mevol's picture
adding all relevant files for independent validation set
b5f5589
raw
history blame contribute delete
No virus
65.2 kB
Biochemical B-experimental_method
and I-experimental_method
structural I-experimental_method
characterization I-experimental_method
of O
a O
DNA B-protein_type
N6 I-protein_type
- I-protein_type
adenine I-protein_type
methyltransferase I-protein_type
from O
Helicobacter B-species
pylori I-species
DNA B-ptm
N6 I-ptm
- I-ptm
methyladenine I-ptm
modification O
plays O
an O
important O
role O
in O
regulating O
a O
variety O
of O
biological O
functions O
in O
bacteria B-taxonomy_domain
. O
However O
, O
the O
mechanism O
of O
sequence O
- O
specific O
recognition O
in O
N6 B-ptm
- I-ptm
methyladenine I-ptm
modification O
remains O
elusive O
. O
M1 B-protein
. I-protein
HpyAVI I-protein
, O
a O
DNA B-protein_type
N6 I-protein_type
- I-protein_type
adenine I-protein_type
methyltransferase I-protein_type
from O
Helicobacter B-species
pylori I-species
, O
shows O
more O
promiscuous O
substrate O
specificity O
than O
other O
enzymes O
. O
Here O
, O
we O
present O
the O
crystal B-evidence
structures I-evidence
of O
cofactor B-protein_state
- I-protein_state
free I-protein_state
and O
AdoMet B-protein_state
- I-protein_state
bound I-protein_state
structures B-evidence
of O
this O
enzyme O
, O
which O
were O
determined O
at O
resolutions O
of O
3 O
. O
0 O
Å O
and O
3 O
. O
1 O
Å O
, O
respectively O
. O
The O
core O
structure O
of O
M1 B-protein
. I-protein
HpyAVI I-protein
resembles O
the O
canonical O
AdoMet B-protein_type
- I-protein_type
dependent I-protein_type
MTase I-protein_type
fold O
, O
while O
the O
putative O
DNA B-site
binding I-site
regions I-site
considerably O
differ O
from O
those O
of O
the O
other O
MTases B-protein_type
, O
which O
may O
account O
for O
the O
substrate O
promiscuity O
of O
this O
enzyme O
. O
Site B-experimental_method
- I-experimental_method
directed I-experimental_method
mutagenesis I-experimental_method
experiments O
identified O
residues O
D29 B-residue_name_number
and O
E216 B-residue_name_number
as O
crucial O
amino O
acids O
for O
cofactor O
binding O
and O
the O
methyl B-chemical
transfer O
activity O
of O
the O
enzyme O
, O
while O
P41 B-residue_name_number
, O
located O
in O
a O
highly B-protein_state
flexible I-protein_state
loop B-structure_element
, O
playing O
a O
determinant O
role O
for O
substrate O
specificity O
. O
Taken O
together O
, O
our O
data O
revealed O
the O
structural O
basis O
underlying O
DNA B-protein_type
N6 I-protein_type
- I-protein_type
adenine I-protein_type
methyltransferase I-protein_type
substrate O
promiscuity O
. O
DNA B-ptm
methylation I-ptm
is O
a O
common O
form O
of O
modification O
on O
nucleic O
acids O
occurring O
in O
both O
prokaryotes B-taxonomy_domain
and O
eukaryotes B-taxonomy_domain
. O
Such O
a O
modification O
creates O
a O
signature O
motif O
recognized O
by O
DNA B-chemical
- O
interacting O
proteins O
and O
functions O
as O
a O
mechanism O
to O
regulate O
gene O
expression O
. O
DNA B-ptm
methylation I-ptm
is O
mediated O
by O
DNA B-protein_type
methyltransferases I-protein_type
( O
MTases B-protein_type
), O
which O
catalyze O
the O
transfer O
of O
a O
methyl B-chemical
group O
from O
S B-chemical
- I-chemical
adenosyl I-chemical
- I-chemical
L I-chemical
- I-chemical
methionine I-chemical
( O
AdoMet B-chemical
) O
to O
a O
given O
position O
of O
a O
particular O
DNA B-chemical
base O
within O
a O
specific O
DNA B-chemical
sequence O
. O
Three O
classes O
of O
DNA B-protein_type
MTases I-protein_type
have O
been O
identified O
to O
transfer O
a O
methyl B-chemical
group O
to O
different O
positions O
of O
DNA B-chemical
bases O
. O
C5 B-protein_type
- I-protein_type
cytosine I-protein_type
MTases I-protein_type
, O
for O
example O
, O
methylate O
C5 O
of O
cytosine B-residue_name
( O
m5C B-ptm
). O
In O
eukaryotes B-taxonomy_domain
, O
m5C B-ptm
plays O
an O
important O
role O
in O
gene O
expression O
, O
chromatin O
organization O
, O
genome O
maintenance O
and O
parental O
imprinting O
, O
and O
is O
involved O
in O
a O
variety O
of O
human B-species
diseases O
including O
cancer O
. O
By O
contrast O
, O
the O
functions O
of O
the O
prokaryotic B-taxonomy_domain
DNA B-protein_type
cytosine I-protein_type
MTase I-protein_type
remain O
unknown O
. O
N4 B-protein_type
- I-protein_type
cytosine I-protein_type
MTases I-protein_type
, O
which O
are O
frequently O
present O
in O
thermophilic B-taxonomy_domain
or O
mesophilic B-taxonomy_domain
bacteria B-taxonomy_domain
, O
transfer O
a O
methyl B-chemical
group O
to O
the O
exocyclic O
amino O
group O
of O
cytosine B-residue_name
( O
4mC B-ptm
). O
N4 B-ptm
methylation I-ptm
seems O
to O
be O
primarily O
a O
component O
of O
bacterial B-taxonomy_domain
immune O
system O
against O
invasion O
by O
foreign O
DNA B-chemical
, O
such O
as O
conjugative O
plasmids O
and O
bacteriophages B-taxonomy_domain
. O
The O
third O
group O
, O
N6 B-protein_type
- I-protein_type
adenine I-protein_type
MTases I-protein_type
methylate O
the O
exocyclic O
amino O
groups O
of O
adenine B-residue_name
( O
6mA B-ptm
), O
which O
exists O
in O
prokaryotes B-taxonomy_domain
as O
a O
signal O
for O
genome O
defense O
, O
DNA B-chemical
replication O
and O
repair O
, O
regulation O
of O
gene O
expression O
, O
control O
of O
transposition O
and O
host O
- O
pathogen O
interactions O
. O
Recent O
studies O
utilizing O
new O
sequencing O
approaches O
have O
showed O
the O
existence O
of O
6mA B-ptm
in O
several O
eukaryotic B-taxonomy_domain
species O
. O
DNA B-chemical
6mA B-ptm
modification O
is O
associated O
with O
important O
biological O
processes O
including O
nucleosome O
distribution O
close O
to O
the O
transcription O
start O
sites O
in O
Chlamydomonas B-taxonomy_domain
, O
carrying O
heritable O
epigenetic O
information O
in O
C B-species
. I-species
elegans I-species
or O
controlling O
development O
of O
Drosophila B-taxonomy_domain
. O
All O
the O
three O
types O
of O
methylation B-ptm
exist O
in O
prokaryotes B-taxonomy_domain
, O
and O
most O
DNA B-protein_type
MTases I-protein_type
are O
components O
of O
the O
restriction O
- O
modification O
( O
R O
- O
M O
) O
systems O
. O
O
R O
O
stands O
for O
a O
restriction B-protein_type
endonuclease I-protein_type
cleaving O
specific O
DNA B-chemical
sequences O
, O
while O
O
M O
O
symbolizes O
a O
modification B-protein_type
methyltransferase I-protein_type
rendering O
these O
sequences O
resistant O
to O
cleavage O
. O
The O
cooperation O
of O
these O
two O
enzymes O
provides O
a O
defensive O
mechanism O
to O
protect O
bacteria B-taxonomy_domain
from O
infection O
by O
bacteriophages B-taxonomy_domain
. O
The O
R O
- O
M O
systems O
are O
classified O
into O
three O
types O
based O
on O
specific O
structural O
features O
, O
position O
of O
DNA B-chemical
cleavage O
and O
cofactor O
requirements O
. O
In O
types O
I O
and O
III O
, O
the O
DNA B-protein_type
adenine I-protein_type
or I-protein_type
cytosine I-protein_type
methyltransferase I-protein_type
is O
part O
of O
a O
multi O
- O
subunit O
enzyme O
that O
catalyzes O
both O
restriction O
and O
modification O
. O
By O
contrast O
, O
two O
separate O
enzymes O
exist O
in O
type O
II O
systems O
, O
where O
a O
restriction B-protein_type
endonuclease I-protein_type
and O
a O
DNA B-protein_type
adenine I-protein_type
or I-protein_type
cytosine I-protein_type
methyltransferase I-protein_type
recognize O
the O
same O
targets O
. O
To O
date O
, O
a O
number O
of O
bacterial B-taxonomy_domain
DNA B-protein_type
MTases I-protein_type
have O
been O
structurally B-experimental_method
characterized I-experimental_method
, O
covering O
enzymes O
from O
all O
the O
three O
classes O
. O
All O
these O
MTases B-protein_type
exhibit O
high O
similarity O
in O
their O
overall O
architectures O
, O
which O
are O
generally O
folded O
into O
two O
domains O
: O
a O
conserved B-protein_state
larger O
catalytic B-structure_element
domain I-structure_element
comprising O
an O
active B-site
site I-site
for O
methyl B-chemical
transfer O
and O
a O
site O
for O
AdoMet B-chemical
- O
binding O
, O
and O
a O
smaller O
target B-structure_element
( I-structure_element
DNA I-structure_element
)- I-structure_element
recognition I-structure_element
domain I-structure_element
( O
TRD B-structure_element
) O
containing O
variable O
regions O
implicated O
in O
sequence O
- O
specific O
DNA B-chemical
recognition O
and O
the O
infiltration O
of O
the O
DNA B-chemical
to O
flip O
the O
target O
base O
. O
Conserved B-protein_state
amino O
acid O
motifs O
have O
been O
identified O
from O
reported O
structures B-evidence
, O
including O
ten O
motifs O
( O
I B-structure_element
- I-structure_element
X I-structure_element
) O
in O
cytosine B-protein_type
MTases I-protein_type
and O
nine O
motifs O
( O
I B-structure_element
- I-structure_element
VIII I-structure_element
and O
X B-structure_element
) O
in O
adenine B-protein_type
MTases I-protein_type
, O
all O
of O
which O
are O
arranged O
in O
an O
almost O
constant O
order O
. O
According O
to O
the O
linear O
arrangement O
of O
three O
conserved B-protein_state
domains O
, O
exocyclic B-protein_type
amino I-protein_type
MTases I-protein_type
are O
subdivided O
into O
six O
groups O
( O
namely O
α B-protein_type
, O
β B-protein_type
, O
γ B-protein_type
, O
ζ B-protein_type
, O
δ B-protein_type
and O
ε B-protein_type
). O
N6 B-protein_type
- I-protein_type
adenine I-protein_type
and I-protein_type
N4 I-protein_type
- I-protein_type
cytosine I-protein_type
MTases I-protein_type
, O
in O
particular O
, O
are O
closely O
related O
by O
sharing O
common O
structural O
features O
. O
Despite O
the O
considerable O
similarity O
among O
bacterial B-taxonomy_domain
MTases B-protein_type
, O
some O
differences O
were O
observed O
among O
the O
enzymes O
from O
various O
species O
. O
For O
example O
, O
the O
structural O
regions O
of O
MTases B-protein_type
beyond O
the O
catalytic B-structure_element
domain I-structure_element
are O
rather O
variable O
, O
such O
as O
the O
C B-structure_element
- I-structure_element
terminal I-structure_element
domain I-structure_element
of O
M B-protein
. I-protein
TaqI I-protein
, O
the O
extended O
arm O
of O
M B-protein
. I-protein
MboIIA I-protein
and O
M B-protein
. I-protein
RsrI I-protein
, O
the O
helix B-structure_element
bundle I-structure_element
of O
EcoDam B-protein
, O
and O
so O
on O
. O
DNA B-ptm
methylation I-ptm
is O
thought O
to O
influence O
bacterial B-taxonomy_domain
virulence O
. O
DNA B-protein_type
adenine I-protein_type
methyltransferase I-protein_type
has O
been O
shown O
to O
play O
a O
crucial O
role O
in O
colonization O
of O
deep O
tissue O
sites O
in O
Salmonella B-species
typhimurium I-species
and O
Aeromonas B-species
hydrophila I-species
. O
Importantly O
, O
DNA B-ptm
adenine I-ptm
methylation I-ptm
is O
a O
global O
regulator O
of O
genes O
expressed O
during O
infection O
and O
inhibitors O
of O
DNA B-ptm
adenine I-ptm
methylation I-ptm
are O
likely O
to O
have O
a O
broad O
antimicrobial O
action O
. O
Dam B-protein_type
was O
considered O
a O
promising O
target O
for O
antimicrobial O
drug O
development O
. O
Helicobacter B-species
pylori I-species
is O
a O
Gram B-taxonomy_domain
- I-taxonomy_domain
negative I-taxonomy_domain
bacterium I-taxonomy_domain
that O
persistently O
colonizes O
in O
human B-species
stomach O
worldwide O
. O
H B-species
. I-species
pylori I-species
is O
involved O
in O
90 O
% O
of O
all O
gastric O
malignancies O
, O
infecting O
nearly O
50 O
% O
of O
the O
world O
' O
s O
population O
and O
is O
the O
most O
crucial O
etiologic O
agent O
for O
gastric O
adenocarcinoma O
. O
H B-species
. I-species
pylori I-species
strains O
possess O
a O
few O
R O
- O
M O
systems O
like O
other O
bacteria B-taxonomy_domain
to O
function O
as O
defensive O
systems O
. O
H B-species
. I-species
pylori I-species
26695 I-species
, O
for O
example O
, O
has O
23 O
R O
- O
M O
systems O
. O
Methyltransferases B-protein_type
were O
suggested O
to O
be O
involved O
in O
H B-species
. I-species
pylori I-species
pathogenicity O
. O
M1 B-protein
. I-protein
HpyAVI I-protein
is O
a O
DNA B-protein_type
adenine I-protein_type
MTase I-protein_type
that O
belongs O
to O
the O
type O
II O
R O
- O
M O
system O
. O
This O
system O
contains O
two O
DNA B-protein_type
MTases I-protein_type
named O
M1 B-protein
. I-protein
HpyAVI I-protein
and O
M2 B-protein
. I-protein
HpyAVI I-protein
, O
and O
a O
putative O
restriction B-protein_type
enzyme I-protein_type
. O
M1 B-protein
. I-protein
HpyAVI I-protein
encoded O
by O
ORF O
hp0050 B-gene
is O
an O
N6 B-protein_type
- I-protein_type
adenine I-protein_type
methyltransferase I-protein_type
belonging O
to O
the O
β B-protein_type
- I-protein_type
class I-protein_type
MTase I-protein_type
. O
It O
has O
been O
reported O
recently O
that O
this O
enzyme O
recognizes O
the O
sequence O
of O
5 B-chemical
- I-chemical
GAGG I-chemical
- I-chemical
3 I-chemical
, I-chemical
5 B-chemical
- I-chemical
GGAG I-chemical
- I-chemical
3 I-chemical
I-chemical
or O
5 B-chemical
- I-chemical
GAAG I-chemical
- I-chemical
3 I-chemical
I-chemical
and O
methylates O
adenines B-residue_name
in O
these O
sequences O
. O
Given O
that O
methylation B-ptm
of O
two O
adjacent O
adenines B-residue_name
on O
the O
same O
strand O
have O
never O
been O
observed O
for O
other O
N6 B-protein_type
- I-protein_type
adenine I-protein_type
MTases I-protein_type
, O
the O
methylation B-ptm
activity O
on O
5 B-chemical
- I-chemical
GAAG I-chemical
- I-chemical
3 I-chemical
I-chemical
seems O
to O
be O
a O
unique O
feature O
of O
M1 B-protein
. I-protein
HpyAVI I-protein
, O
compared O
with O
the O
homologs O
from O
other O
strains O
of O
H B-species
. I-species
pylori I-species
which O
is O
able O
to O
methylate O
only O
5 B-chemical
- I-chemical
GAGG I-chemical
- I-chemical
3 I-chemical
. I-chemical
The O
structural O
basis O
and O
the O
catalytic O
mechanism O
underlying O
such O
a O
distinct O
activity O
are O
not O
well O
understood O
due O
to O
the O
lack O
of O
an O
available O
3D O
structure B-evidence
of O
this O
enzyme O
. O
Here O
, O
we O
report O
the O
crystal B-evidence
structure I-evidence
of O
M1 B-protein
. I-protein
HpyAVI I-protein
from O
H B-species
. I-species
pylori I-species
26695 I-species
, O
which O
is O
the O
first O
determined O
N6 B-protein_type
- I-protein_type
adenine I-protein_type
MTase I-protein_type
structure B-evidence
in O
H B-species
. I-species
pylori I-species
. O
The O
structure B-evidence
reveals O
a O
similar O
architecture O
as O
the O
canonical O
fold O
of O
homologous O
proteins O
, O
but O
displays O
several O
differences O
in O
the O
loop B-structure_element
regions O
and O
TRD B-structure_element
. O
Based O
on O
structural B-experimental_method
and I-experimental_method
biochemical I-experimental_method
analyses I-experimental_method
, O
we O
then O
identified O
two O
conserved B-protein_state
amino O
acids O
, O
D29 B-residue_name_number
at O
the O
catalytic B-site
site I-site
and O
E216 B-residue_name_number
close O
to O
the O
C O
- O
terminus O
, O
as O
crucial O
residues O
for O
cofactor O
binding O
and O
methyltransferase B-protein_type
activity O
of O
M1 B-protein
. I-protein
HpyAVI I-protein
. O
In O
addition O
, O
a O
non B-protein_state
- I-protein_state
conserved I-protein_state
amino O
acid O
, O
P41 B-residue_name_number
, O
seems O
to O
play O
a O
key O
role O
in O
substrate O
recognition O
. O
Overall O
structure B-evidence
Recombinant O
full B-protein_state
- I-protein_state
length I-protein_state
M1 B-protein
. I-protein
HpyAVI I-protein
was O
produced O
as O
a O
soluble O
protein O
in O
Escherichia B-species
coli I-species
, O
but O
was O
quite O
unstable O
and O
tended O
to O
aggregate O
in O
low O
salt O
environment O
. O
The O
protein O
, O
however O
, O
remained O
fully O
soluble O
in O
a O
buffer O
containing O
higher O
concentration O
of O
sodium B-chemical
chloride I-chemical
(> O
300 O
mM O
), O
which O
prompted O
that O
M1 B-protein
. I-protein
HpyAVI I-protein
is O
likely O
a O
halophilic B-protein_state
protein O
. O
The O
cofactor B-protein_state
- I-protein_state
free I-protein_state
and O
AdoMet B-protein_state
- I-protein_state
bound I-protein_state
proteins O
were O
crystallized B-experimental_method
at O
different O
conditions O
. O
Both O
structures B-evidence
were O
determined O
by O
means O
of O
molecular B-experimental_method
replacement I-experimental_method
, O
and O
refined O
to O
3 O
. O
0 O
Å O
and O
3 O
. O
1 O
Å O
, O
respectively O
. O
Statistics O
of O
X B-experimental_method
- I-experimental_method
ray I-experimental_method
data I-experimental_method
collection I-experimental_method
and O
structure B-experimental_method
refinement I-experimental_method
were O
summarized O
in O
Table O
1 O
. O
Data O
collection O
and O
structure B-evidence
refinement I-evidence
statistics I-evidence
of O
M1 B-protein
. I-protein
HpyAVI I-protein
M1 B-protein
. I-protein
HpyAVI I-protein
M1 B-complex_assembly
. I-complex_assembly
HpyAVI I-complex_assembly
- I-complex_assembly
AdoMet I-complex_assembly
complex O
Data O
collection O
Wavelength O
( O
Å O
) O
1 O
. O
0000 O
0 O
. O
97772 O
Space O
group O
P43212 O
P65 O
Unit O
- O
cell O
parameters O
( O
Å O
, O
˚) O
a O
= O
b O
= O
69 O
. O
73 O
, O
c O
= O
532 O
. O
75α O
= O
β O
= O
γ O
= O
90 O
a O
= O
b O
= O
135 O
. O
60 O
, O
c O
= O
265 O
. O
15α O
= O
β O
= O
90 O
, O
γ O
= O
120 O
Resolution O
range O
( O
Å O
) O
a O
49 O
. O
09 O
- O
3 O
. O
00 O
( O
3 O
. O
09 O
- O
3 O
. O
00 O
) O
48 O
. O
91 O
- O
3 O
. O
10 O
( O
3 O
. O
18 O
- O
3 O
. O
10 O
) O
Unique O
reflections O
a O
27243 O
49833 O
Multiplicity O
a O
3 O
. O
7 O
( O
3 O
. O
8 O
) O
5 O
. O
6 O
( O
4 O
. O
0 O
) O
Completeness O
(%) O
a O
98 O
. O
7 O
( O
98 O
. O
9 O
) O
99 O
. O
7 O
( O
97 O
. O
8 O
) O
Mean O
I O
/ O
δ O
( O
I O
) O
a O
12 O
. O
1 O
( O
3 O
. O
4 O
) O
14 O
. O
0 O
( O
1 O
. O
9 O
) O
Solvent O
content O
(%) O
58 O
. O
67 O
61 O
. O
96 O
Rmergea O
0 O
. O
073 O
( O
0 O
. O
378 O
) O
0 O
. O
106 O
( O
0 O
. O
769 O
) O
Structure O
refinement O
Rwork O
0 O
. O
251 O
0 O
. O
221 O
Rfree O
0 O
. O
308 O
0 O
. O
276 O
R B-evidence
. I-evidence
m I-evidence
. I-evidence
s I-evidence
. I-evidence
d I-evidence
., O
bond O
lengths O
( O
Å O
) O
0 O
. O
007 O
0 O
. O
007 O
R B-evidence
. I-evidence
m I-evidence
. I-evidence
s I-evidence
. I-evidence
d I-evidence
., O
bond O
angles O
(˚) O
1 O
. O
408 O
1 O
. O
651 O
Ramachandran O
plot O
Favoured O
region O
(%) O
89 O
. O
44 O
91 O
. O
44 O
Allowed O
region O
(%) O
9 O
. O
58 O
7 O
. O
11 O
Outliers O
(%) O
0 O
. O
99 O
1 O
. O
45 O
Four O
and O
eight O
protein O
monomers B-oligomeric_state
resided O
in O
the O
asymmetric O
units O
of O
the O
two O
crystal B-evidence
structures I-evidence
. O
Some O
amino O
acids O
, O
particularly O
those O
within O
two O
loops B-structure_element
( O
residues O
32 B-residue_range
- I-residue_range
61 I-residue_range
and O
152 B-residue_range
- I-residue_range
172 I-residue_range
) O
in O
both O
structures B-evidence
, O
were O
poorly O
defined O
in O
electron B-evidence
density I-evidence
and O
had O
to O
be O
omitted O
from O
the O
refined O
models O
. O
The O
two O
structures B-evidence
are O
very O
similar O
to O
each O
other O
( O
Figure O
1 O
) O
and O
could O
be O
well O
overlaid O
with O
an O
RMSD B-evidence
of O
0 O
. O
76 O
Å O
on O
191 O
Cα O
atoms O
. O
The O
overall O
architecture O
of O
M1 B-protein
. I-protein
HpyAVI I-protein
revealed O
in O
these O
structures B-evidence
resembles O
the O
AdoMet B-protein_type
- I-protein_type
dependent I-protein_type
MTase I-protein_type
fold O
in O
which O
a O
twisted O
seven O
- O
stranded O
β B-structure_element
- I-structure_element
sheet I-structure_element
flanked O
by O
six O
α B-structure_element
- I-structure_element
helices I-structure_element
forms O
the O
structural O
core O
. O
Like O
the O
reported O
structures B-evidence
of O
the O
larger O
domain O
of O
MTases B-protein_type
, O
three O
helices B-structure_element
( O
αA B-structure_element
, O
αB B-structure_element
and O
αZ B-structure_element
) O
are O
located O
at O
one O
face O
of O
the O
central O
β B-structure_element
- I-structure_element
sheet I-structure_element
, O
while O
the O
other O
three O
αD B-structure_element
, O
αE B-structure_element
and O
αC B-structure_element
sit O
at O
the O
other O
side O
. O
All O
these O
conserved B-protein_state
structural O
motifs O
form O
a O
typical O
α B-structure_element
/ I-structure_element
β I-structure_element
Rossmann I-structure_element
fold I-structure_element
. O
The O
catalytic B-structure_element
motif I-structure_element
DPPY B-structure_element
lies O
in O
a O
loop B-structure_element
connecting O
αD B-structure_element
and O
β4 B-structure_element
, O
and O
the O
cofactor O
AdoMet B-chemical
binds O
in O
a O
neighboring O
cavity B-site
. O
The O
loop B-structure_element
( O
residues O
136 B-residue_range
- I-residue_range
166 I-residue_range
) O
located O
between O
β7 B-structure_element
and O
αZ B-structure_element
corresponds O
to O
a O
highly B-protein_state
diverse I-protein_state
region O
in O
other O
MTases B-protein_type
that O
is O
involved O
in O
target O
DNA B-chemical
recognition O
. O
The O
hairpin B-structure_element
loop I-structure_element
( O
residues O
101 B-residue_range
- I-residue_range
133 I-residue_range
) O
bridging O
β6 B-structure_element
and O
β7 B-structure_element
, O
which O
is O
proposed O
to O
bind O
DNA B-chemical
in O
the O
minor B-structure_element
groove I-structure_element
, O
displays O
a O
similar O
conformation O
as O
those O
observed O
in O
M B-protein
. I-protein
MboIIA I-protein
, O
M B-protein
. I-protein
RsrI I-protein
and O
M B-protein
. I-protein
pvuII I-protein
. O
The O
missing B-protein_state
loop B-structure_element
( O
residues O
33 B-residue_range
- I-residue_range
58 I-residue_range
) O
in O
the O
structure B-evidence
of O
M1 B-protein
. I-protein
HpyAVI I-protein
corresponds O
to O
loop B-structure_element
I I-structure_element
in O
M B-protein
. I-protein
TaqI I-protein
, O
which O
was O
also O
invisible O
in O
a O
structure B-evidence
without B-protein_state
DNA I-protein_state
. O
This O
loop B-structure_element
, O
however O
, O
was O
well B-protein_state
ordered I-protein_state
in O
an O
M B-evidence
. I-evidence
TaqI I-evidence
- I-evidence
DNA I-evidence
complex I-evidence
structure I-evidence
and O
was O
shown O
to O
play O
a O
crucial O
role O
in O
DNA B-ptm
methylation I-ptm
by O
contacting O
the O
flipping O
adenine B-residue_name
and O
recognizing O
specific O
DNA B-chemical
sequence O
. O
Overall O
structure B-evidence
of O
M1 B-protein
. I-protein
HpyAVI I-protein
A O
. O
Free B-protein_state
form O
B O
. O
AdoMet B-protein_state
- I-protein_state
bound I-protein_state
form O
. O
Ribbon O
diagram O
of O
M1 B-protein
. I-protein
HpyAVI I-protein
resembles O
an O
O
AdoMet B-protein_type
- I-protein_type
dependent I-protein_type
MTase I-protein_type
fold O
, O
a O
mixed O
seven O
- O
stranded O
β B-structure_element
- I-structure_element
sheet I-structure_element
flanked O
by O
six O
α B-structure_element
- I-structure_element
helices I-structure_element
, O
αA B-structure_element
, O
αB B-structure_element
, O
αZ B-structure_element
on O
one O
side O
and O
αD B-structure_element
, O
αE B-structure_element
, O
αC B-structure_element
on O
the O
other O
side O
, O
the O
cofactor O
AdoMet B-chemical
is O
bound B-protein_state
in I-protein_state
a O
cavity B-site
near O
the O
conserved B-protein_state
enzyme O
activity O
motif O
DPPY B-structure_element
. O
The O
α B-structure_element
- I-structure_element
helices I-structure_element
and O
β B-structure_element
- I-structure_element
strands I-structure_element
are O
labelled O
and O
numbered O
according O
to O
the O
commonly O
numbering O
rule O
for O
the O
known O
MTases B-protein_type
. O
The O
AdoMet B-chemical
molecule O
is O
shown O
in O
green O
. O
Dimeric B-oligomeric_state
state O
of O
M1 B-protein
. I-protein
HpyAVI I-protein
in O
crystal B-evidence
and O
solution B-experimental_method
Previous O
studies O
showed O
that O
some O
DNA B-protein_type
MTases I-protein_type
, O
e O
. O
g O
. O
M B-protein
. I-protein
BamHI I-protein
and O
M B-protein
. I-protein
EcoRI I-protein
, O
exist O
as O
monomer B-oligomeric_state
in O
solution O
, O
in O
agreement O
with O
the O
fact O
that O
a O
DNA B-chemical
substrate O
for O
a O
typical O
MTase B-protein_type
is O
hemimethylated B-protein_state
and O
therefore O
needs O
only O
a O
single O
methylation B-ptm
event O
to O
convert O
it O
into O
a O
fully B-protein_state
methylated I-protein_state
state O
. O
Increasing O
number O
of O
dimeric B-oligomeric_state
DNA B-protein_type
MTases I-protein_type
, O
however O
, O
has O
been O
identified O
from O
later O
studies O
. O
For O
instance O
, O
M B-protein
. I-protein
DpnII I-protein
, O
M B-protein
. I-protein
RsrI I-protein
, O
M B-protein
. I-protein
KpnI I-protein
, O
and O
M B-protein
. I-protein
MboIIA I-protein
have O
been O
found O
as O
dimers B-oligomeric_state
in O
solution O
. O
In O
addition O
, O
several O
MTases B-protein_type
including O
M B-protein
. I-protein
MboIIA I-protein
, O
M B-protein
. I-protein
RsrI I-protein
and O
TTH0409 B-protein
form O
tightly O
associated O
dimers B-oligomeric_state
in O
crystal B-evidence
structures I-evidence
. O
Nonetheless O
, O
some O
DNA B-protein_type
MTases I-protein_type
such O
as O
M B-protein
. I-protein
CcrMI I-protein
and O
the O
Bacillus B-species
amyloliquefaciens I-species
MTase B-protein_type
dissociate O
from O
dimer B-oligomeric_state
into O
monomer B-oligomeric_state
upon O
DNA B-chemical
- O
binding O
. O
According O
to O
the O
arrangement O
of O
the O
three O
conserved B-protein_state
domains O
, O
M1 B-protein
. I-protein
HpyAVI I-protein
belongs O
to O
the O
β B-protein_type
- I-protein_type
subgroup I-protein_type
, O
in O
which O
a O
conserved B-protein_state
motif O
NXXTX9 B-structure_element
I-structure_element
11AXRXFSXXHX4WX6 I-structure_element
I-structure_element
9 I-structure_element
YXFXLX3RX9 I-structure_element
I-structure_element
26NPX1 I-structure_element
I-structure_element
6NVWX29 I-structure_element
I-structure_element
34A I-structure_element
has O
been O
identified O
at O
the O
dimerization B-site
interface I-site
in O
crystal B-evidence
structures I-evidence
. O
Most O
of O
conserved B-protein_state
amino O
acids O
within O
that O
motif O
are O
present O
in O
the O
sequence O
of O
M1 B-protein
. I-protein
HpyAVI I-protein
( O
Figure O
2A O
), O
implying O
dimerization B-oligomeric_state
of O
this O
protein O
. O
In O
agreement O
, O
a O
dimer B-oligomeric_state
of O
M1 B-protein
. I-protein
HpyAVI I-protein
was O
observed O
in O
our O
crystal B-evidence
structures I-evidence
with O
the O
two O
monomers B-oligomeric_state
related O
by O
a O
two O
- O
fold O
axis O
( O
Figure O
2B O
and O
2C O
). O
An O
area O
of O
~ O
1900 O
Å2 O
was O
buried O
at O
the O
dimeric B-site
interface I-site
, O
taking O
up O
ca O
17 O
% O
of O
the O
total O
area O
. O
The O
dimeric B-oligomeric_state
architecture O
was O
greatly O
stabilized O
by O
hydrogen B-bond_interaction
bonds I-bond_interaction
and O
salt B-bond_interaction
bridges I-bond_interaction
formed O
among O
residues O
R86 B-residue_name_number
, O
D93 B-residue_name_number
and O
E96 B-residue_name_number
. O
In O
addition O
, O
comparison O
of O
the O
dimer B-oligomeric_state
structure B-evidence
of O
M1 B-protein
. I-protein
HpyAVI I-protein
with O
some O
other O
β B-protein_type
- I-protein_type
class I-protein_type
MTases I-protein_type
( O
M1 B-protein
. I-protein
MboIIA I-protein
, O
M B-protein
. I-protein
RsrI I-protein
and O
TTHA0409 B-protein
) O
suggested O
that O
the O
M1 B-protein
. I-protein
HpyAVI I-protein
dimer B-oligomeric_state
organized O
in O
a O
similar O
form O
as O
others O
( O
Figure O
S3 O
). O
M1 B-protein
. I-protein
HpyAVI I-protein
exists O
as O
dimer B-oligomeric_state
in O
crystal B-evidence
and O
solution O
A O
. O
A O
conserved B-protein_state
interface B-site
area I-site
of O
β B-protein_type
- I-protein_type
class I-protein_type
MTases I-protein_type
is O
defined O
in O
M1 B-protein
. I-protein
HpyAVI I-protein
. O
Residues O
that O
involved O
are O
signed O
in O
red O
color O
; O
Dimerization B-oligomeric_state
of O
free B-protein_state
- O
form O
M1 B-protein
. I-protein
HpyAVI I-protein
B O
. O
and O
cofactor B-protein_state
- I-protein_state
bound I-protein_state
M1 B-protein
. I-protein
HpyAVI I-protein
C O
. O
The O
two O
monomers B-oligomeric_state
are O
marked O
in O
green O
and O
blue O
, O
AdoMet B-chemical
molecules O
are O
marked O
in O
magenta O
. O
D O
. O
Gel B-experimental_method
- I-experimental_method
filtration I-experimental_method
analysis I-experimental_method
revealed O
that O
M1 B-protein
. I-protein
HpyAVI I-protein
exist O
as O
a O
dimer B-oligomeric_state
in O
solution O
. O
FPLC B-experimental_method
system O
coupled O
to O
a O
Superdex O
75 O
10 O
/ O
300 O
column O
. O
Elution B-evidence
profiles I-evidence
at O
280 O
nm O
( O
blue O
) O
and O
260 O
nm O
( O
red O
) O
are O
: O
different O
concentration O
( O
0 O
. O
05 O
, O
0 O
. O
1 O
, O
0 O
. O
2 O
, O
0 O
. O
5 O
mg O
/ O
ml O
) O
of O
M1 B-protein
. I-protein
HpyAVI I-protein
protein O
. O
To O
probe O
the O
oligomeric O
form O
of O
M1 B-protein
. I-protein
HpyAVI I-protein
in O
solution O
, O
different O
concentrations O
of O
purified O
enzyme O
was O
loaded O
onto O
a O
Superdex O
75 O
10 O
/ O
300 O
column O
. O
The O
protein O
was O
eluted O
at O
~ O
10 O
ml O
regardless O
of O
the O
protein O
concentrations O
, O
corresponding O
to O
a O
dimeric B-oligomeric_state
molecular B-evidence
mass I-evidence
of O
54 O
kDa O
( O
Figure O
2D O
). O
Our O
results O
clearly O
showed O
that O
M1 B-protein
. I-protein
HpyAVI I-protein
forms O
a O
dimer B-oligomeric_state
in O
both O
crystal B-evidence
and O
solution O
as O
other O
β B-protein_type
- I-protein_type
class I-protein_type
MTases I-protein_type
, O
which O
however O
disagrees O
with O
a O
previous O
investigation O
using O
dynamic B-experimental_method
light I-experimental_method
scattering I-experimental_method
( O
DLS B-experimental_method
) O
measurement O
and O
gel B-experimental_method
- I-experimental_method
filtration I-experimental_method
chromatography I-experimental_method
, O
suggesting O
that O
M1 B-protein
. I-protein
HpyAVI I-protein
is O
taking O
a O
monomeric B-oligomeric_state
state O
in O
solution O
. O
This O
variance O
might O
be O
caused O
by O
an O
addition O
of O
100 O
mM O
arginine B-chemical
before O
cell O
lysis O
to O
keep O
protein O
solubility O
and O
also O
by O
later O
replacement O
of O
arginine B-chemical
with O
30 O
% O
glycerol B-chemical
by O
dialysis O
. O
Structure B-experimental_method
comparisons I-experimental_method
As O
a O
β B-protein_type
- I-protein_type
class I-protein_type
N6 I-protein_type
adenine I-protein_type
MTase I-protein_type
, O
the O
M1 B-protein
. I-protein
HpyAVI I-protein
structure B-evidence
displayed O
a O
good O
similarity O
with O
M B-protein
. I-protein
MboIIA I-protein
( O
PDB O
ID O
1G60 O
) O
and O
M B-protein
. I-protein
RsrI I-protein
( O
PDB O
ID O
1NW7 O
), O
which O
are O
falling O
into O
the O
same O
subgroup O
. O
Superimposition B-experimental_method
of O
M1 B-protein
. I-protein
HpyAVI I-protein
onto O
them O
gave O
RMSDs B-evidence
of O
1 O
. O
63 O
Å O
and O
1 O
. O
9 O
Å O
on O
168 O
and O
190 O
Cα O
atoms O
, O
respectively O
. O
The O
most O
striking O
structural O
difference O
was O
found O
to O
locate O
on O
the O
TRD B-structure_element
region O
( O
residues O
133 B-residue_range
- I-residue_range
163 I-residue_range
in O
M1 B-protein
. I-protein
HpyAVI I-protein
) O
( O
Figure O
3A O
O
3C O
), O
where O
the O
secondary O
structures O
vary O
among O
these O
structures O
. O
By O
comparison O
with O
the O
other O
two O
enzymes O
that O
possess O
protruding O
arms O
containing O
several O
α B-structure_element
- I-structure_element
helices I-structure_element
and O
/ O
or O
β B-structure_element
- I-structure_element
strands I-structure_element
, O
the O
TRD B-structure_element
of O
M1 B-protein
. I-protein
HpyAVI I-protein
is O
much O
shorter O
in O
length O
( O
Figure O
S1 O
), O
wrapping O
more O
closely O
around O
the O
structural O
core O
and O
lacking B-protein_state
apparent O
secondary O
structures O
. O
Given O
the O
proposed O
role O
of O
the O
TRD B-structure_element
for O
DNA B-chemical
interaction O
at O
the O
major B-structure_element
groove I-structure_element
, O
some O
differences O
of O
DNA B-chemical
recognition O
mode O
can O
be O
expected O
. O
Another O
difference O
locates O
at O
the O
highly B-protein_state
flexible I-protein_state
loop B-structure_element
between O
β4 B-structure_element
and O
αD B-structure_element
( O
residues O
33 B-residue_range
- I-residue_range
58 I-residue_range
) O
of O
M1 B-protein
. I-protein
HpyAVI I-protein
, O
which O
was O
invisible O
in O
our O
structures B-evidence
but O
present O
in O
the O
structures B-evidence
of O
M B-protein
. I-protein
MboIIA I-protein
and O
M B-protein
. I-protein
RsrI I-protein
. O
Sequence B-experimental_method
alignment I-experimental_method
revealed O
that O
this O
region O
of O
M1 B-protein
. I-protein
HpyAVI I-protein
was O
longer O
than O
its O
counterparts O
by O
13 O
and O
16 O
amino O
acids O
respectively O
, O
which O
likely O
renders O
the O
H B-species
. I-species
pylori I-species
enzyme O
more O
flexible B-protein_state
. O
Structural B-experimental_method
comparisons I-experimental_method
between O
M1 B-protein
. I-protein
HpyAVI I-protein
and O
other O
DNA B-protein_type
MTases I-protein_type
A O
. O
M1 B-protein
. I-protein
HpyAVI I-protein
; O
B O
. O
M B-protein
. I-protein
MboIIA I-protein
; O
C O
. O
M B-protein
. I-protein
RsrI I-protein
; O
D O
. O
TTHA0409 B-protein
; O
E O
. O
DpnM B-protein
; O
F O
. O
M B-protein
. I-protein
TaqI I-protein
. O
M1 B-protein
. I-protein
HpyAVI I-protein
possesses O
only O
a O
long B-protein_state
disorder I-protein_state
TRD B-structure_element
region O
, O
compared O
with O
the O
structure B-protein_state
- I-protein_state
rich I-protein_state
TRD B-structure_element
of O
M B-protein
. I-protein
MboIIA I-protein
, O
M B-protein
. I-protein
RsrI I-protein
and O
TTHA0409 B-protein
, O
or O
the O
extra O
DNA B-structure_element
- I-structure_element
binding I-structure_element
domain I-structure_element
of O
DpnM B-protein
and O
M B-protein
. I-protein
TaqI I-protein
. O
The O
core O
structure O
is O
in O
cyan O
; O
TRD B-structure_element
of O
M1 B-protein
. I-protein
HpyAVI I-protein
, O
M B-protein
. I-protein
MboIIA I-protein
, O
M B-protein
. I-protein
RsrI I-protein
and O
TTHA0409 B-protein
is O
in O
red O
; O
The O
region O
between O
β4 B-structure_element
and O
αD B-structure_element
of O
M B-protein
. I-protein
MboIIA I-protein
and O
M B-protein
. I-protein
RsrI I-protein
is O
in O
green O
; O
DNA B-structure_element
- I-structure_element
binding I-structure_element
domain I-structure_element
of O
DpnM B-protein
is O
in O
magenta O
; O
The O
C B-structure_element
- I-structure_element
terminal I-structure_element
domain I-structure_element
of O
M B-protein
. I-protein
TaqI I-protein
is O
in O
orange O
. O
Structural B-experimental_method
comparison I-experimental_method
between O
M1 B-protein
. I-protein
HpyAVI I-protein
and O
a O
putative O
β B-protein_type
- I-protein_type
class I-protein_type
N4 I-protein_type
cytosine I-protein_type
MTase I-protein_type
named O
TTHA0409 B-protein
( O
PDB O
ID O
2ZIF O
) O
showed O
a O
good O
similarity O
as O
well O
, O
giving O
an O
RMSD B-evidence
of O
1 O
. O
73 O
Å O
on O
164 O
Cα O
atoms O
( O
Figure O
3D O
). O
Exactly O
like O
the O
above O
comparison O
, O
the O
most O
significant O
difference O
exists O
in O
the O
TRD B-structure_element
, O
where O
the O
structures B-evidence
vary O
in O
terms O
of O
length O
and O
presence O
of O
α B-structure_element
- I-structure_element
helices I-structure_element
( O
Figure O
S1 O
). O
M1 B-protein
. I-protein
HpyAVI I-protein
displayed O
a O
considerable O
structural O
dissimilarity O
in O
comparison O
with O
N6 B-protein_type
- I-protein_type
adenine I-protein_type
MTases I-protein_type
from O
other O
subgroups O
including O
the O
α B-protein_type
- I-protein_type
class I-protein_type
DpnM B-protein
( O
PDB O
ID O
2DPM O
) O
and O
the O
γ B-protein_type
- I-protein_type
class I-protein_type
M B-protein
. I-protein
TaqI I-protein
( O
PDB O
ID O
2ADM O
). O
Both O
comparisons O
gave O
RMSDs B-evidence
above O
3 O
. O
0 O
Å O
( O
Figure O
3E O
and O
3F O
). O
These O
two O
enzymes O
lack B-protein_state
a O
counterpart B-structure_element
loop I-structure_element
present O
in O
the O
TRD B-structure_element
of O
M1 B-protein
. I-protein
HpyAVI I-protein
, O
but O
instead O
rely O
on O
an O
extra O
domain O
for O
DNA B-chemical
binding O
and O
sequence O
recognition O
. O
Collectively O
, O
M1 B-protein
. I-protein
HpyAVI I-protein
possesses O
a O
long B-protein_state
disordered I-protein_state
TRD B-structure_element
, O
which O
is O
in O
sharp O
contrast O
to O
the O
secondary B-protein_state
structure I-protein_state
- I-protein_state
rich I-protein_state
TRD B-structure_element
in O
other O
β B-protein_type
- I-protein_type
class I-protein_type
N6 I-protein_type
adenine I-protein_type
or I-protein_type
N4 I-protein_type
cytosine I-protein_type
MTases I-protein_type
or O
the O
extra O
DNA O
binding O
domain O
present O
in O
DNA B-protein_type
MTases I-protein_type
from O
other O
subgroups O
. O
This O
striking O
difference O
may O
be O
a O
significant O
determinant O
of O
the O
wider O
substrate O
spectrum O
of O
this O
H B-species
. I-species
pylori I-species
enzyme O
. O
AdoMet B-site
- I-site
binding I-site
pocket I-site
The O
cofactor B-site
binding I-site
pocket I-site
of O
M1 B-protein
. I-protein
HpyAVI I-protein
is O
surrounded O
by O
residues O
7 B-residue_range
- I-residue_range
9 I-residue_range
, O
29 B-residue_range
- I-residue_range
31 I-residue_range
, O
165 B-residue_range
- I-residue_range
167 I-residue_range
, O
216 B-residue_range
- I-residue_range
218 I-residue_range
and O
221 B-residue_number
( O
Figure O
4A O
), O
which O
are O
conserved B-protein_state
among O
most O
of O
DNA B-protein_type
MTases I-protein_type
. O
A O
hydrogen B-bond_interaction
bond I-bond_interaction
between O
D29 B-residue_name_number
in O
the O
catalytic B-structure_element
motif I-structure_element
DPPY B-structure_element
and O
the O
amino O
group O
of O
bound B-protein_state
AdoMet B-chemical
is O
preserved O
as O
other O
MTase B-protein_type
structures B-evidence
. O
Residues O
D8 B-residue_name_number
and O
A9 B-residue_name_number
from O
hydrogen B-bond_interaction
- I-bond_interaction
bonds I-bond_interaction
with O
N6 O
and O
N1 O
of O
the O
purine B-chemical
ring O
, O
respectively O
, O
and O
E216 B-residue_name_number
also O
locates O
at O
hydrogen B-bond_interaction
bonding I-bond_interaction
distance O
with O
O2 O
O
and O
O3 O
O
of O
the O
ribose B-chemical
. O
In O
addition O
, O
H168 B-residue_name_number
, O
T200 B-residue_name_number
and O
S198 B-residue_name_number
contact O
the O
terminal O
carboxyl O
of O
AdoMet B-chemical
. O
Superposition B-experimental_method
of O
M1 B-protein
. I-protein
HpyAVI I-protein
with O
the O
five O
structures B-evidence
shown O
in O
Figure O
3 O
reveals O
that O
the O
orientation O
of O
cofactor O
is O
rather B-protein_state
conserved I-protein_state
except O
for O
M B-protein
. I-protein
TaqI I-protein
( O
Figure O
4B O
). O
The O
different O
conformation O
of O
the O
bound B-protein_state
cofactor O
observed O
in O
M B-protein
. I-protein
TaqI I-protein
might O
be O
attributable O
to O
the O
absence B-protein_state
of I-protein_state
corresponding O
residues O
of O
the O
conserved B-protein_state
AdoMet B-chemical
- O
binding O
motif O
FXGXG B-structure_element
in O
that O
structure B-evidence
. O
Structural B-experimental_method
and I-experimental_method
biochemical I-experimental_method
analyses I-experimental_method
define O
two O
conserved B-protein_state
residues O
D29 B-residue_name_number
and O
E216 B-residue_name_number
to O
be O
the O
key O
sites O
for O
AdoMet B-chemical
binding O
A O
. O
The O
cofactor B-site
- I-site
binding I-site
cavity I-site
of O
M1 B-protein
. I-protein
HpyAVI I-protein
. O
Residues O
( O
yellow O
) O
that O
form O
direct O
hydrogen B-bond_interaction
bonds I-bond_interaction
with O
AdoMet B-chemical
( O
green O
) O
are O
indicated O
, O
distance O
of O
the O
hydrogen B-bond_interaction
bond I-bond_interaction
is O
marked O
. O
B O
. O
Superposition B-experimental_method
of O
AdoMet B-chemical
in O
the O
structures B-evidence
of O
M1 B-protein
. I-protein
HpyAVI I-protein
( O
green O
), O
DpnM B-protein
( O
yellow O
) O
and O
M B-protein
. I-protein
TaqI I-protein
( O
orange O
). O
The O
AdoMet B-chemical
terminal O
carboxyl O
of O
M B-protein
. I-protein
TaqI I-protein
reveals O
different O
orientations O
. O
C O
. O
Cofactor B-evidence
binding I-evidence
affinity I-evidence
of O
wt B-protein_state
-/ O
mutants B-protein_state
M1 B-protein
. I-protein
HpyAVI I-protein
proteins O
analyzed O
by O
microscale B-experimental_method
thermophoresis I-experimental_method
( O
MST B-experimental_method
). O
The O
binding B-evidence
affinity I-evidence
was O
determined O
between O
fluorescently O
labelled O
M1 B-protein
. I-protein
HpyAVI I-protein
protein O
and O
unlabeled B-protein_state
AdoMet B-chemical
. O
AdoMet B-chemical
( O
15 O
nM O
to O
1 O
mM O
) O
was O
titrated B-experimental_method
into O
a O
fixed O
concentration O
of O
M1 B-protein
. I-protein
HpyAVI I-protein
wt B-protein_state
/ O
mutant B-protein_state
proteins O
( O
800 O
nM O
). O
The O
dissociation B-evidence
constant I-evidence
( O
KD B-evidence
) O
is O
yielded O
according O
to O
the O
law O
of O
mass O
action O
from O
the O
isotherm B-evidence
derived O
of O
the O
raw O
data O
: O
M1 B-protein
. I-protein
HpyAVI I-protein
- O
wt B-protein_state
: O
41 O
± O
6 O
μM O
; O
M1 B-mutant
. I-mutant
HpyAVI I-mutant
- I-mutant
D8A I-mutant
: O
212 O
± O
11 O
μM O
; O
M1 B-mutant
. I-mutant
HpyAVI I-mutant
- I-mutant
D29A I-mutant
: O
0 O
μM O
; O
M1 B-mutant
. I-mutant
HpyAVI I-mutant
- I-mutant
H168A I-mutant
: O
471 O
± O
51 O
μM O
; O
M1 B-mutant
. I-mutant
HpyAVI I-mutant
- I-mutant
S198A I-mutant
: O
242 O
± O
32 O
μM O
; O
M1 B-mutant
. I-mutant
HpyAVI I-mutant
- I-mutant
T200A I-mutant
: O
252 O
± O
28 O
μM O
; O
M1 B-mutant
. I-mutant
HpyAVI I-mutant
- I-mutant
E216A I-mutant
: O
0 O
μM O
. O
Standard O
for O
three O
replicates O
is O
indicated O
. O
D O
. O
DNA B-protein_type
methyltransferase I-protein_type
activity O
of O
wide B-protein_state
type I-protein_state
protein O
and O
the O
mutants B-protein_state
is O
quantified O
using O
radioactive B-experimental_method
assay I-experimental_method
. O
[ B-chemical
3H I-chemical
]- I-chemical
methyl I-chemical
transferred O
to O
duplex O
DNA B-chemical
containing O
5 B-chemical
- I-chemical
GAGG I-chemical
- I-chemical
3 I-chemical
I-chemical
was O
quantified O
by O
Beckman O
LS6500 O
for O
10 O
min O
, O
experiments O
were O
repeated O
for O
three O
times O
and O
data O
were O
corrected O
by O
subtraction O
of O
the O
background O
. O
E O
. O
Superposition B-experimental_method
of O
M1 B-protein
. I-protein
HpyAVI I-protein
( O
green O
) O
with O
M B-protein
. I-protein
MboIIA I-protein
( O
cyan O
) O
and O
M B-protein
. I-protein
RsrI I-protein
( O
magenta O
). O
Residues O
D29 B-residue_name_number
and O
E216 B-residue_name_number
are O
conserved B-protein_state
through O
all O
the O
DNA B-protein_type
MTases I-protein_type
mentioned O
in O
Figure O
3 O
( O
not O
shown O
in O
Figure O
4 O
). O
To O
confirm O
the O
key O
residues O
for O
ligand O
binding O
, O
we O
prepared O
a O
series O
of O
single B-experimental_method
mutants I-experimental_method
by O
replacing B-experimental_method
D8 B-residue_name_number
, O
D29 B-residue_name_number
, O
H168 B-residue_name_number
, O
S198 B-residue_name_number
, O
T200 B-residue_name_number
, O
E216 B-residue_name_number
with O
alanine B-residue_name
and O
investigated O
their O
ligand B-evidence
binding I-evidence
affinity I-evidence
using O
microscale B-experimental_method
thermophoresis I-experimental_method
( O
MST B-experimental_method
) O
assay O
. O
As O
shown O
in O
Figure O
4C O
, O
by O
contrast O
to O
the O
wild B-protein_state
type I-protein_state
enzyme O
, O
most O
mutants B-protein_state
displayed O
variable O
reduction O
of O
KD B-evidence
value O
, O
among O
them O
the O
D29A B-mutant
and O
E216A B-mutant
mutants B-protein_state
displayed O
no O
protein B-evidence
- I-evidence
AdoMet I-evidence
affinity I-evidence
at O
all O
. O
The O
results O
suggested O
that O
the O
hydrogen B-bond_interaction
bonds I-bond_interaction
formed O
by O
D29 B-residue_name_number
and O
E216 B-residue_name_number
with O
AdoMet B-chemical
were O
most O
crucial O
interactions O
for O
cofactor O
binding O
. O
Mutation B-experimental_method
of O
the O
two O
residues O
may O
directly O
prevent O
the O
methyl B-chemical
transfer O
reaction O
of O
M1 B-protein
. I-protein
HpyAVI I-protein
. O
The O
importance O
of O
D29 B-residue_name_number
is O
preserved O
because O
it O
belongs O
to O
the O
catalytic B-site
active I-site
site I-site
DPPY B-structure_element
, O
but O
the O
residue O
E216 B-residue_name_number
has O
not O
been O
fully O
investigated O
even O
being O
a O
conserved B-protein_state
amino B-chemical
acid I-chemical
throughout O
MTases B-protein_type
( O
Figure O
4E O
). O
E216 B-residue_name_number
is O
the O
last O
residue O
of O
β2 B-structure_element
, O
which O
contacts O
the O
two O
hydroxyls O
of O
the O
ribose B-chemical
of O
AdoMet B-chemical
. O
Replacement B-experimental_method
of O
this O
residue O
by O
alanine B-residue_name
completely O
abolishes O
the O
key O
hydrogen B-bond_interaction
bonds I-bond_interaction
for O
AdoMet B-chemical
- O
binding O
, O
and O
very O
likely O
blocks O
the O
methyl B-chemical
transfer O
reaction O
. O
To O
confirm O
this O
notion O
, O
[ B-experimental_method
3H I-experimental_method
] I-experimental_method
AdoMet I-experimental_method
radiological I-experimental_method
assay I-experimental_method
was O
applied O
to O
quantify O
the O
methyl B-chemical
transfer O
activity O
of O
the O
mutants B-protein_state
. O
As O
shown O
in O
Figure O
4D O
, O
the O
result O
of O
radiological B-experimental_method
assay I-experimental_method
agreed O
well O
with O
the O
MST B-experimental_method
measurement O
. O
The O
D29A B-mutant
and O
E216A B-mutant
mutants B-protein_state
showed O
little O
or O
no O
methyl B-chemical
transfer O
activity O
, O
while O
other O
mutants B-protein_state
exhibited O
reduced O
methyltransferase B-protein_type
activity O
. O
As O
mentioned O
previously O
, O
FXGXG B-structure_element
is O
a O
conserved B-protein_state
AdoMet B-chemical
- O
binding O
motif O
of O
DNA B-protein_type
MTases I-protein_type
. O
We O
also O
made O
mutants B-protein_state
of O
O
FMGSG B-structure_element
O
to O
alanine B-residue_name
for O
every O
amino B-chemical
acid I-chemical
, O
and O
found O
that O
the O
F195A B-mutant
mutant B-protein_state
was O
insoluble O
probably O
due O
to O
decreasing O
the O
local O
hydrophobicity O
upon O
this O
mutation O
. O
We O
subsequently O
investigated O
the O
ligand B-evidence
binding I-evidence
affinity I-evidence
and O
methyl B-chemical
transfer O
reaction O
of O
the O
other O
mutants B-protein_state
using O
MST B-experimental_method
and O
a O
radiological B-experimental_method
assay I-experimental_method
. O
We O
found O
that O
G197 B-residue_name_number
played O
a O
crucial O
role O
in O
AdoMet B-chemical
- O
binding O
, O
while O
mutagenesis B-experimental_method
of O
M196 B-residue_name_number
and O
G199 B-residue_name_number
did O
not O
influence O
cofactor O
binding O
and O
catalytic O
activity O
( O
Figure O
S2A O
and O
B O
). O
G197 B-residue_name_number
is O
a O
conserved B-protein_state
residue O
throughout O
the O
DNA B-protein_type
MTases I-protein_type
, O
and O
replacing B-experimental_method
by O
alanine B-residue_name
at O
this O
site O
likely O
change O
the O
local O
conformation O
of O
cofactor B-site
- I-site
binding I-site
pocket I-site
. O
Mutagenesis B-experimental_method
on O
this O
glycine B-residue_name
residue O
in O
M B-protein
. I-protein
EcoKI I-protein
or O
M B-protein
. I-protein
EcoP15I I-protein
also O
abolished O
the O
AdoMet B-chemical
- O
binding O
activity O
. O
Although O
mutational B-experimental_method
study I-experimental_method
could O
not O
tell O
the O
role O
of O
F195 B-residue_name_number
in O
ligand O
binding O
due O
to O
the O
insolubility O
of O
the O
F195A B-mutant
mutant B-protein_state
, O
structural B-experimental_method
analysis I-experimental_method
suggested O
the O
importance O
of O
this O
residue O
in O
AdoMet B-chemical
- O
binding O
. O
The O
phenyl O
ring O
of O
F195 B-residue_name_number
forms O
a O
perpendicular O
π B-bond_interaction
- I-bond_interaction
stacking I-bond_interaction
interaction I-bond_interaction
with O
the O
purine O
ring O
of O
AdoMet B-chemical
, O
which O
stabilizes O
the O
orientation O
of O
AdoMet B-chemical
bound B-protein_state
in I-protein_state
the O
pocket B-site
of O
M1 B-protein
. I-protein
HpyAVI I-protein
( O
Figure O
S2C O
). O
In O
a O
separate O
scenario O
, O
mutagenesis B-experimental_method
of O
this O
residue O
in O
M B-protein
. I-protein
EcoRV I-protein
has O
been O
proven O
to O
play O
an O
important O
role O
in O
AdoMet B-chemical
binding O
. O
Potential O
DNA B-site
- I-site
binding I-site
sites I-site
The O
putative O
DNA B-site
binding I-site
region I-site
of O
M1 B-protein
. I-protein
HpyAVI I-protein
involves O
the O
hairpin B-structure_element
loop I-structure_element
( O
residue O
101 B-residue_range
- I-residue_range
133 I-residue_range
), O
the O
TRD B-structure_element
( O
residues O
136 B-residue_range
- I-residue_range
166 I-residue_range
), O
and O
a O
highly B-protein_state
flexible I-protein_state
loop B-structure_element
( O
residues O
33 B-residue_range
- I-residue_range
58 I-residue_range
). O
The O
hairpin B-structure_element
loop I-structure_element
between O
β6 B-structure_element
and O
β7 B-structure_element
strands O
that O
carries O
a O
conserved B-protein_state
HRRY B-structure_element
sequence O
signature O
in O
the O
middle O
is O
proposed O
to O
insert O
into O
the O
minor B-structure_element
groove I-structure_element
of O
the O
bound B-protein_state
DNA B-chemical
. O
As O
aforementioned O
, O
the O
TRD B-structure_element
of O
M1 B-protein
. I-protein
HpyAVI I-protein
shows O
striking O
difference O
from O
the O
other O
DNA B-protein_type
MTases I-protein_type
, O
and O
the O
relaxed O
specificity O
of O
substrate O
recognition O
may O
be O
at O
least O
partially O
attributable O
to O
the O
disordered B-protein_state
TRD B-structure_element
. O
In O
addition O
, O
the O
highly B-protein_state
flexible I-protein_state
loop B-structure_element
immediately O
following O
the O
DPPY B-structure_element
motif O
in O
M1 B-protein
. I-protein
HpyAVI I-protein
was O
poorly O
defined O
in O
electron B-evidence
density I-evidence
, O
exactly O
like O
the O
corresponding O
loops B-structure_element
in O
the O
AdoMet B-protein_state
- I-protein_state
bound I-protein_state
structures B-evidence
of O
M B-protein
. I-protein
PvuII I-protein
, O
DpnM B-protein
or O
M B-protein
. I-protein
TaqI I-protein
that O
were O
invisible O
either O
. O
This O
loop B-structure_element
, O
however O
, O
was O
largely O
stabilized O
upon O
DNA B-chemical
binding O
, O
as O
observed O
in O
the O
protein B-evidence
- I-evidence
DNA I-evidence
complex I-evidence
structures I-evidence
of O
M B-protein
. I-protein
TaqI I-protein
( O
PDB O
ID O
2IBS O
), O
M B-protein
. I-protein
HhaI I-protein
( O
PDB O
ID O
1MHT O
) O
and O
M B-protein
. I-protein
HaeIII I-protein
( O
PDB O
ID O
1DCT O
). O
The O
well B-protein_state
- I-protein_state
ordered I-protein_state
loop B-structure_element
in O
those O
structures B-evidence
directly O
contacts O
the O
flipping O
adenine B-residue_name
and O
forms O
hydrogen B-bond_interaction
bond I-bond_interaction
with O
neighboring O
bases O
. O
These O
observations O
implied O
that O
the O
corresponding O
loop B-structure_element
in O
other O
MTases B-protein_type
, O
e O
. O
g O
. O
M1 B-protein
. I-protein
HpyAVI I-protein
, O
is O
likely O
responsible O
for O
reducing O
sequence O
recognition O
specificity O
and O
thus O
plays O
crucial O
roles O
in O
catalysis O
. O
Previous O
research O
suggested O
that O
M1 B-protein
. I-protein
HpyAVI I-protein
from O
strain O
26695 O
was O
the O
first O
N6 B-protein_type
adenine I-protein_type
MTase I-protein_type
that O
can O
methylate O
the O
adenine B-residue_name
of O
5 B-chemical
- I-chemical
GAGG I-chemical
- I-chemical
3 I-chemical
/ I-chemical
5 B-chemical
- I-chemical
GGAG I-chemical
- I-chemical
3 I-chemical
I-chemical
or O
both O
two O
adenines B-residue_name
of O
5 B-chemical
- I-chemical
GAAG I-chemical
- I-chemical
3 I-chemical
, I-chemical
compared O
with O
the O
homologs O
from O
other O
strains O
that O
can O
methylate O
only O
one O
adenine B-residue_name
of O
5 B-chemical
- I-chemical
GAGG I-chemical
- I-chemical
3 I-chemical
. I-chemical
To O
answer O
why O
M1 B-protein
. I-protein
HpyAVI I-protein
displayed O
a O
wider O
specificity O
for O
DNA B-chemical
recognition O
, O
we O
randomly O
choose O
fifty O
of O
M1 B-protein
. I-protein
HpyAVI I-protein
sequences O
from O
hundreds O
of O
H B-species
. I-species
pylori I-species
strains O
for O
multiple B-experimental_method
sequence I-experimental_method
alignment I-experimental_method
. O
Based O
on O
sequence B-experimental_method
comparison I-experimental_method
and O
structural B-experimental_method
analysis I-experimental_method
, O
four O
residues O
including O
P41 B-residue_name_number
, O
N111 B-residue_name_number
, O
K165 B-residue_name_number
and O
T166 B-residue_name_number
were O
selected O
and O
replaced B-experimental_method
by O
serine B-residue_name
, O
threonine B-residue_name
, O
threonine B-residue_name
and O
valine B-residue_name
, O
respectively O
( O
Figure O
5A O
). O
Then O
, O
a O
[ B-experimental_method
3H I-experimental_method
] I-experimental_method
AdoMet I-experimental_method
radiological I-experimental_method
assay I-experimental_method
was O
applied O
to O
quantify O
the O
methyl B-chemical
transfer O
activity O
of O
the O
wide B-protein_state
type I-protein_state
protein O
and O
the O
mutants B-protein_state
. O
As O
shown O
in O
Figure O
5 O
, O
when O
the O
substrate O
DNA B-chemical
contains O
5 B-chemical
- I-chemical
GAGG I-chemical
- I-chemical
3 I-chemical
I-chemical
or O
5 B-chemical
- I-chemical
GAAG I-chemical
- I-chemical
3 I-chemical
, I-chemical
all O
the O
mutants B-protein_state
showed O
no O
apparent O
difference O
of O
methyl B-chemical
transfer O
activity O
compared O
to O
the O
wt B-protein_state
- O
M1 B-protein
. I-protein
HpyAVI I-protein
; O
but O
when O
the O
recognition O
sequence O
was O
5 B-chemical
- I-chemical
GGAG I-chemical
- I-chemical
3 I-chemical
, I-chemical
the O
methyl B-chemical
transfer O
activity O
of O
the O
P41S B-mutant
mutant B-protein_state
was O
significantly O
reduced O
compared O
to O
the O
wild B-protein_state
type I-protein_state
M1 B-protein
. I-protein
HpyAVI I-protein
. O
Sequence B-experimental_method
alignment I-experimental_method
, O
structural B-experimental_method
analysis I-experimental_method
and O
radioactive B-experimental_method
methyl I-experimental_method
transfer I-experimental_method
activity I-experimental_method
define O
the O
key O
residue O
for O
wider O
substrate O
specificity O
of O
M1 B-protein
. I-protein
HpyAVI I-protein
A O
. O
Sequence B-experimental_method
alignment I-experimental_method
of O
M1 B-protein
. I-protein
HpyAVI I-protein
from O
50 O
H B-species
. I-species
pylori I-species
strains O
including O
26695 O
revealed O
several O
variant O
residues O
. O
Residues O
P41 B-residue_name_number
, O
N111 B-residue_name_number
, O
K165 B-residue_name_number
and O
T166 B-residue_name_number
of O
M1 B-protein
. I-protein
HpyAVI I-protein
from O
strain O
26695 B-species
were O
chosen O
based O
on O
structural B-experimental_method
analysis I-experimental_method
and O
sequence B-experimental_method
alignment I-experimental_method
( O
shown O
in O
red O
arrow O
). O
Amino O
- O
acid O
conservation O
is O
depicted O
using O
WebLogo B-experimental_method
( O
Crooks O
et O
al O
, O
2004 O
). O
B O
., O
C O
., O
D O
. O
Methyl B-chemical
transfer O
reactions O
were O
performed O
using O
wt B-protein_state
- O
M1 B-protein
. I-protein
HpyAVI I-protein
, O
M1 B-mutant
. I-mutant
HpyAVI I-mutant
- I-mutant
P41S I-mutant
, O
M1 B-mutant
. I-mutant
HpyAVI I-mutant
- I-mutant
N111T I-mutant
, O
and O
M1 B-mutant
. I-mutant
HpyAVI I-mutant
- I-mutant
K165R I-mutant
T166V I-mutant
, O
respectively O
. O
Radioactivity O
incorporated O
into O
the O
duplex O
DNA B-chemical
containing O
5 B-chemical
- I-chemical
GAGG I-chemical
- I-chemical
3 I-chemical
, I-chemical
5 B-chemical
- I-chemical
GAAG I-chemical
- I-chemical
3 I-chemical
I-chemical
or O
5 B-chemical
- I-chemical
GGAG I-chemical
- I-chemical
3 I-chemical
I-chemical
was O
quantified O
by O
Beckman O
LS6500 O
for O
10 O
min O
. O
Our O
experimental O
data O
identified O
P41 B-residue_name_number
as O
a O
key O
residue O
determining O
the O
recognition O
of O
GGAG B-structure_element
of O
M1 B-protein
. I-protein
HpyAVI I-protein
. O
This O
amino O
acid O
locates O
in O
the O
highly B-protein_state
flexible I-protein_state
loop B-structure_element
between O
residues O
33 B-residue_range
and I-residue_range
58 I-residue_range
, O
which O
is O
involved O
in O
DNA B-chemical
binding O
and O
substrate O
recognition O
as O
shown O
above O
. O
Replacement B-experimental_method
by O
serine B-residue_name
at O
this O
position O
definitely O
changes O
the O
local O
conformation O
and O
hydrophobicity O
, O
and O
probably O
some O
structural O
properties O
of O
the O
whole O
loop B-structure_element
, O
which O
may O
in O
turn O
result O
in O
reduced O
specificity O
for O
sequence O
recognition O
of O
the O
enzyme O
from O
strain O
26695 B-species
. O
Although O
the O
DNA B-protein_state
- I-protein_state
bound I-protein_state
structure B-evidence
of O
previous O
investigation O
on O
a O
γ B-protein_type
- I-protein_type
class I-protein_type
N6 I-protein_type
- I-protein_type
adenine I-protein_type
MTase I-protein_type
revealed O
that O
the O
target O
adenine B-residue_name
was O
rotated O
out O
of O
DNA B-chemical
helix O
, O
details O
of O
the O
methyl B-chemical
transfer O
process O
were O
still O
unclear O
. O
Additionally O
, O
recent O
studies O
reported O
the O
importance O
of O
N6 B-ptm
- I-ptm
methyladenine I-ptm
in O
some O
eukaryotic B-taxonomy_domain
species O
, O
but O
until O
now O
there O
has O
not O
been O
any O
N6 B-protein_type
- I-protein_type
adenine I-protein_type
MTases I-protein_type
being O
identified O
in O
eukaryotes B-taxonomy_domain
. O
Biochemical B-experimental_method
and I-experimental_method
structural I-experimental_method
characterization I-experimental_method
of O
M1 B-protein
. I-protein
HpyAVI I-protein
provides O
a O
new O
model O
for O
uncovering O
the O
methyl B-chemical
transfer O
mechanism O
and O
for O
investigating O
the O
N6 B-ptm
- I-ptm
methyladenine I-ptm
in O
eukaryotes B-taxonomy_domain
. O
Oligomeric O
state O
of O
DNA B-protein_type
MTases I-protein_type
was O
long O
accepted O
as O
monomer B-oligomeric_state
, O
but O
our O
study O
indicated O
here O
that O
M1 B-protein
. I-protein
HpyAVI I-protein
exists O
as O
a O
dimer B-oligomeric_state
both O
in O
crystal B-evidence
and O
solution O
. O
Interestingly O
, O
some O
other O
β B-protein_type
- I-protein_type
class I-protein_type
DNA I-protein_type
exocyclic I-protein_type
MTases I-protein_type
showed O
similar O
oligomeric O
state O
in O
crystal B-evidence
and O
in O
solution O
, O
indicating O
that O
dimer B-oligomeric_state
may O
be O
the O
functional O
state O
shared O
by O
a O
subgroup O
of O
DNA B-protein_type
MTases I-protein_type
. O
The O
highly B-protein_state
flexible I-protein_state
region O
( O
residues O
33 B-residue_range
- I-residue_range
58 I-residue_range
) O
and O
TRD B-structure_element
( O
residues O
133 B-residue_range
- I-residue_range
163 I-residue_range
) O
of O
M1 B-protein
. I-protein
HpyAVI I-protein
are O
supposed O
to O
interact O
with O
DNA B-chemical
at O
minor B-structure_element
and I-structure_element
major I-structure_element
grooves I-structure_element
, O
respectively O
. O
And O
residue O
P41 B-residue_name_number
might O
be O
a O
key O
residue O
partially O
determining O
the O
substrate O
spectrum O
of O
M1 B-protein
. I-protein
HpyAVI I-protein
. O
The O
missing B-protein_state
loop B-structure_element
between O
residues O
33 B-residue_range
and I-residue_range
58 I-residue_range
may O
need O
DNA B-chemical
binding O
so O
as O
to O
form O
a O
stable B-protein_state
conformation O
, O
which O
is O
similar O
to O
the O
condition O
of O
M B-protein
. I-protein
TaqI I-protein
. O
Crystallization B-experimental_method
of O
M1 B-complex_assembly
. I-complex_assembly
HpyAVI I-complex_assembly
- I-complex_assembly
DNA I-complex_assembly
complex O
warrants O
future O
investigations O
, O
with O
the O
purpose O
of O
revealing O
the O
mechanism O
behind O
the O
wider O
substrate O
specificity O
of O
this O
enzyme O
. O
DNA B-ptm
methylation I-ptm
plays O
an O
important O
role O
in O
bacterial B-taxonomy_domain
pathogenicity O
. O
DNA B-ptm
adenine I-ptm
methylation I-ptm
was O
known O
to O
regulate O
the O
expression O
of O
some O
virulence O
genes O
in O
bacteria B-taxonomy_domain
including O
H B-species
. I-species
pylori I-species
. O
Inhibitors O
of O
DNA B-ptm
adenine I-ptm
methylation I-ptm
may O
have O
a O
broad O
antimicrobial O
action O
by O
targeting O
DNA B-protein_type
adenine I-protein_type
methyltransferase I-protein_type
. O
As O
an O
important O
biological O
modification O
, O
DNA B-ptm
methylation I-ptm
directly O
influences O
bacterial B-taxonomy_domain
survival O
. O
Knockout B-experimental_method
of I-experimental_method
M1 B-protein
. I-protein
HpyAVI I-protein
largely O
prevents O
the O
growth O
of O
H B-species
. I-species
pylori I-species
. O
Importantly O
, O
H B-species
. I-species
pylori I-species
is O
involved O
in O
90 O
% O
of O
all O
gastric O
malignancies O
. O
Appropriate O
antibiotic O
regimens O
could O
successfully O
cure O
gastric O
diseases O
caused O
by O
H B-species
. I-species
pylori I-species
infection O
. O
However O
, O
eradication O
of O
H B-species
. I-species
pylori I-species
infection O
remains O
a O
big O
challenge O
for O
the O
significantly O
increasing O
prevalence O
of O
its O
resistance O
to O
antibiotics O
. O
The O
development O
of O
new O
drugs O
targeting O
adenine B-protein_type
MTases I-protein_type
such O
as O
M1 B-protein
. I-protein
HpyAVI I-protein
offers O
a O
new O
opportunity O
for O
inhibition O
of O
H B-species
. I-species
pylori I-species
infection O
. O
Residues O
that O
play O
crucial O
roles O
for O
catalytic O
activity O
like O
D29 B-residue_name_number
or O
E216 B-residue_name_number
may O
influence O
the O
H B-species
. I-species
pylori I-species
survival O
. O
Small O
molecules O
targeting O
these O
highly B-protein_state
conserved I-protein_state
residues O
are O
likely O
to O
emerge O
less O
drug O
resistance O
. O
In O
summary O
, O
the O
structure B-evidence
of O
M1 B-protein
. I-protein
HpyAVI I-protein
is O
featured O
with O
a O
disordered B-protein_state
TRD B-structure_element
and O
a O
key O
residue O
P41that B-residue_name_number
located O
in O
the O
putative O
DNA B-site
binding I-site
region I-site
that O
may O
associate O
with O
the O
wider O
substrate O
specificity O
. O
Residues O
D29 B-residue_name_number
and O
E216 B-residue_name_number
were O
identified O
to O
play O
a O
crucial O
role O
in O
cofactor O
binding O
. O
As O
the O
first O
crystal B-evidence
structure I-evidence
of O
N6 B-protein_type
- I-protein_type
adenine I-protein_type
MTase I-protein_type
in O
H B-species
. I-species
pylori I-species
, O
this O
model O
may O
shed O
light O
on O
design O
of O
new O
antibiotics O
to O
interfere O
the O
growth O
and O
pathogenesis O
of O
H B-species
. I-species
pylori I-species
in O
human B-species
. O