corresponding O to O high B-evidence FRET I-evidence and O consistent O with O the O ‘ O closed B-protein_state ', O back B-protein_state - I-protein_state to I-protein_state - I-protein_state back I-protein_state apo B-protein_state - O U2AF65 B-protein model O resulting O from O PRE B-experimental_method / O NMR B-experimental_method characterization O ( O PDB O ID O 2YH0 O ) O often O transitions O to O a O conformation O corresponding O to O ∼ O 0 O . O 45 O FRET B-evidence value I-evidence , O which O is O consistent O with O ‘ O open B-protein_state ', O side B-protein_state - I-protein_state by I-protein_state - I-protein_state side I-protein_state RRMs B-structure_element such O as O the O U2AF651 B-mutant , I-mutant 2L I-mutant crystal B-evidence structures I-evidence . O RRM1 B-structure_element , O green O ; O RRM2 B-structure_element , O pale O blue O ; O RRM B-structure_element extensions I-structure_element / O linker B-structure_element , O blue O . O Systematic O analysis O of O radiation O damage O within O a O protein B-complex_assembly – I-complex_assembly RNA I-complex_assembly complex O over O a O large O dose O range O ( O 1 O . O 3 O – O 25 O MGy O ) O reveals O significant O differential O susceptibility O of O RNA B-chemical and O protein O . O With O the O wide O use O of O high O - O flux O third O - O generation O synchrotron O sources O , O radiation O damage O ( O RD O ) O has O once O again O become O a O dominant O reason O for O the O failure O of O structure B-experimental_method determination I-experimental_method using O macromolecular B-experimental_method crystallography I-experimental_method ( O MX B-experimental_method ) O in O experiments O conducted O both O at O room O temperature O and O under O cryocooled O conditions O ( O 100 O K O ). O Significant O progress O has O been O made O in O recent O years O in O understanding O the O inevitable O manifestations O of O X O - O ray O - O induced O RD O within O protein O crystals B-evidence , O and O there O is O now O a O body O of O literature O on O possible O strategies O to O mitigate O the O effects O of O RD O ( O e O . O g O . O Zeldin O , O Brockhauser O et O al O ., O 2013 O ; O Bourenkov O & O Popov O , O 2010 O ). O There O are O a O number O of O cases O where O SRD O manifestations O have O compromised O the O biological O information O extracted O from O MX B-experimental_method - I-experimental_method determined I-experimental_method structures B-evidence at O much O lower O doses O than O the O recommended O 30 O MGy O limit O , O leading O to O false O structural O interpretations O of O protein O mechanisms O . O Understanding O RD O to O such O complexes O is O crucial O , O since O DNA B-chemical is O rarely O naked O within O a O cell O , O instead O dynamically O interacting O with O proteins O , O facilitating O replication O , O transcription O , O modification O and O DNA B-chemical repair O . O Nucleoproteins B-complex_assembly also O represent O one O of O the O main O targets O of O radiotherapy O , O and O an O insight O into O the O damage O mechanisms O induced O by O X O - O ray O irradiation O could O inform O innovative O treatments O . O Investigations O on O sub O - O ionization O - O level O LEEs O ( O 0 O – O 15 O eV O ) O interacting O with O both O dried O and O aqueous O oligonucleotides O ( O Alizadeh O & O Sanche O , O 2014 O ; O Simons O , O 2006 O ) O concluded O that O resonant O electron O attachment O to O DNA B-chemical bases O and O the O sugar O - O phosphate O backbone O could O lead O to O the O preferential O cleavage O of O strong O (∼ O 4 O eV O , O 385 O kJ O mol O − O 1 O ) O sugar O - O phosphate O C O — O O O covalent O bonds O within O the O DNA B-chemical backbone O and O then O base O - O sugar O N1 O — O C O bonds O , O eventually O leading O to O single O - O strand O breakages O ( O SSBs O ; O Ptasińska O & O Sanche O , O 2007 O ). O To O avoid O the O previous O necessity O for O visual O inspection O of O electron B-evidence - I-evidence density I-evidence maps I-evidence to O detect O SRD B-site sites I-site , O a O computational O approach O was O designed O to O quantify O the O electron B-evidence - I-evidence density I-evidence change I-evidence for O each O refined O atom O with O increasing O dose O , O thus O providing O a O rapid O systematic O method O for O SRD O study O on O such O large O multimeric O complexes O . O To O quantify O the O exact O effects O of O nucleic O acid O binding O to O a O protein O on O SRD O susceptibility O , O a O high O - O throughput O and O automated O pipeline O was O created O to O systematically O calculate O the O electron B-evidence - I-evidence density I-evidence change I-evidence for O every O refined O atom O within O the O TRAP B-complex_assembly – I-complex_assembly RNA I-complex_assembly structure B-evidence as O a O function O of O dose O . O This O provides O an O atom O - O specific O quantification O of O density B-evidence – I-evidence dose I-evidence dynamics I-evidence , O which O was O previously O lacking O within O the O field O . O However O , O these O σ B-evidence levels O depend O on O the O standard B-evidence deviation I-evidence values O of O the O map B-evidence , O which O can O deviate O between O data O sets O , O and O are O thus O unsuitable O for O quantitative O comparison O of O density B-evidence between O different O dose O data O sets O . O The O rate O of O D B-evidence loss I-evidence ( O attributed O to O side O - O chain O decarboxylation O ) O was O consistently O larger O for O Glu B-residue_name compared O with O Asp B-residue_name residues O over O the O large O dose O range O ( O Fig O . O 2 O ▸ O b O and O Supplementary O Fig O . O S3 O ); O this O observation O is O consistent O with O our O calculations O on O model O systems O ( O see O above O ) O that O suggest O that O , O without O considering O differential O hydrogen O - O bonding O environments O , O CO2 B-chemical loss O is O more O exothermic O by O around O 8 O kJ O mol O − O 1 O from O oxidized B-protein_state Glu B-residue_name residues O than O from O their O Asp B-residue_name counterparts O . O In O our O analysis O , O Asp39 B-residue_name_number in O the O TRAP B-complex_assembly –( I-complex_assembly GAGUU I-complex_assembly ) I-complex_assembly 10GAG I-complex_assembly structure B-evidence appears O to O exhibit O two O distinct O hydrogen O bonds O to O the O G1 B-residue_name_number base O within O each O of O the O 11 O TRAP B-site – I-site RNA I-site interfaces I-site , O as O does O Glu36 B-residue_name_number to O G3 B-residue_name_number ; O however O , O the O reduction O in O density B-evidence disordering O upon O RNA B-chemical binding O is O far O less O significant O for O Asp39 B-residue_name_number than O for O Glu36 B-residue_name_number ( O Fig O . O 5 O ▸ O b O , O p O = O 0 O . O 0925 O ). O One O oxygen O ( O O O ∊ O 1 O ) O of O Glu42 B-residue_name_number appears O to O form O a O hydrogen O bond O to O a O nearby O water B-chemical within O each O TRAP B-site RNA I-site - I-site binding I-site pocket I-site , O with O the O other O ( O O O ∊ O 2 O ) O being O involved O in O a O salt O - O bridge O interaction O with O Arg58 B-residue_name_number ( O Hopcroft O et O al O ., O 2002 O ; O Antson O et O al O ., O 1999 O ). O The O density B-evidence - I-evidence change I-evidence dynamics I-evidence were O statistically O indistinguishable O between O bound B-protein_state and O nonbound B-protein_state TRAP B-complex_assembly for O each O Glu42 B-residue_name_number carboxyl O group O Cδ O atom O ( O p O = O 0 O . O 435 O ), O indicating O that O upon O RNA B-chemical binding O the O conserved O salt O - O bridge O interaction O ultimately O dictated O the O overall O Glu42 B-residue_name_number decarboxylation O rate O . O The O RNA B-chemical - O stabilizing O effect O was O not O restricted O to O radiation O - O sensitive O acidic O residues O . O Here O , O MX B-experimental_method radiation O - O induced O specific O structural O changes O within O the O large O TRAP B-complex_assembly – I-complex_assembly RNA I-complex_assembly assembly O over O a O large O dose O range O ( O 1 O . O 3 O – O 25 O . O 0 O MGy O ) O have O been O analysed O using O a O high O - O throughput O quantitative O approach O , O providing O a O measure O of O the O electron B-evidence - I-evidence density I-evidence distribution I-evidence for O each O refined O atom O with O increasing O dose O , O D B-evidence loss I-evidence . O The O RNA B-chemical was O found O to O be O substantially O more O radiation B-protein_state - I-protein_state resistant I-protein_state than O the O protein O , O even O at O the O highest O doses O investigated O (∼ O 25 O . O 0 O MGy O ), O which O is O in O strong O concurrence O with O our O previous O SRD B-experimental_method investigation I-experimental_method of O the O C B-complex_assembly . I-complex_assembly Esp1396I I-complex_assembly protein O – O DNA B-chemical complex O ( O Bury O et O al O ., O 2015 O ). O For O example O , O Asp17 B-residue_name_number is O located O ∼ O 6 O . O 8 O Å O from O the O G1 B-residue_name_number base O , O outside O the O RNA B-site - I-site binding I-site interfaces I-site , O and O has O indistinguishable O Cγ O atom O D O loss B-evidence dose I-evidence - I-evidence dynamics I-evidence between O RNA B-protein_state - I-protein_state bound I-protein_state and O nonbound B-protein_state TRAP B-complex_assembly ( O p O > O 0 O . O 9 O ). O However O , O in O the O current O MX B-experimental_method study O at O 100 O K O , O the O main O damaging O species O are O believed O to O be O migrating O LEEs O and O holes O produced O directly O within O the O protein B-complex_assembly – I-complex_assembly RNA I-complex_assembly components O or O in O closely O associated O solvent O . O The O results O presented O here O suggest O that O biologically O relevant O nucleoprotein B-complex_assembly complexes O also O exhibit O prolonged O life O - O doses O under O the O effect O of O LEE O - O induced O structural O changes O , O involving O direct O physical O protection O of O key O RNA B-site - I-site binding I-site residues I-site . O Such O reduced O radiation O - O sensitivity O in O this O case O ensures O that O the O interacting O protein O remains O bound B-protein_state long O enough O to O the O RNA B-chemical to O complete O its O function O , O even O whilst O exposed O to O ionizing O radiation O . O RNA B-chemical is O shown O is O yellow O . O Only O a O subset O of O key O TRAP B-complex_assembly residue O types O are O included O . O D O loss O calculated O for O all O side O - O chain O carboxyl O group O Glu B-residue_name Cδ O and O Asp B-residue_name Cγ O atoms O within O the O TRAP B-complex_assembly – I-complex_assembly RNA I-complex_assembly complex O for O a O dose O of O 19 O . O 3 O MGy O ( O d O 8 O ). O Another O challenge O will O be O to O find O out O where O IDA B-protein is O produced O in O the O plant B-taxonomy_domain and O what O causes O it O to O accumulate O in O specific O places O in O preparation O for O organ O shedding O . O The O HAESA B-protein ectodomain B-structure_element folds O into O a O superhelical B-structure_element assembly I-structure_element of O 21 O leucine B-structure_element - I-structure_element rich I-structure_element repeats I-structure_element . O ( O A O ) O Details O of O the O IDA B-site binding I-site pocket I-site . O The O IDA B-complex_assembly - I-complex_assembly HAESA I-complex_assembly and O SERK1 B-complex_assembly - I-complex_assembly HAESA I-complex_assembly complex O interfaces B-site are O conserved B-protein_state among O HAESA B-protein and O HAESA B-protein_type - I-protein_type like I-protein_type proteins I-protein_type from O different O plant B-taxonomy_domain species O . O The O peptide B-site binding I-site pocket I-site covers O HAESA B-protein LRRs B-structure_element 2 I-structure_element – I-structure_element 14 I-structure_element . O ( O D O ) O Close O - O up O view O of O the O entire O IDA B-protein ( O in O yellow O ) O peptide B-site binding I-site site I-site in O HAESA B-protein ( O in O blue O ). O Hydrogren O bonds O are O depicted O as O dotted O lines O ( O in O magenta O ), O a O water B-chemical molecule O is O shown O as O a O red O sphere O . O This B-structure_element sequence I-structure_element motif I-structure_element is O highly B-protein_state conserved I-protein_state among O IDA B-protein_type family I-protein_type members I-protein_type ( O IDA B-protein_type - I-protein_type LIKE I-protein_type PROTEINS I-protein_type , O IDLs B-protein_type ) O and O contains O a O central O Pro B-residue_name residue O , O presumed O to O be O post B-protein_state - I-protein_state translationally I-protein_state modified I-protein_state to O hydroxyproline B-residue_name ( O Hyp B-residue_name ; O Figure O 1A O ). O Active B-protein_state IDA B-protein_type - I-protein_type family I-protein_type peptide I-protein_type hormones I-protein_type are O hydroxyprolinated B-protein_state dodecamers B-structure_element . O no O detectable O binding O ). O ( O E O ) O Structural B-experimental_method superposition I-experimental_method of O the O active B-protein_state IDA B-protein ( O in O bonds O representation O , O in O gray O ) O and O IDL1 B-chemical peptide I-chemical ( O in O yellow O ) O hormones O bound B-protein_state to I-protein_state the O HAESA B-protein ectodomain B-structure_element . O Petal O break O - O strength O was O found O significantly O increased O in O almost O all O positions O ( O indicated O with O a O *) O for O haesa B-gene / O hsl2 B-gene and O serk1 B-gene - I-gene 1 I-gene mutant B-protein_state plants B-taxonomy_domain with O respect O to O the O Col O - O 0 O control O . O ( O B O ) O Analytical B-experimental_method size I-experimental_method - I-experimental_method exclusion I-experimental_method chromatography I-experimental_method . O The O central O Hyp64IDA B-residue_name_number is O buried O in O a O specific O pocket B-site formed O by O HAESA B-protein LRRs B-structure_element 8 I-structure_element – I-structure_element 10 I-structure_element , O with O its O hydroxyl O group O establishing O hydrogen O bonds O with O the O strictly B-protein_state conserved I-protein_state Glu266HAESA B-residue_name_number and O with O a O water B-chemical molecule O , O which O in O turn O is O coordinated O by O the O main O chain O oxygens O of O Phe289HAESA B-residue_name_number and O Ser311HAESA B-residue_name_number ( O Figure O 1E O ; O Figure O 1 O — O figure O supplement O 3 O ). O In O this O structure B-evidence , O no O additional O electron B-evidence density I-evidence accounts O for O the O PKGV B-structure_element motif I-structure_element at O the O IDA B-protein N O - O terminus O ( O Figure O 2A O , O B O ). O We O do O not O detect O interaction O between O HAESA B-protein and O a O synthetic B-protein_state peptide B-chemical missing B-protein_state the I-protein_state C I-protein_state - I-protein_state terminal I-protein_state Asn69IDA B-residue_name_number ( O ΔN69 B-mutant ), O highlighting O the O importance O of O the O polar O interactions O between O the O IDA B-protein carboxy O - O terminus O and O Arg407HAESA B-residue_name_number / O Arg409HAESA B-residue_name_number ( O Figures O 1F O , O 2D O ). O The O co B-protein_type - I-protein_type receptor I-protein_type kinase I-protein_type SERK1 B-protein allows O for O high O - O affinity O IDA O sensing O We O found O that O the O force O required O to O remove O the O petals O of O serk1 B-gene - I-gene 1 I-gene mutants B-protein_state is O significantly O higher O than O that O needed O for O wild B-protein_state - I-protein_state type I-protein_state plants B-taxonomy_domain , O as O previously O observed O for O haesa B-gene / O hsl2 B-gene mutants B-protein_state , O and O that O floral O abscission O is O delayed O in O serk1 B-gene - I-gene 1 I-gene ( O Figure O 3A O ). O In O vitro O , O the O LRR B-structure_element ectodomain I-structure_element of O SERK1 B-protein ( O residues O 24 B-residue_range – I-residue_range 213 I-residue_range ) O forms O stable B-protein_state , O IDA B-protein_state - I-protein_state dependent I-protein_state heterodimeric B-oligomeric_state complexes B-protein_state with I-protein_state HAESA B-protein in O size B-experimental_method exclusion I-experimental_method chromatography I-experimental_method experiments O ( O Figure O 3B O ). O We O next O titrated B-experimental_method SERK1 B-protein into O a O solution O containing O only O the O HAESA B-protein ectodomain B-structure_element . O In O this O case O , O there O was O no O detectable O interaction O between O receptor O and O co O - O receptor O , O while O in O the O presence B-protein_state of I-protein_state IDA B-protein , O SERK1 B-protein strongly O binds O HAESA B-protein with O a O dissociation B-evidence constant I-evidence in O the O mid O - O nanomolar O range O ( O Figure O 3C O ). O Upon O IDA B-protein binding O at O the O cell O surface O , O the O kinase B-structure_element domains I-structure_element of O HAESA B-protein and O SERK1 B-protein , O which O have O been O shown O to O be O active B-protein_state protein B-protein_type kinases I-protein_type , O may O interact O in O the O cytoplasm O to O activate O each O other O . O Consistently O , O the O HAESA B-protein kinase B-structure_element domain I-structure_element can O transphosphorylate O SERK1 B-protein and O vice O versa O in O in O vitro O transphosphorylation B-experimental_method assays I-experimental_method ( O Figure O 3E O ). O Crystal B-evidence structure I-evidence of O a O HAESA B-complex_assembly – I-complex_assembly IDA I-complex_assembly – I-complex_assembly SERK1 I-complex_assembly signaling O complex O . O ( O A O ) O Overview O of O the O ternary O complex O with O HAESA B-protein in O blue O ( O surface O representation O ), O IDA B-protein in O yellow O ( O bonds O representation O ) O and O SERK1 B-protein in O orange O ( O surface O view O ). O ( O B O ) O The O HAESA B-protein ectodomain B-structure_element undergoes O a O conformational O change O upon O SERK1 B-protein co O - O receptor O binding O . O Polar O contacts O of O SERK1 B-protein with O IDA B-protein are O shown O in O magenta O , O with O the O HAESA B-protein LRR B-structure_element domain I-structure_element in O gray O . O ( O D O ) O Details O of O the O zipper B-structure_element - I-structure_element like I-structure_element SERK1 B-site - I-site HAESA I-site interface I-site . O The O SERK1 B-protein ectodomain B-structure_element interacts O with O the O IDA B-site peptide I-site binding I-site site I-site using O a O loop B-structure_element region I-structure_element ( O residues O 51 B-residue_range - I-residue_range 59SERK1 I-residue_range ) O from O its O N O - O terminal O cap B-structure_element ( O Figure O 4A O , O C O ). O We O found O that O over B-experimental_method - I-experimental_method expression I-experimental_method of O wild B-protein_state - I-protein_state type I-protein_state IDA B-protein leads O to O early O floral O abscission O and O an O enlargement O of O the O abscission O zone O ( O Figure O 5C O – O E O ). O In O contrast O to O animal B-taxonomy_domain LRR B-protein_type receptors I-protein_type , O plant B-taxonomy_domain LRR B-structure_element - I-structure_element RKs I-structure_element harbor O spiral B-protein_state - I-protein_state shaped I-protein_state ectodomains B-structure_element and O thus O they O require O shape B-protein_state - I-protein_state complementary I-protein_state co B-protein_type - I-protein_type receptor I-protein_type proteins I-protein_type for O receptor O activation O . O However O our O results O show O that O SERK1 B-protein also O can O activate O this O process O upon O IDA B-protein sensing O , O indicating O that O SERKs B-protein_type may O fulfill O several O different O functions O in O the O course O of O the O abscission O process O . O The O central O Hyp B-residue_name residue O in O IDA B-protein is O found O buried O in O the O HAESA B-protein peptide B-site binding I-site surface I-site and O thus O this O post O - O translational O modification O may O regulate O IDA B-protein bioactivity O . O In O our O quantitative B-experimental_method biochemical I-experimental_method assays I-experimental_method , O the O presence B-protein_state of I-protein_state SERK1 B-protein dramatically O increases O the O HAESA B-protein binding O specificity O and O affinity O for O IDA B-protein . O A O ribbon O diagram O of O SERK1 B-protein in O the O same O orientation O is O shown O alongside O . O These O residues O are O not O involved O in O the O sensing O of O the O steroid B-chemical hormone I-chemical brassinolide B-chemical . O Different O plant B-taxonomy_domain peptide B-protein_type hormone I-protein_type families I-protein_type contain O a O C O - O terminal O ( B-structure_element Arg I-structure_element )- I-structure_element His I-structure_element - I-structure_element Asn I-structure_element motif I-structure_element , O which O in O IDA B-protein represents O the O co B-site - I-site receptor I-site recognition I-site site I-site . O Our O experiments O reveal O that O SERK1 B-protein recognizes O a O C O - O terminal O Arg B-structure_element - I-structure_element His I-structure_element - I-structure_element Asn I-structure_element motif I-structure_element in O IDA B-protein . O Among O these O are O the O CLE B-chemical peptides I-chemical regulating O stem O cell O maintenance O in O the O shoot O and O the O root O . O The O crotonyllysine B-residue_name mark O on O histone B-protein_type H3K18 B-protein_type is O produced O by O p300 B-protein , O a O histone B-protein_type acetyltransferase I-protein_type also O responsible O for O acetylation B-ptm of O histones O . O The O family O of O acetyllysine B-residue_name readers O has O been O expanded O with O the O discovery O that O the O YEATS B-structure_element ( O Yaf9 B-protein , O ENL B-protein , O AF9 B-protein , O Taf14 B-protein , O Sas5 B-protein ) O domains O of O human B-species AF9 B-protein and O yeast B-taxonomy_domain Taf14 B-protein are O capable O of O recognizing O the O histone B-protein_type mark O H3K9ac B-protein_type . O Similarly O , O activation O of O a O subset O of O genes O and O DNA O damage O repair O in O yeast B-taxonomy_domain require O the O acetyllysine B-residue_name binding O activity O of O the O Taf14 B-protein YEATS B-structure_element domain I-structure_element . O However O , O Taf14 B-protein is O also O found O in O a O number O of O chromatin O - O remodeling O complexes O ( O i O . O e O ., O INO80 B-complex_assembly , O SWI B-complex_assembly / I-complex_assembly SNF I-complex_assembly and O RSC B-complex_assembly ) O and O the O histone B-protein_type acetyltransferase I-protein_type complex O NuA3 B-complex_assembly , O indicating O a O multifaceted O role O of O Taf14 B-protein in O transcriptional O regulation O and O chromatin O biology O . O We O found O that O H3K9cr B-protein_type is O present O in O yeast B-taxonomy_domain and O is O dynamically O regulated O . O This O distinctive O mechanism O was O corroborated O through O mapping O the O Taf14 B-protein YEATS B-site - I-site H3K9cr I-site binding I-site interface I-site in O solution O using O NMR B-experimental_method chemical I-experimental_method shift I-experimental_method perturbation I-experimental_method analysis I-experimental_method ( O Supplementary O Fig O . O 2a O , O b O ). O Binding O of O the O Taf14 B-protein YEATS B-structure_element domain I-structure_element to O H3K9cr B-protein_type is O robust O . O We O concluded O that O H3K9cr B-protein_type is O the O preferred O target O of O this O domain O . O However O , O bromodomains B-structure_element did O not O interact O ( O or O associated O very O weakly O ) O with O longer O acyl O modifications O , O including O crotonyllysine B-residue_name , O as O in O the O case O of O BDs B-structure_element of O TAF1 B-protein and O BRD2 B-protein , O supporting O recent O reports O . O As O we O previously O showed O the O importance O of O acyllysine B-residue_name binding O by O the O Taf14 B-protein YEATS B-structure_element domain I-structure_element for O the O DNA O damage O response O and O gene O transcription O , O it O will O be O essential O in O the O future O to O define O the O physiological O role O of O crotonyllysine B-residue_name recognition O and O to O differentiate O the O activities O of O Taf14 B-protein that O are O due O to O binding O to O crotonyllysine B-residue_name and O acetyllysine B-residue_name modifications O . O Furthermore O , O the O functional O significance O of O crotonyllysine B-residue_name recognition O by O other O YEATS B-protein_type proteins O will O be O of O great O importance O to O elucidate O and O compare O . O The O structural O mechanism O for O the O recognition O of O H3K9cr B-protein_type Total O H3 B-protein_type was O used O as O a O loading O control O . O ( O c O ) O Superimposed O 1H B-experimental_method , I-experimental_method 15N I-experimental_method HSQC I-experimental_method spectra B-evidence of O Taf14 B-protein YEATS B-structure_element recorded O as O H3K9cr5 B-chemical - I-chemical 13 I-chemical and O H3K9ac5 B-chemical - I-chemical 13 I-chemical peptides O were O titrated B-experimental_method in O . O Although O a O Thr1Ser B-mutant mutant B-protein_state is O active B-protein_state , O it O is O less O efficient O compared O with O wild B-protein_state type I-protein_state because O of O the O unfavourable O orientation O of O Ser1 B-residue_name_number towards O incoming O substrates O . O The O proteasome B-complex_assembly , O an O essential O molecular O machine O , O is O a O threonine B-protein_type protease I-protein_type , O but O the O evolution O and O the O components O of O its O proteolytic O centre O are O unclear O . O In O the O last O stage O of O CP B-complex_assembly biogenesis O , O the O prosegments B-structure_element are O autocatalytically B-ptm removed I-ptm through O nucleophilic O attack O by O the O active B-site site I-site residue I-site Thr1 B-residue_name_number on O the O preceding O peptide O bond O involving O Gly B-residue_name_number (- I-residue_name_number 1 I-residue_name_number ). I-residue_name_number These O results O indicate O that O the O β1 B-protein and O β2 B-protein proteolytic O activities O are O not O essential O for O cell O survival O . O Our O present O crystallographic B-experimental_method analysis I-experimental_method of O the O β5 B-mutant - I-mutant T1A I-mutant pp B-chemical trans B-protein_state mutant B-protein_state demonstrates O that O the O mutation B-experimental_method per O se O does O not O structurally O alter O the O catalytic B-site active I-site site I-site and O that O the O trans B-experimental_method - I-experimental_method expressed I-experimental_method β5 B-protein propeptide B-structure_element is O not B-protein_state bound I-protein_state in O the O β5 B-protein substrate B-site - I-site binding I-site channel I-site ( O Supplementary O Fig O . O 1a O ). O Sequencing B-experimental_method of I-experimental_method the I-experimental_method plasmids I-experimental_method , O testing O them O in O both O published O yeast B-taxonomy_domain strain O backgrounds O and O site B-experimental_method - I-experimental_method directed I-experimental_method mutagenesis I-experimental_method revealed O that O the O β5 B-mutant - I-mutant T1A I-mutant mutant B-protein_state pp B-chemical cis B-protein_state is O viable O , O but O suffers O from O a O marked O growth O defect O that O requires O extended O incubation O of O 4 O – O 5 O days O for O initial O colony O formation O ( O Table O 1 O and O Supplementary O Methods O ). O In O subunit O β1 B-protein , O we O found O that O Gly B-residue_name_number (- I-residue_name_number 1 I-residue_name_number ) I-residue_name_number indeed O forms O a O sharp B-structure_element turn I-structure_element , O which O relaxes O on O prosegment B-ptm cleavage I-ptm ( O Fig O . O 1a O and O Supplementary O Fig O . O 2a O ). O Regarding O the O β2 B-protein propeptide B-structure_element , O Thr B-residue_name_number (- I-residue_name_number 2 I-residue_name_number ) I-residue_name_number occupies O the O S1 B-site pocket I-site but O is O less O deeply O anchored O compared O with O Leu B-residue_name_number (- I-residue_name_number 2 I-residue_name_number ) I-residue_name_number in O β1 B-protein , O which O might O be O due O to O the O rather O large O β2 B-protein - O S1 B-site pocket I-site created O by O Gly45 B-residue_name_number . O Nevertheless O , O both O Leu B-residue_name_number (- I-residue_name_number 2 I-residue_name_number ) I-residue_name_number and O Thr B-residue_name_number (- I-residue_name_number 2 I-residue_name_number ) I-residue_name_number were O found O to O occupy O the O S1 B-site specificity I-site pocket I-site formed O by O Met45 B-residue_name_number ( O Fig O . O 2a O , O b O and O Supplementary O Fig O . O 4f O – O h O ). O Bearing O in O mind O that O in O contrast O to O Thr B-residue_name_number (- I-residue_name_number 2 I-residue_name_number ) I-residue_name_number in O β2 B-protein , O Leu B-residue_name_number (- I-residue_name_number 2 I-residue_name_number ) I-residue_name_number in O subunit O β1 B-protein is O not B-protein_state conserved I-protein_state among O species O ( O Supplementary O Fig O . O 3a O ), O we O created B-experimental_method a O β2 B-mutant - I-mutant T I-mutant (- I-mutant 2 I-mutant ) I-mutant V I-mutant proteasome B-complex_assembly mutant B-protein_state . O Notably O , O the O 2FO B-evidence – I-evidence FC I-evidence electron I-evidence - I-evidence density I-evidence map I-evidence displays O a O different O orientation O for O the O β2 B-protein propeptide B-structure_element than O has O been O observed O for O the O β2 B-mutant - I-mutant T1A I-mutant proteasome B-complex_assembly . O The O active B-site site I-site of O the O proteasome B-complex_assembly Instead O , O Lys33NH2 B-residue_name_number , O which O is O in O hydrogen O - O bonding O distance O to O Thr1Oγ B-residue_name_number ( O 2 O . O 7 O Å O ) O in O all O catalytically B-protein_state active I-protein_state β B-protein subunits I-protein ( O Fig O . O 3a O , O b O ), O was O proposed O to O serve O as O the O proton O acceptor O . O In O agreement O , O an O E17A B-mutant mutant B-protein_state in O the O proteasomal O β B-protein - I-protein subunit I-protein of O the O archaeon B-taxonomy_domain Thermoplasma B-species acidophilum I-species prevents O autolysis B-ptm and O catalysis O . O Strikingly O , O although O the O X B-evidence - I-evidence ray I-evidence data I-evidence on O the O β5 B-mutant - I-mutant D17N I-mutant mutant B-protein_state with O the O propeptide B-structure_element expressed B-experimental_method in O cis B-protein_state and O in O trans B-protein_state looked O similar O , O there O was O a O pronounced O difference O in O their O growth O phenotypes O observed O ( O Supplementary O Fig O . O 6a O and O Supplementary O Fig O . O 7b O ). O Whereas O Asn B-residue_name can O to O some O degree O replace O Asp166 B-residue_name_number due O to O its O carbonyl O group O in O the O side O chain O , O Ala B-residue_name at O this O position O was O found O to O prevent O both O autolysis B-ptm and O catalysis O . O His B-residue_name_number (- I-residue_name_number 2 I-residue_name_number ) I-residue_name_number occupies O the O S2 B-site pocket I-site like O observed O for O the O β5 B-mutant - I-mutant T1A I-mutant - I-mutant K81R I-mutant mutant B-protein_state , O but O in O contrast O to O the O latter O , O the O propeptide B-structure_element in O the O T1C B-mutant mutant B-protein_state adopts O an O antiparallel B-structure_element β I-structure_element - I-structure_element sheet I-structure_element conformation O as O known O from O inhibitors O like O MG132 B-chemical ( O Fig O . O 4c O – O e O and O Supplementary O Fig O . O 9b O ). O Activity B-experimental_method assays I-experimental_method with O the O β5 B-protein - O specific O substrate O Suc B-chemical - I-chemical LLVY I-chemical - I-chemical AMC I-chemical demonstrated O that O the O ChT O - O L O activity O of O the O T1S B-mutant mutant B-protein_state is O reduced O by O 40 O – O 45 O % O compared O with O WT B-protein_state proteasomes B-complex_assembly depending O on O the O incubation O temperature O ( O Fig O . O 4b O and O Supplementary O Fig O . O 9c O ). O In O vitro O , O the O mutant B-protein_state proteasome B-complex_assembly is O less O susceptible O to O proteasome B-complex_assembly inhibition O by O bortezomib B-chemical ( O 3 O . O 7 O - O fold O ) O and O carfilzomib B-chemical ( O 1 O . O 8 O - O fold O ; O Fig O . O 5 O ). O The O 20S B-complex_assembly proteasome I-complex_assembly CP B-complex_assembly is O the O major O non B-protein_type - I-protein_type lysosomal I-protein_type protease I-protein_type in O eukaryotic B-taxonomy_domain cells O , O and O its O assembly O is O highly O organized O . O The O β B-protein - I-protein subunit I-protein propeptides B-structure_element , O particularly O that O of O β5 B-protein , O are O key O factors O that O help O drive O proper O assembly O of O the O CP B-complex_assembly complex O . O We O propose O a O catalytic B-site triad I-site for O the O active B-site site I-site of O the O CP B-complex_assembly consisting O of O residues O Thr1 B-residue_name_number , O Lys33 B-residue_name_number and O Asp B-residue_name / O Glu17 B-residue_name_number , O which O are O conserved O among O all O proteolytically O active O eukaryotic B-taxonomy_domain , O bacterial B-taxonomy_domain and O archaeal B-taxonomy_domain proteasome B-complex_assembly subunits O . O The O resulting O uncharged O Thr1NH2 B-residue_name_number is O hydrogen O - O bridged O to O the O C3 O - O OH O group O . O In O agreement O , O acetylation B-ptm of O the O Thr1 B-residue_name_number N O terminus O irreversibly O blocks O hydrolytic O activity O , O and O binding O of O substrates O is O prevented O for O steric O reasons O . O This O interpretation O agrees O with O the O strongly O reduced O catalytic O activity O of O the O β5 B-mutant - I-mutant D166N I-mutant mutant B-protein_state on O the O one O hand O , O and O the O ability O to O react O readily O with O carfilzomib B-chemical on O the O other O . O We O also O observed O slightly O lower O affinity O of O the O β5 B-mutant - I-mutant T1S I-mutant mutant B-protein_state yCP B-complex_assembly for O the O Food O and O Drug O Administration O - O approved O proteasome B-complex_assembly inhibitors O bortezomib B-chemical and O carfilzomib B-chemical . O In O contrast O to O Thr1 B-residue_name_number , O the O hydroxyl O group O of O Ser1 B-residue_name_number occupies O the O position O of O the O Thr1 B-residue_name_number methyl O side O chain O in O the O WT B-protein_state enzyme B-complex_assembly , O which O requires O its O reorientation O relative O to O the O substrate O to O allow O cleavage O ( O Fig O . O 4g O , O h O ). O Architecture O and O proposed O reaction O mechanism O of O the O proteasomal O active B-site site I-site . O Thr1OH B-residue_name_number is O hydrogen O - O bonded O to O Lys33NH2 B-residue_name_number ( O 2 O . O 7 O Å O ), O which O in O turn O interacts O with O Asp17Oδ B-residue_name_number . O Autolysis B-ptm ( O left O set O of O structures O ) O is O initiated O by O deprotonation O of O Thr1OH B-residue_name_number via O Lys33NH2 B-residue_name_number and O the O formation O of O a O tetrahedral O transition O state O . O Next O , O Thr1NH2 B-residue_name_number polarizes O a O water B-chemical molecule O for O the O nucleophilic O attack O of O the O acyl O - O enzyme O intermediate O . O ( O c O ) O Illustration O of O the O 2FO B-evidence – I-evidence FC I-evidence electron I-evidence - I-evidence density I-evidence map I-evidence ( O blue O mesh O contoured O at O 1σ O ) O for O the O β5 B-mutant - I-mutant T1C I-mutant propeptide B-structure_element fragment O . O ( O h O ) O The O methyl O group O of O Thr1 B-residue_name_number is O anchored O by O hydrophobic O interactions O with O Ala46Cβ B-residue_name_number and O Thr3Cγ B-residue_name_number . O