Biochemical B-experimental_method and I-experimental_method structural I-experimental_method characterization I-experimental_method of O a O DNA B-protein_type N6 I-protein_type - I-protein_type adenine I-protein_type methyltransferase I-protein_type from O Helicobacter B-species pylori I-species DNA B-ptm N6 I-ptm - I-ptm methyladenine I-ptm modification O plays O an O important O role O in O regulating O a O variety O of O biological O functions O in O bacteria B-taxonomy_domain . O However O , O the O mechanism O of O sequence O - O specific O recognition O in O N6 B-ptm - I-ptm methyladenine I-ptm modification O remains O elusive O . O M1 B-protein . I-protein HpyAVI I-protein , O a O DNA B-protein_type N6 I-protein_type - I-protein_type adenine I-protein_type methyltransferase I-protein_type from O Helicobacter B-species pylori I-species , O shows O more O promiscuous O substrate O specificity O than O other O enzymes O . O Here O , O we O present O the O crystal B-evidence structures I-evidence of O cofactor B-protein_state - I-protein_state free I-protein_state and O AdoMet B-protein_state - I-protein_state bound I-protein_state structures B-evidence of O this O enzyme O , O which O were O determined O at O resolutions O of O 3 O . O 0 O Å O and O 3 O . O 1 O Å O , O respectively O . O The O core O structure O of O M1 B-protein . I-protein HpyAVI I-protein resembles O the O canonical O AdoMet B-protein_type - I-protein_type dependent I-protein_type MTase I-protein_type fold O , O while O the O putative O DNA B-site binding I-site regions I-site considerably O differ O from O those O of O the O other O MTases B-protein_type , O which O may O account O for O the O substrate O promiscuity O of O this O enzyme O . O Site B-experimental_method - I-experimental_method directed I-experimental_method mutagenesis I-experimental_method experiments O identified O residues O D29 B-residue_name_number and O E216 B-residue_name_number as O crucial O amino O acids O for O cofactor O binding O and O the O methyl B-chemical transfer O activity O of O the O enzyme O , O while O P41 B-residue_name_number , O located O in O a O highly B-protein_state flexible I-protein_state loop B-structure_element , O playing O a O determinant O role O for O substrate O specificity O . O Taken O together O , O our O data O revealed O the O structural O basis O underlying O DNA B-protein_type N6 I-protein_type - I-protein_type adenine I-protein_type methyltransferase I-protein_type substrate O promiscuity O . O DNA B-ptm methylation I-ptm is O a O common O form O of O modification O on O nucleic O acids O occurring O in O both O prokaryotes B-taxonomy_domain and O eukaryotes B-taxonomy_domain . O Such O a O modification O creates O a O signature O motif O recognized O by O DNA B-chemical - O interacting O proteins O and O functions O as O a O mechanism O to O regulate O gene O expression O . O DNA B-ptm methylation I-ptm is O mediated O by O DNA B-protein_type methyltransferases I-protein_type ( O MTases B-protein_type ), O which O catalyze O the O transfer O of O a O methyl B-chemical group O from O S B-chemical - I-chemical adenosyl I-chemical - I-chemical L I-chemical - I-chemical methionine I-chemical ( O AdoMet B-chemical ) O to O a O given O position O of O a O particular O DNA B-chemical base O within O a O specific O DNA B-chemical sequence O . O Three O classes O of O DNA B-protein_type MTases I-protein_type have O been O identified O to O transfer O a O methyl B-chemical group O to O different O positions O of O DNA B-chemical bases O . O C5 B-protein_type - I-protein_type cytosine I-protein_type MTases I-protein_type , O for O example O , O methylate O C5 O of O cytosine B-residue_name ( O m5C B-ptm ). O In O eukaryotes B-taxonomy_domain , O m5C B-ptm plays O an O important O role O in O gene O expression O , O chromatin O organization O , O genome O maintenance O and O parental O imprinting O , O and O is O involved O in O a O variety O of O human B-species diseases O including O cancer O . O By O contrast O , O the O functions O of O the O prokaryotic B-taxonomy_domain DNA B-protein_type cytosine I-protein_type MTase I-protein_type remain O unknown O . O N4 B-protein_type - I-protein_type cytosine I-protein_type MTases I-protein_type , O which O are O frequently O present O in O thermophilic B-taxonomy_domain or O mesophilic B-taxonomy_domain bacteria B-taxonomy_domain , O transfer O a O methyl B-chemical group O to O the O exocyclic O amino O group O of O cytosine B-residue_name ( O 4mC B-ptm ). O N4 B-ptm methylation I-ptm seems O to O be O primarily O a O component O of O bacterial B-taxonomy_domain immune O system O against O invasion O by O foreign O DNA B-chemical , O such O as O conjugative O plasmids O and O bacteriophages B-taxonomy_domain . O The O third O group O , O N6 B-protein_type - I-protein_type adenine I-protein_type MTases I-protein_type methylate O the O exocyclic O amino O groups O of O adenine B-residue_name ( O 6mA B-ptm ), O which O exists O in O prokaryotes B-taxonomy_domain as O a O signal O for O genome O defense O , O DNA B-chemical replication O and O repair O , O regulation O of O gene O expression O , O control O of O transposition O and O host O - O pathogen O interactions O . O Recent O studies O utilizing O new O sequencing O approaches O have O showed O the O existence O of O 6mA B-ptm in O several O eukaryotic B-taxonomy_domain species O . O DNA B-chemical 6mA B-ptm modification O is O associated O with O important O biological O processes O including O nucleosome O distribution O close O to O the O transcription O start O sites O in O Chlamydomonas B-taxonomy_domain , O carrying O heritable O epigenetic O information O in O C B-species . I-species elegans I-species or O controlling O development O of O Drosophila B-taxonomy_domain . O All O the O three O types O of O methylation B-ptm exist O in O prokaryotes B-taxonomy_domain , O and O most O DNA B-protein_type MTases I-protein_type are O components O of O the O restriction O - O modification O ( O R O - O M O ) O systems O . O “ O R O ” O stands O for O a O restriction B-protein_type endonuclease I-protein_type cleaving O specific O DNA B-chemical sequences O , O while O “ O M O ” O symbolizes O a O modification B-protein_type methyltransferase I-protein_type rendering O these O sequences O resistant O to O cleavage O . O The O cooperation O of O these O two O enzymes O provides O a O defensive O mechanism O to O protect O bacteria B-taxonomy_domain from O infection O by O bacteriophages B-taxonomy_domain . O The O R O - O M O systems O are O classified O into O three O types O based O on O specific O structural O features O , O position O of O DNA B-chemical cleavage O and O cofactor O requirements O . O In O types O I O and O III O , O the O DNA B-protein_type adenine I-protein_type or I-protein_type cytosine I-protein_type methyltransferase I-protein_type is O part O of O a O multi O - O subunit O enzyme O that O catalyzes O both O restriction O and O modification O . O By O contrast O , O two O separate O enzymes O exist O in O type O II O systems O , O where O a O restriction B-protein_type endonuclease I-protein_type and O a O DNA B-protein_type adenine I-protein_type or I-protein_type cytosine I-protein_type methyltransferase I-protein_type recognize O the O same O targets O . O To O date O , O a O number O of O bacterial B-taxonomy_domain DNA B-protein_type MTases I-protein_type have O been O structurally B-experimental_method characterized I-experimental_method , O covering O enzymes O from O all O the O three O classes O . O All O these O MTases B-protein_type exhibit O high O similarity O in O their O overall O architectures O , O which O are O generally O folded O into O two O domains O : O a O conserved B-protein_state larger O catalytic B-structure_element domain I-structure_element comprising O an O active B-site site I-site for O methyl B-chemical transfer O and O a O site O for O AdoMet B-chemical - O binding O , O and O a O smaller O target B-structure_element ( I-structure_element DNA I-structure_element )- I-structure_element recognition I-structure_element domain I-structure_element ( O TRD B-structure_element ) O containing O variable O regions O implicated O in O sequence O - O specific O DNA B-chemical recognition O and O the O infiltration O of O the O DNA B-chemical to O flip O the O target O base O . O Conserved B-protein_state amino O acid O motifs O have O been O identified O from O reported O structures B-evidence , O including O ten O motifs O ( O I B-structure_element - I-structure_element X I-structure_element ) O in O cytosine B-protein_type MTases I-protein_type and O nine O motifs O ( O I B-structure_element - I-structure_element VIII I-structure_element and O X B-structure_element ) O in O adenine B-protein_type MTases I-protein_type , O all O of O which O are O arranged O in O an O almost O constant O order O . O According O to O the O linear O arrangement O of O three O conserved B-protein_state domains O , O exocyclic B-protein_type amino I-protein_type MTases I-protein_type are O subdivided O into O six O groups O ( O namely O α B-protein_type , O β B-protein_type , O γ B-protein_type , O ζ B-protein_type , O δ B-protein_type and O ε B-protein_type ). O N6 B-protein_type - I-protein_type adenine I-protein_type and I-protein_type N4 I-protein_type - I-protein_type cytosine I-protein_type MTases I-protein_type , O in O particular O , O are O closely O related O by O sharing O common O structural O features O . O Despite O the O considerable O similarity O among O bacterial B-taxonomy_domain MTases B-protein_type , O some O differences O were O observed O among O the O enzymes O from O various O species O . O For O example O , O the O structural O regions O of O MTases B-protein_type beyond O the O catalytic B-structure_element domain I-structure_element are O rather O variable O , O such O as O the O C B-structure_element - I-structure_element terminal I-structure_element domain I-structure_element of O M B-protein . I-protein TaqI I-protein , O the O extended O arm O of O M B-protein . I-protein MboIIA I-protein and O M B-protein . I-protein RsrI I-protein , O the O helix B-structure_element bundle I-structure_element of O EcoDam B-protein , O and O so O on O . O DNA B-ptm methylation I-ptm is O thought O to O influence O bacterial B-taxonomy_domain virulence O . O DNA B-protein_type adenine I-protein_type methyltransferase I-protein_type has O been O shown O to O play O a O crucial O role O in O colonization O of O deep O tissue O sites O in O Salmonella B-species typhimurium I-species and O Aeromonas B-species hydrophila I-species . O Importantly O , O DNA B-ptm adenine I-ptm methylation I-ptm is O a O global O regulator O of O genes O expressed O during O infection O and O inhibitors O of O DNA B-ptm adenine I-ptm methylation I-ptm are O likely O to O have O a O broad O antimicrobial O action O . O Dam B-protein_type was O considered O a O promising O target O for O antimicrobial O drug O development O . O Helicobacter B-species pylori I-species is O a O Gram B-taxonomy_domain - I-taxonomy_domain negative I-taxonomy_domain bacterium I-taxonomy_domain that O persistently O colonizes O in O human B-species stomach O worldwide O . O H B-species . I-species pylori I-species is O involved O in O 90 O % O of O all O gastric O malignancies O , O infecting O nearly O 50 O % O of O the O world O ' O s O population O and O is O the O most O crucial O etiologic O agent O for O gastric O adenocarcinoma O . O H B-species . I-species pylori I-species strains O possess O a O few O R O - O M O systems O like O other O bacteria B-taxonomy_domain to O function O as O defensive O systems O . O H B-species . I-species pylori I-species 26695 I-species , O for O example O , O has O 23 O R O - O M O systems O . O Methyltransferases B-protein_type were O suggested O to O be O involved O in O H B-species . I-species pylori I-species pathogenicity O . O M1 B-protein . I-protein HpyAVI I-protein is O a O DNA B-protein_type adenine I-protein_type MTase I-protein_type that O belongs O to O the O type O II O R O - O M O system O . O This O system O contains O two O DNA B-protein_type MTases I-protein_type named O M1 B-protein . I-protein HpyAVI I-protein and O M2 B-protein . I-protein HpyAVI I-protein , O and O a O putative O restriction B-protein_type enzyme I-protein_type . O M1 B-protein . I-protein HpyAVI I-protein encoded O by O ORF O hp0050 B-gene is O an O N6 B-protein_type - I-protein_type adenine I-protein_type methyltransferase I-protein_type belonging O to O the O β B-protein_type - I-protein_type class I-protein_type MTase I-protein_type . O It O has O been O reported O recently O that O this O enzyme O recognizes O the O sequence O of O 5 B-chemical ′- I-chemical GAGG I-chemical - I-chemical 3 I-chemical ′, I-chemical 5 B-chemical ′- I-chemical GGAG I-chemical - I-chemical 3 I-chemical ′ I-chemical or O 5 B-chemical ′- I-chemical GAAG I-chemical - I-chemical 3 I-chemical ′ I-chemical and O methylates O adenines B-residue_name in O these O sequences O . O Given O that O methylation B-ptm of O two O adjacent O adenines B-residue_name on O the O same O strand O have O never O been O observed O for O other O N6 B-protein_type - I-protein_type adenine I-protein_type MTases I-protein_type , O the O methylation B-ptm activity O on O 5 B-chemical ′- I-chemical GAAG I-chemical - I-chemical 3 I-chemical ′ I-chemical seems O to O be O a O unique O feature O of O M1 B-protein . I-protein HpyAVI I-protein , O compared O with O the O homologs O from O other O strains O of O H B-species . I-species pylori I-species which O is O able O to O methylate O only O 5 B-chemical ′- I-chemical GAGG I-chemical - I-chemical 3 I-chemical ′. I-chemical The O structural O basis O and O the O catalytic O mechanism O underlying O such O a O distinct O activity O are O not O well O understood O due O to O the O lack O of O an O available O 3D O structure B-evidence of O this O enzyme O . O Here O , O we O report O the O crystal B-evidence structure I-evidence of O M1 B-protein . I-protein HpyAVI I-protein from O H B-species . I-species pylori I-species 26695 I-species , O which O is O the O first O determined O N6 B-protein_type - I-protein_type adenine I-protein_type MTase I-protein_type structure B-evidence in O H B-species . I-species pylori I-species . O The O structure B-evidence reveals O a O similar O architecture O as O the O canonical O fold O of O homologous O proteins O , O but O displays O several O differences O in O the O loop B-structure_element regions O and O TRD B-structure_element . O Based O on O structural B-experimental_method and I-experimental_method biochemical I-experimental_method analyses I-experimental_method , O we O then O identified O two O conserved B-protein_state amino O acids O , O D29 B-residue_name_number at O the O catalytic B-site site I-site and O E216 B-residue_name_number close O to O the O C O - O terminus O , O as O crucial O residues O for O cofactor O binding O and O methyltransferase B-protein_type activity O of O M1 B-protein . I-protein HpyAVI I-protein . O In O addition O , O a O non B-protein_state - I-protein_state conserved I-protein_state amino O acid O , O P41 B-residue_name_number , O seems O to O play O a O key O role O in O substrate O recognition O . O Overall O structure B-evidence Recombinant O full B-protein_state - I-protein_state length I-protein_state M1 B-protein . I-protein HpyAVI I-protein was O produced O as O a O soluble O protein O in O Escherichia B-species coli I-species , O but O was O quite O unstable O and O tended O to O aggregate O in O low O salt O environment O . O The O protein O , O however O , O remained O fully O soluble O in O a O buffer O containing O higher O concentration O of O sodium B-chemical chloride I-chemical (> O 300 O mM O ), O which O prompted O that O M1 B-protein . I-protein HpyAVI I-protein is O likely O a O halophilic B-protein_state protein O . O The O cofactor B-protein_state - I-protein_state free I-protein_state and O AdoMet B-protein_state - I-protein_state bound I-protein_state proteins O were O crystallized B-experimental_method at O different O conditions O . O Both O structures B-evidence were O determined O by O means O of O molecular B-experimental_method replacement I-experimental_method , O and O refined O to O 3 O . O 0 O Å O and O 3 O . O 1 O Å O , O respectively O . O Statistics O of O X B-experimental_method - I-experimental_method ray I-experimental_method data I-experimental_method collection I-experimental_method and O structure B-experimental_method refinement I-experimental_method were O summarized O in O Table O 1 O . O Data O collection O and O structure B-evidence refinement I-evidence statistics I-evidence of O M1 B-protein . I-protein HpyAVI I-protein M1 B-protein . I-protein HpyAVI I-protein M1 B-complex_assembly . I-complex_assembly HpyAVI I-complex_assembly - I-complex_assembly AdoMet I-complex_assembly complex O Data O collection O Wavelength O ( O Å O ) O 1 O . O 0000 O 0 O . O 97772 O Space O group O P43212 O P65 O Unit O - O cell O parameters O ( O Å O , O ˚) O a O = O b O = O 69 O . O 73 O , O c O = O 532 O . O 75α O = O β O = O γ O = O 90 O a O = O b O = O 135 O . O 60 O , O c O = O 265 O . O 15α O = O β O = O 90 O , O γ O = O 120 O Resolution O range O ( O Å O ) O a O 49 O . O 09 O - O 3 O . O 00 O ( O 3 O . O 09 O - O 3 O . O 00 O ) O 48 O . O 91 O - O 3 O . O 10 O ( O 3 O . O 18 O - O 3 O . O 10 O ) O Unique O reflections O a O 27243 O 49833 O Multiplicity O a O 3 O . O 7 O ( O 3 O . O 8 O ) O 5 O . O 6 O ( O 4 O . O 0 O ) O Completeness O (%) O a O 98 O . O 7 O ( O 98 O . O 9 O ) O 99 O . O 7 O ( O 97 O . O 8 O ) O Mean O I O / O δ O ( O I O ) O a O 12 O . O 1 O ( O 3 O . O 4 O ) O 14 O . O 0 O ( O 1 O . O 9 O ) O Solvent O content O (%) O 58 O . O 67 O 61 O . O 96 O Rmergea O 0 O . O 073 O ( O 0 O . O 378 O ) O 0 O . O 106 O ( O 0 O . O 769 O ) O Structure O refinement O Rwork O 0 O . O 251 O 0 O . O 221 O Rfree O 0 O . O 308 O 0 O . O 276 O R B-evidence . I-evidence m I-evidence . I-evidence s I-evidence . I-evidence d I-evidence ., O bond O lengths O ( O Å O ) O 0 O . O 007 O 0 O . O 007 O R B-evidence . I-evidence m I-evidence . I-evidence s I-evidence . I-evidence d I-evidence ., O bond O angles O (˚) O 1 O . O 408 O 1 O . O 651 O Ramachandran O plot O Favoured O region O (%) O 89 O . O 44 O 91 O . O 44 O Allowed O region O (%) O 9 O . O 58 O 7 O . O 11 O Outliers O (%) O 0 O . O 99 O 1 O . O 45 O Four O and O eight O protein O monomers B-oligomeric_state resided O in O the O asymmetric O units O of O the O two O crystal B-evidence structures I-evidence . O Some O amino O acids O , O particularly O those O within O two O loops B-structure_element ( O residues O 32 B-residue_range - I-residue_range 61 I-residue_range and O 152 B-residue_range - I-residue_range 172 I-residue_range ) O in O both O structures B-evidence , O were O poorly O defined O in O electron B-evidence density I-evidence and O had O to O be O omitted O from O the O refined O models O . O The O two O structures B-evidence are O very O similar O to O each O other O ( O Figure O 1 O ) O and O could O be O well O overlaid O with O an O RMSD B-evidence of O 0 O . O 76 O Å O on O 191 O Cα O atoms O . O The O overall O architecture O of O M1 B-protein . I-protein HpyAVI I-protein revealed O in O these O structures B-evidence resembles O the O AdoMet B-protein_type - I-protein_type dependent I-protein_type MTase I-protein_type fold O in O which O a O twisted O seven O - O stranded O β B-structure_element - I-structure_element sheet I-structure_element flanked O by O six O α B-structure_element - I-structure_element helices I-structure_element forms O the O structural O core O . O Like O the O reported O structures B-evidence of O the O larger O domain O of O MTases B-protein_type , O three O helices B-structure_element ( O αA B-structure_element , O αB B-structure_element and O αZ B-structure_element ) O are O located O at O one O face O of O the O central O β B-structure_element - I-structure_element sheet I-structure_element , O while O the O other O three O αD B-structure_element , O αE B-structure_element and O αC B-structure_element sit O at O the O other O side O . O All O these O conserved B-protein_state structural O motifs O form O a O typical O α B-structure_element / I-structure_element β I-structure_element Rossmann I-structure_element fold I-structure_element . O The O catalytic B-structure_element motif I-structure_element DPPY B-structure_element lies O in O a O loop B-structure_element connecting O αD B-structure_element and O β4 B-structure_element , O and O the O cofactor O AdoMet B-chemical binds O in O a O neighboring O cavity B-site . O The O loop B-structure_element ( O residues O 136 B-residue_range - I-residue_range 166 I-residue_range ) O located O between O β7 B-structure_element and O αZ B-structure_element corresponds O to O a O highly B-protein_state diverse I-protein_state region O in O other O MTases B-protein_type that O is O involved O in O target O DNA B-chemical recognition O . O The O hairpin B-structure_element loop I-structure_element ( O residues O 101 B-residue_range - I-residue_range 133 I-residue_range ) O bridging O β6 B-structure_element and O β7 B-structure_element , O which O is O proposed O to O bind O DNA B-chemical in O the O minor B-structure_element groove I-structure_element , O displays O a O similar O conformation O as O those O observed O in O M B-protein . I-protein MboIIA I-protein , O M B-protein . I-protein RsrI I-protein and O M B-protein . I-protein pvuII I-protein . O The O missing B-protein_state loop B-structure_element ( O residues O 33 B-residue_range - I-residue_range 58 I-residue_range ) O in O the O structure B-evidence of O M1 B-protein . I-protein HpyAVI I-protein corresponds O to O loop B-structure_element I I-structure_element in O M B-protein . I-protein TaqI I-protein , O which O was O also O invisible O in O a O structure B-evidence without B-protein_state DNA I-protein_state . O This O loop B-structure_element , O however O , O was O well B-protein_state ordered I-protein_state in O an O M B-evidence . I-evidence TaqI I-evidence - I-evidence DNA I-evidence complex I-evidence structure I-evidence and O was O shown O to O play O a O crucial O role O in O DNA B-ptm methylation I-ptm by O contacting O the O flipping O adenine B-residue_name and O recognizing O specific O DNA B-chemical sequence O . O Overall O structure B-evidence of O M1 B-protein . I-protein HpyAVI I-protein A O . O Free B-protein_state form O B O . O AdoMet B-protein_state - I-protein_state bound I-protein_state form O . O Ribbon O diagram O of O M1 B-protein . I-protein HpyAVI I-protein resembles O an O “ O AdoMet B-protein_type - I-protein_type dependent I-protein_type MTase I-protein_type fold O ”, O a O mixed O seven O - O stranded O β B-structure_element - I-structure_element sheet I-structure_element flanked O by O six O α B-structure_element - I-structure_element helices I-structure_element , O αA B-structure_element , O αB B-structure_element , O αZ B-structure_element on O one O side O and O αD B-structure_element , O αE B-structure_element , O αC B-structure_element on O the O other O side O , O the O cofactor O AdoMet B-chemical is O bound B-protein_state in I-protein_state a O cavity B-site near O the O conserved B-protein_state enzyme O activity O motif O DPPY B-structure_element . O The O α B-structure_element - I-structure_element helices I-structure_element and O β B-structure_element - I-structure_element strands I-structure_element are O labelled O and O numbered O according O to O the O commonly O numbering O rule O for O the O known O MTases B-protein_type . O The O AdoMet B-chemical molecule O is O shown O in O green O . O Dimeric B-oligomeric_state state O of O M1 B-protein . I-protein HpyAVI I-protein in O crystal B-evidence and O solution B-experimental_method Previous O studies O showed O that O some O DNA B-protein_type MTases I-protein_type , O e O . O g O . O M B-protein . I-protein BamHI I-protein and O M B-protein . I-protein EcoRI I-protein , O exist O as O monomer B-oligomeric_state in O solution O , O in O agreement O with O the O fact O that O a O DNA B-chemical substrate O for O a O typical O MTase B-protein_type is O hemimethylated B-protein_state and O therefore O needs O only O a O single O methylation B-ptm event O to O convert O it O into O a O fully B-protein_state methylated I-protein_state state O . O Increasing O number O of O dimeric B-oligomeric_state DNA B-protein_type MTases I-protein_type , O however O , O has O been O identified O from O later O studies O . O For O instance O , O M B-protein . I-protein DpnII I-protein , O M B-protein . I-protein RsrI I-protein , O M B-protein . I-protein KpnI I-protein , O and O M B-protein . I-protein MboIIA I-protein have O been O found O as O dimers B-oligomeric_state in O solution O . O In O addition O , O several O MTases B-protein_type including O M B-protein . I-protein MboIIA I-protein , O M B-protein . I-protein RsrI I-protein and O TTH0409 B-protein form O tightly O associated O dimers B-oligomeric_state in O crystal B-evidence structures I-evidence . O Nonetheless O , O some O DNA B-protein_type MTases I-protein_type such O as O M B-protein . I-protein CcrMI I-protein and O the O Bacillus B-species amyloliquefaciens I-species MTase B-protein_type dissociate O from O dimer B-oligomeric_state into O monomer B-oligomeric_state upon O DNA B-chemical - O binding O . O According O to O the O arrangement O of O the O three O conserved B-protein_state domains O , O M1 B-protein . I-protein HpyAVI I-protein belongs O to O the O β B-protein_type - I-protein_type subgroup I-protein_type , O in O which O a O conserved B-protein_state motif O NXXTX9 B-structure_element − I-structure_element 11AXRXFSXXHX4WX6 I-structure_element − I-structure_element 9 I-structure_element YXFXLX3RX9 I-structure_element − I-structure_element 26NPX1 I-structure_element − I-structure_element 6NVWX29 I-structure_element − I-structure_element 34A I-structure_element has O been O identified O at O the O dimerization B-site interface I-site in O crystal B-evidence structures I-evidence . O Most O of O conserved B-protein_state amino O acids O within O that O motif O are O present O in O the O sequence O of O M1 B-protein . I-protein HpyAVI I-protein ( O Figure O 2A O ), O implying O dimerization B-oligomeric_state of O this O protein O . O In O agreement O , O a O dimer B-oligomeric_state of O M1 B-protein . I-protein HpyAVI I-protein was O observed O in O our O crystal B-evidence structures I-evidence with O the O two O monomers B-oligomeric_state related O by O a O two O - O fold O axis O ( O Figure O 2B O and O 2C O ). O An O area O of O ~ O 1900 O Å2 O was O buried O at O the O dimeric B-site interface I-site , O taking O up O ca O 17 O % O of O the O total O area O . O The O dimeric B-oligomeric_state architecture O was O greatly O stabilized O by O hydrogen B-bond_interaction bonds I-bond_interaction and O salt B-bond_interaction bridges I-bond_interaction formed O among O residues O R86 B-residue_name_number , O D93 B-residue_name_number and O E96 B-residue_name_number . O In O addition O , O comparison O of O the O dimer B-oligomeric_state structure B-evidence of O M1 B-protein . I-protein HpyAVI I-protein with O some O other O β B-protein_type - I-protein_type class I-protein_type MTases I-protein_type ( O M1 B-protein . I-protein MboIIA I-protein , O M B-protein . I-protein RsrI I-protein and O TTHA0409 B-protein ) O suggested O that O the O M1 B-protein . I-protein HpyAVI I-protein dimer B-oligomeric_state organized O in O a O similar O form O as O others O ( O Figure O S3 O ). O M1 B-protein . I-protein HpyAVI I-protein exists O as O dimer B-oligomeric_state in O crystal B-evidence and O solution O A O . O A O conserved B-protein_state interface B-site area I-site of O β B-protein_type - I-protein_type class I-protein_type MTases I-protein_type is O defined O in O M1 B-protein . I-protein HpyAVI I-protein . O Residues O that O involved O are O signed O in O red O color O ; O Dimerization B-oligomeric_state of O free B-protein_state - O form O M1 B-protein . I-protein HpyAVI I-protein B O . O and O cofactor B-protein_state - I-protein_state bound I-protein_state M1 B-protein . I-protein HpyAVI I-protein C O . O The O two O monomers B-oligomeric_state are O marked O in O green O and O blue O , O AdoMet B-chemical molecules O are O marked O in O magenta O . O D O . O Gel B-experimental_method - I-experimental_method filtration I-experimental_method analysis I-experimental_method revealed O that O M1 B-protein . I-protein HpyAVI I-protein exist O as O a O dimer B-oligomeric_state in O solution O . O FPLC B-experimental_method system O coupled O to O a O Superdex O 75 O 10 O / O 300 O column O . O Elution B-evidence profiles I-evidence at O 280 O nm O ( O blue O ) O and O 260 O nm O ( O red O ) O are O : O different O concentration O ( O 0 O . O 05 O , O 0 O . O 1 O , O 0 O . O 2 O , O 0 O . O 5 O mg O / O ml O ) O of O M1 B-protein . I-protein HpyAVI I-protein protein O . O To O probe O the O oligomeric O form O of O M1 B-protein . I-protein HpyAVI I-protein in O solution O , O different O concentrations O of O purified O enzyme O was O loaded O onto O a O Superdex O 75 O 10 O / O 300 O column O . O The O protein O was O eluted O at O ~ O 10 O ml O regardless O of O the O protein O concentrations O , O corresponding O to O a O dimeric B-oligomeric_state molecular B-evidence mass I-evidence of O 54 O kDa O ( O Figure O 2D O ). O Our O results O clearly O showed O that O M1 B-protein . I-protein HpyAVI I-protein forms O a O dimer B-oligomeric_state in O both O crystal B-evidence and O solution O as O other O β B-protein_type - I-protein_type class I-protein_type MTases I-protein_type , O which O however O disagrees O with O a O previous O investigation O using O dynamic B-experimental_method light I-experimental_method scattering I-experimental_method ( O DLS B-experimental_method ) O measurement O and O gel B-experimental_method - I-experimental_method filtration I-experimental_method chromatography I-experimental_method , O suggesting O that O M1 B-protein . I-protein HpyAVI I-protein is O taking O a O monomeric B-oligomeric_state state O in O solution O . O This O variance O might O be O caused O by O an O addition O of O 100 O mM O arginine B-chemical before O cell O lysis O to O keep O protein O solubility O and O also O by O later O replacement O of O arginine B-chemical with O 30 O % O glycerol B-chemical by O dialysis O . O Structure B-experimental_method comparisons I-experimental_method As O a O β B-protein_type - I-protein_type class I-protein_type N6 I-protein_type adenine I-protein_type MTase I-protein_type , O the O M1 B-protein . I-protein HpyAVI I-protein structure B-evidence displayed O a O good O similarity O with O M B-protein . I-protein MboIIA I-protein ( O PDB O ID O 1G60 O ) O and O M B-protein . I-protein RsrI I-protein ( O PDB O ID O 1NW7 O ), O which O are O falling O into O the O same O subgroup O . O Superimposition B-experimental_method of O M1 B-protein . I-protein HpyAVI I-protein onto O them O gave O RMSDs B-evidence of O 1 O . O 63 O Å O and O 1 O . O 9 O Å O on O 168 O and O 190 O Cα O atoms O , O respectively O . O The O most O striking O structural O difference O was O found O to O locate O on O the O TRD B-structure_element region O ( O residues O 133 B-residue_range - I-residue_range 163 I-residue_range in O M1 B-protein . I-protein HpyAVI I-protein ) O ( O Figure O 3A O – O 3C O ), O where O the O secondary O structures O vary O among O these O structures O . O By O comparison O with O the O other O two O enzymes O that O possess O protruding O arms O containing O several O α B-structure_element - I-structure_element helices I-structure_element and O / O or O β B-structure_element - I-structure_element strands I-structure_element , O the O TRD B-structure_element of O M1 B-protein . I-protein HpyAVI I-protein is O much O shorter O in O length O ( O Figure O S1 O ), O wrapping O more O closely O around O the O structural O core O and O lacking B-protein_state apparent O secondary O structures O . O Given O the O proposed O role O of O the O TRD B-structure_element for O DNA B-chemical interaction O at O the O major B-structure_element groove I-structure_element , O some O differences O of O DNA B-chemical recognition O mode O can O be O expected O . O Another O difference O locates O at O the O highly B-protein_state flexible I-protein_state loop B-structure_element between O β4 B-structure_element and O αD B-structure_element ( O residues O 33 B-residue_range - I-residue_range 58 I-residue_range ) O of O M1 B-protein . I-protein HpyAVI I-protein , O which O was O invisible O in O our O structures B-evidence but O present O in O the O structures B-evidence of O M B-protein . I-protein MboIIA I-protein and O M B-protein . I-protein RsrI I-protein . O Sequence B-experimental_method alignment I-experimental_method revealed O that O this O region O of O M1 B-protein . I-protein HpyAVI I-protein was O longer O than O its O counterparts O by O 13 O and O 16 O amino O acids O respectively O , O which O likely O renders O the O H B-species . I-species pylori I-species enzyme O more O flexible B-protein_state . O Structural B-experimental_method comparisons I-experimental_method between O M1 B-protein . I-protein HpyAVI I-protein and O other O DNA B-protein_type MTases I-protein_type A O . O M1 B-protein . I-protein HpyAVI I-protein ; O B O . O M B-protein . I-protein MboIIA I-protein ; O C O . O M B-protein . I-protein RsrI I-protein ; O D O . O TTHA0409 B-protein ; O E O . O DpnM B-protein ; O F O . O M B-protein . I-protein TaqI I-protein . O M1 B-protein . I-protein HpyAVI I-protein possesses O only O a O long B-protein_state disorder I-protein_state TRD B-structure_element region O , O compared O with O the O structure B-protein_state - I-protein_state rich I-protein_state TRD B-structure_element of O M B-protein . I-protein MboIIA I-protein , O M B-protein . I-protein RsrI I-protein and O TTHA0409 B-protein , O or O the O extra O DNA B-structure_element - I-structure_element binding I-structure_element domain I-structure_element of O DpnM B-protein and O M B-protein . I-protein TaqI I-protein . O The O core O structure O is O in O cyan O ; O TRD B-structure_element of O M1 B-protein . I-protein HpyAVI I-protein , O M B-protein . I-protein MboIIA I-protein , O M B-protein . I-protein RsrI I-protein and O TTHA0409 B-protein is O in O red O ; O The O region O between O β4 B-structure_element and O αD B-structure_element of O M B-protein . I-protein MboIIA I-protein and O M B-protein . I-protein RsrI I-protein is O in O green O ; O DNA B-structure_element - I-structure_element binding I-structure_element domain I-structure_element of O DpnM B-protein is O in O magenta O ; O The O C B-structure_element - I-structure_element terminal I-structure_element domain I-structure_element of O M B-protein . I-protein TaqI I-protein is O in O orange O . O Structural B-experimental_method comparison I-experimental_method between O M1 B-protein . I-protein HpyAVI I-protein and O a O putative O β B-protein_type - I-protein_type class I-protein_type N4 I-protein_type cytosine I-protein_type MTase I-protein_type named O TTHA0409 B-protein ( O PDB O ID O 2ZIF O ) O showed O a O good O similarity O as O well O , O giving O an O RMSD B-evidence of O 1 O . O 73 O Å O on O 164 O Cα O atoms O ( O Figure O 3D O ). O Exactly O like O the O above O comparison O , O the O most O significant O difference O exists O in O the O TRD B-structure_element , O where O the O structures B-evidence vary O in O terms O of O length O and O presence O of O α B-structure_element - I-structure_element helices I-structure_element ( O Figure O S1 O ). O M1 B-protein . I-protein HpyAVI I-protein displayed O a O considerable O structural O dissimilarity O in O comparison O with O N6 B-protein_type - I-protein_type adenine I-protein_type MTases I-protein_type from O other O subgroups O including O the O α B-protein_type - I-protein_type class I-protein_type DpnM B-protein ( O PDB O ID O 2DPM O ) O and O the O γ B-protein_type - I-protein_type class I-protein_type M B-protein . I-protein TaqI I-protein ( O PDB O ID O 2ADM O ). O Both O comparisons O gave O RMSDs B-evidence above O 3 O . O 0 O Å O ( O Figure O 3E O and O 3F O ). O These O two O enzymes O lack B-protein_state a O counterpart B-structure_element loop I-structure_element present O in O the O TRD B-structure_element of O M1 B-protein . I-protein HpyAVI I-protein , O but O instead O rely O on O an O extra O domain O for O DNA B-chemical binding O and O sequence O recognition O . O Collectively O , O M1 B-protein . I-protein HpyAVI I-protein possesses O a O long B-protein_state disordered I-protein_state TRD B-structure_element , O which O is O in O sharp O contrast O to O the O secondary B-protein_state structure I-protein_state - I-protein_state rich I-protein_state TRD B-structure_element in O other O β B-protein_type - I-protein_type class I-protein_type N6 I-protein_type adenine I-protein_type or I-protein_type N4 I-protein_type cytosine I-protein_type MTases I-protein_type or O the O extra O DNA O binding O domain O present O in O DNA B-protein_type MTases I-protein_type from O other O subgroups O . O This O striking O difference O may O be O a O significant O determinant O of O the O wider O substrate O spectrum O of O this O H B-species . I-species pylori I-species enzyme O . O AdoMet B-site - I-site binding I-site pocket I-site The O cofactor B-site binding I-site pocket I-site of O M1 B-protein . I-protein HpyAVI I-protein is O surrounded O by O residues O 7 B-residue_range - I-residue_range 9 I-residue_range , O 29 B-residue_range - I-residue_range 31 I-residue_range , O 165 B-residue_range - I-residue_range 167 I-residue_range , O 216 B-residue_range - I-residue_range 218 I-residue_range and O 221 B-residue_number ( O Figure O 4A O ), O which O are O conserved B-protein_state among O most O of O DNA B-protein_type MTases I-protein_type . O A O hydrogen B-bond_interaction bond I-bond_interaction between O D29 B-residue_name_number in O the O catalytic B-structure_element motif I-structure_element DPPY B-structure_element and O the O amino O group O of O bound B-protein_state AdoMet B-chemical is O preserved O as O other O MTase B-protein_type structures B-evidence . O Residues O D8 B-residue_name_number and O A9 B-residue_name_number from O hydrogen B-bond_interaction - I-bond_interaction bonds I-bond_interaction with O N6 O and O N1 O of O the O purine B-chemical ring O , O respectively O , O and O E216 B-residue_name_number also O locates O at O hydrogen B-bond_interaction bonding I-bond_interaction distance O with O O2 O ′ O and O O3 O ′ O of O the O ribose B-chemical . O In O addition O , O H168 B-residue_name_number , O T200 B-residue_name_number and O S198 B-residue_name_number contact O the O terminal O carboxyl O of O AdoMet B-chemical . O Superposition B-experimental_method of O M1 B-protein . I-protein HpyAVI I-protein with O the O five O structures B-evidence shown O in O Figure O 3 O reveals O that O the O orientation O of O cofactor O is O rather B-protein_state conserved I-protein_state except O for O M B-protein . I-protein TaqI I-protein ( O Figure O 4B O ). O The O different O conformation O of O the O bound B-protein_state cofactor O observed O in O M B-protein . I-protein TaqI I-protein might O be O attributable O to O the O absence B-protein_state of I-protein_state corresponding O residues O of O the O conserved B-protein_state AdoMet B-chemical - O binding O motif O FXGXG B-structure_element in O that O structure B-evidence . O Structural B-experimental_method and I-experimental_method biochemical I-experimental_method analyses I-experimental_method define O two O conserved B-protein_state residues O D29 B-residue_name_number and O E216 B-residue_name_number to O be O the O key O sites O for O AdoMet B-chemical binding O A O . O The O cofactor B-site - I-site binding I-site cavity I-site of O M1 B-protein . I-protein HpyAVI I-protein . O Residues O ( O yellow O ) O that O form O direct O hydrogen B-bond_interaction bonds I-bond_interaction with O AdoMet B-chemical ( O green O ) O are O indicated O , O distance O of O the O hydrogen B-bond_interaction bond I-bond_interaction is O marked O . O B O . O Superposition B-experimental_method of O AdoMet B-chemical in O the O structures B-evidence of O M1 B-protein . I-protein HpyAVI I-protein ( O green O ), O DpnM B-protein ( O yellow O ) O and O M B-protein . I-protein TaqI I-protein ( O orange O ). O The O AdoMet B-chemical terminal O carboxyl O of O M B-protein . I-protein TaqI I-protein reveals O different O orientations O . O C O . O Cofactor B-evidence binding I-evidence affinity I-evidence of O wt B-protein_state -/ O mutants B-protein_state M1 B-protein . I-protein HpyAVI I-protein proteins O analyzed O by O microscale B-experimental_method thermophoresis I-experimental_method ( O MST B-experimental_method ). O The O binding B-evidence affinity I-evidence was O determined O between O fluorescently O labelled O M1 B-protein . I-protein HpyAVI I-protein protein O and O unlabeled B-protein_state AdoMet B-chemical . O AdoMet B-chemical ( O 15 O nM O to O 1 O mM O ) O was O titrated B-experimental_method into O a O fixed O concentration O of O M1 B-protein . I-protein HpyAVI I-protein wt B-protein_state / O mutant B-protein_state proteins O ( O 800 O nM O ). O The O dissociation B-evidence constant I-evidence ( O KD B-evidence ) O is O yielded O according O to O the O law O of O mass O action O from O the O isotherm B-evidence derived O of O the O raw O data O : O M1 B-protein . I-protein HpyAVI I-protein - O wt B-protein_state : O 41 O ± O 6 O μM O ; O M1 B-mutant . I-mutant HpyAVI I-mutant - I-mutant D8A I-mutant : O 212 O ± O 11 O μM O ; O M1 B-mutant . I-mutant HpyAVI I-mutant - I-mutant D29A I-mutant : O 0 O μM O ; O M1 B-mutant . I-mutant HpyAVI I-mutant - I-mutant H168A I-mutant : O 471 O ± O 51 O μM O ; O M1 B-mutant . I-mutant HpyAVI I-mutant - I-mutant S198A I-mutant : O 242 O ± O 32 O μM O ; O M1 B-mutant . I-mutant HpyAVI I-mutant - I-mutant T200A I-mutant : O 252 O ± O 28 O μM O ; O M1 B-mutant . I-mutant HpyAVI I-mutant - I-mutant E216A I-mutant : O 0 O μM O . O Standard O for O three O replicates O is O indicated O . O D O . O DNA B-protein_type methyltransferase I-protein_type activity O of O wide B-protein_state type I-protein_state protein O and O the O mutants B-protein_state is O quantified O using O radioactive B-experimental_method assay I-experimental_method . O [ B-chemical 3H I-chemical ]- I-chemical methyl I-chemical transferred O to O duplex O DNA B-chemical containing O 5 B-chemical ′- I-chemical GAGG I-chemical - I-chemical 3 I-chemical ′ I-chemical was O quantified O by O Beckman O LS6500 O for O 10 O min O , O experiments O were O repeated O for O three O times O and O data O were O corrected O by O subtraction O of O the O background O . O E O . O Superposition B-experimental_method of O M1 B-protein . I-protein HpyAVI I-protein ( O green O ) O with O M B-protein . I-protein MboIIA I-protein ( O cyan O ) O and O M B-protein . I-protein RsrI I-protein ( O magenta O ). O Residues O D29 B-residue_name_number and O E216 B-residue_name_number are O conserved B-protein_state through O all O the O DNA B-protein_type MTases I-protein_type mentioned O in O Figure O 3 O ( O not O shown O in O Figure O 4 O ). O To O confirm O the O key O residues O for O ligand O binding O , O we O prepared O a O series O of O single B-experimental_method mutants I-experimental_method by O replacing B-experimental_method D8 B-residue_name_number , O D29 B-residue_name_number , O H168 B-residue_name_number , O S198 B-residue_name_number , O T200 B-residue_name_number , O E216 B-residue_name_number with O alanine B-residue_name and O investigated O their O ligand B-evidence binding I-evidence affinity I-evidence using O microscale B-experimental_method thermophoresis I-experimental_method ( O MST B-experimental_method ) O assay O . O As O shown O in O Figure O 4C O , O by O contrast O to O the O wild B-protein_state type I-protein_state enzyme O , O most O mutants B-protein_state displayed O variable O reduction O of O KD B-evidence value O , O among O them O the O D29A B-mutant and O E216A B-mutant mutants B-protein_state displayed O no O protein B-evidence - I-evidence AdoMet I-evidence affinity I-evidence at O all O . O The O results O suggested O that O the O hydrogen B-bond_interaction bonds I-bond_interaction formed O by O D29 B-residue_name_number and O E216 B-residue_name_number with O AdoMet B-chemical were O most O crucial O interactions O for O cofactor O binding O . O Mutation B-experimental_method of O the O two O residues O may O directly O prevent O the O methyl B-chemical transfer O reaction O of O M1 B-protein . I-protein HpyAVI I-protein . O The O importance O of O D29 B-residue_name_number is O preserved O because O it O belongs O to O the O catalytic B-site active I-site site I-site DPPY B-structure_element , O but O the O residue O E216 B-residue_name_number has O not O been O fully O investigated O even O being O a O conserved B-protein_state amino B-chemical acid I-chemical throughout O MTases B-protein_type ( O Figure O 4E O ). O E216 B-residue_name_number is O the O last O residue O of O β2 B-structure_element , O which O contacts O the O two O hydroxyls O of O the O ribose B-chemical of O AdoMet B-chemical . O Replacement B-experimental_method of O this O residue O by O alanine B-residue_name completely O abolishes O the O key O hydrogen B-bond_interaction bonds I-bond_interaction for O AdoMet B-chemical - O binding O , O and O very O likely O blocks O the O methyl B-chemical transfer O reaction O . O To O confirm O this O notion O , O [ B-experimental_method 3H I-experimental_method ] I-experimental_method AdoMet I-experimental_method radiological I-experimental_method assay I-experimental_method was O applied O to O quantify O the O methyl B-chemical transfer O activity O of O the O mutants B-protein_state . O As O shown O in O Figure O 4D O , O the O result O of O radiological B-experimental_method assay I-experimental_method agreed O well O with O the O MST B-experimental_method measurement O . O The O D29A B-mutant and O E216A B-mutant mutants B-protein_state showed O little O or O no O methyl B-chemical transfer O activity O , O while O other O mutants B-protein_state exhibited O reduced O methyltransferase B-protein_type activity O . O As O mentioned O previously O , O FXGXG B-structure_element is O a O conserved B-protein_state AdoMet B-chemical - O binding O motif O of O DNA B-protein_type MTases I-protein_type . O We O also O made O mutants B-protein_state of O “ O FMGSG B-structure_element ” O to O alanine B-residue_name for O every O amino B-chemical acid I-chemical , O and O found O that O the O F195A B-mutant mutant B-protein_state was O insoluble O probably O due O to O decreasing O the O local O hydrophobicity O upon O this O mutation O . O We O subsequently O investigated O the O ligand B-evidence binding I-evidence affinity I-evidence and O methyl B-chemical transfer O reaction O of O the O other O mutants B-protein_state using O MST B-experimental_method and O a O radiological B-experimental_method assay I-experimental_method . O We O found O that O G197 B-residue_name_number played O a O crucial O role O in O AdoMet B-chemical - O binding O , O while O mutagenesis B-experimental_method of O M196 B-residue_name_number and O G199 B-residue_name_number did O not O influence O cofactor O binding O and O catalytic O activity O ( O Figure O S2A O and O B O ). O G197 B-residue_name_number is O a O conserved B-protein_state residue O throughout O the O DNA B-protein_type MTases I-protein_type , O and O replacing B-experimental_method by O alanine B-residue_name at O this O site O likely O change O the O local O conformation O of O cofactor B-site - I-site binding I-site pocket I-site . O Mutagenesis B-experimental_method on O this O glycine B-residue_name residue O in O M B-protein . I-protein EcoKI I-protein or O M B-protein . I-protein EcoP15I I-protein also O abolished O the O AdoMet B-chemical - O binding O activity O . O Although O mutational B-experimental_method study I-experimental_method could O not O tell O the O role O of O F195 B-residue_name_number in O ligand O binding O due O to O the O insolubility O of O the O F195A B-mutant mutant B-protein_state , O structural B-experimental_method analysis I-experimental_method suggested O the O importance O of O this O residue O in O AdoMet B-chemical - O binding O . O The O phenyl O ring O of O F195 B-residue_name_number forms O a O perpendicular O π B-bond_interaction - I-bond_interaction stacking I-bond_interaction interaction I-bond_interaction with O the O purine O ring O of O AdoMet B-chemical , O which O stabilizes O the O orientation O of O AdoMet B-chemical bound B-protein_state in I-protein_state the O pocket B-site of O M1 B-protein . I-protein HpyAVI I-protein ( O Figure O S2C O ). O In O a O separate O scenario O , O mutagenesis B-experimental_method of O this O residue O in O M B-protein . I-protein EcoRV I-protein has O been O proven O to O play O an O important O role O in O AdoMet B-chemical binding O . O Potential O DNA B-site - I-site binding I-site sites I-site The O putative O DNA B-site binding I-site region I-site of O M1 B-protein . I-protein HpyAVI I-protein involves O the O hairpin B-structure_element loop I-structure_element ( O residue O 101 B-residue_range - I-residue_range 133 I-residue_range ), O the O TRD B-structure_element ( O residues O 136 B-residue_range - I-residue_range 166 I-residue_range ), O and O a O highly B-protein_state flexible I-protein_state loop B-structure_element ( O residues O 33 B-residue_range - I-residue_range 58 I-residue_range ). O The O hairpin B-structure_element loop I-structure_element between O β6 B-structure_element and O β7 B-structure_element strands O that O carries O a O conserved B-protein_state HRRY B-structure_element sequence O signature O in O the O middle O is O proposed O to O insert O into O the O minor B-structure_element groove I-structure_element of O the O bound B-protein_state DNA B-chemical . O As O aforementioned O , O the O TRD B-structure_element of O M1 B-protein . I-protein HpyAVI I-protein shows O striking O difference O from O the O other O DNA B-protein_type MTases I-protein_type , O and O the O relaxed O specificity O of O substrate O recognition O may O be O at O least O partially O attributable O to O the O disordered B-protein_state TRD B-structure_element . O In O addition O , O the O highly B-protein_state flexible I-protein_state loop B-structure_element immediately O following O the O DPPY B-structure_element motif O in O M1 B-protein . I-protein HpyAVI I-protein was O poorly O defined O in O electron B-evidence density I-evidence , O exactly O like O the O corresponding O loops B-structure_element in O the O AdoMet B-protein_state - I-protein_state bound I-protein_state structures B-evidence of O M B-protein . I-protein PvuII I-protein , O DpnM B-protein or O M B-protein . I-protein TaqI I-protein that O were O invisible O either O . O This O loop B-structure_element , O however O , O was O largely O stabilized O upon O DNA B-chemical binding O , O as O observed O in O the O protein B-evidence - I-evidence DNA I-evidence complex I-evidence structures I-evidence of O M B-protein . I-protein TaqI I-protein ( O PDB O ID O 2IBS O ), O M B-protein . I-protein HhaI I-protein ( O PDB O ID O 1MHT O ) O and O M B-protein . I-protein HaeIII I-protein ( O PDB O ID O 1DCT O ). O The O well B-protein_state - I-protein_state ordered I-protein_state loop B-structure_element in O those O structures B-evidence directly O contacts O the O flipping O adenine B-residue_name and O forms O hydrogen B-bond_interaction bond I-bond_interaction with O neighboring O bases O . O These O observations O implied O that O the O corresponding O loop B-structure_element in O other O MTases B-protein_type , O e O . O g O . O M1 B-protein . I-protein HpyAVI I-protein , O is O likely O responsible O for O reducing O sequence O recognition O specificity O and O thus O plays O crucial O roles O in O catalysis O . O Previous O research O suggested O that O M1 B-protein . I-protein HpyAVI I-protein from O strain O 26695 O was O the O first O N6 B-protein_type adenine I-protein_type MTase I-protein_type that O can O methylate O the O adenine B-residue_name of O 5 B-chemical ′- I-chemical GAGG I-chemical - I-chemical 3 I-chemical ′/ I-chemical 5 B-chemical ′- I-chemical GGAG I-chemical - I-chemical 3 I-chemical ′ I-chemical or O both O two O adenines B-residue_name of O 5 B-chemical ′- I-chemical GAAG I-chemical - I-chemical 3 I-chemical ′, I-chemical compared O with O the O homologs O from O other O strains O that O can O methylate O only O one O adenine B-residue_name of O 5 B-chemical ′- I-chemical GAGG I-chemical - I-chemical 3 I-chemical ′. I-chemical To O answer O why O M1 B-protein . I-protein HpyAVI I-protein displayed O a O wider O specificity O for O DNA B-chemical recognition O , O we O randomly O choose O fifty O of O M1 B-protein . I-protein HpyAVI I-protein sequences O from O hundreds O of O H B-species . I-species pylori I-species strains O for O multiple B-experimental_method sequence I-experimental_method alignment I-experimental_method . O Based O on O sequence B-experimental_method comparison I-experimental_method and O structural B-experimental_method analysis I-experimental_method , O four O residues O including O P41 B-residue_name_number , O N111 B-residue_name_number , O K165 B-residue_name_number and O T166 B-residue_name_number were O selected O and O replaced B-experimental_method by O serine B-residue_name , O threonine B-residue_name , O threonine B-residue_name and O valine B-residue_name , O respectively O ( O Figure O 5A O ). O Then O , O a O [ B-experimental_method 3H I-experimental_method ] I-experimental_method AdoMet I-experimental_method radiological I-experimental_method assay I-experimental_method was O applied O to O quantify O the O methyl B-chemical transfer O activity O of O the O wide B-protein_state type I-protein_state protein O and O the O mutants B-protein_state . O As O shown O in O Figure O 5 O , O when O the O substrate O DNA B-chemical contains O 5 B-chemical ′- I-chemical GAGG I-chemical - I-chemical 3 I-chemical ′ I-chemical or O 5 B-chemical ′- I-chemical GAAG I-chemical - I-chemical 3 I-chemical ′, I-chemical all O the O mutants B-protein_state showed O no O apparent O difference O of O methyl B-chemical transfer O activity O compared O to O the O wt B-protein_state - O M1 B-protein . I-protein HpyAVI I-protein ; O but O when O the O recognition O sequence O was O 5 B-chemical ′- I-chemical GGAG I-chemical - I-chemical 3 I-chemical ′, I-chemical the O methyl B-chemical transfer O activity O of O the O P41S B-mutant mutant B-protein_state was O significantly O reduced O compared O to O the O wild B-protein_state type I-protein_state M1 B-protein . I-protein HpyAVI I-protein . O Sequence B-experimental_method alignment I-experimental_method , O structural B-experimental_method analysis I-experimental_method and O radioactive B-experimental_method methyl I-experimental_method transfer I-experimental_method activity I-experimental_method define O the O key O residue O for O wider O substrate O specificity O of O M1 B-protein . I-protein HpyAVI I-protein A O . O Sequence B-experimental_method alignment I-experimental_method of O M1 B-protein . I-protein HpyAVI I-protein from O 50 O H B-species . I-species pylori I-species strains O including O 26695 O revealed O several O variant O residues O . O Residues O P41 B-residue_name_number , O N111 B-residue_name_number , O K165 B-residue_name_number and O T166 B-residue_name_number of O M1 B-protein . I-protein HpyAVI I-protein from O strain O 26695 B-species were O chosen O based O on O structural B-experimental_method analysis I-experimental_method and O sequence B-experimental_method alignment I-experimental_method ( O shown O in O red O arrow O ). O Amino O - O acid O conservation O is O depicted O using O WebLogo B-experimental_method ( O Crooks O et O al O , O 2004 O ). O B O ., O C O ., O D O . O Methyl B-chemical transfer O reactions O were O performed O using O wt B-protein_state - O M1 B-protein . I-protein HpyAVI I-protein , O M1 B-mutant . I-mutant HpyAVI I-mutant - I-mutant P41S I-mutant , O M1 B-mutant . I-mutant HpyAVI I-mutant - I-mutant N111T I-mutant , O and O M1 B-mutant . I-mutant HpyAVI I-mutant - I-mutant K165R I-mutant T166V I-mutant , O respectively O . O Radioactivity O incorporated O into O the O duplex O DNA B-chemical containing O 5 B-chemical ′- I-chemical GAGG I-chemical - I-chemical 3 I-chemical ′, I-chemical 5 B-chemical ′- I-chemical GAAG I-chemical - I-chemical 3 I-chemical ′ I-chemical or O 5 B-chemical ′- I-chemical GGAG I-chemical - I-chemical 3 I-chemical ′ I-chemical was O quantified O by O Beckman O LS6500 O for O 10 O min O . O Our O experimental O data O identified O P41 B-residue_name_number as O a O key O residue O determining O the O recognition O of O GGAG B-structure_element of O M1 B-protein . I-protein HpyAVI I-protein . O This O amino O acid O locates O in O the O highly B-protein_state flexible I-protein_state loop B-structure_element between O residues O 33 B-residue_range and I-residue_range 58 I-residue_range , O which O is O involved O in O DNA B-chemical binding O and O substrate O recognition O as O shown O above O . O Replacement B-experimental_method by O serine B-residue_name at O this O position O definitely O changes O the O local O conformation O and O hydrophobicity O , O and O probably O some O structural O properties O of O the O whole O loop B-structure_element , O which O may O in O turn O result O in O reduced O specificity O for O sequence O recognition O of O the O enzyme O from O strain O 26695 B-species . O Although O the O DNA B-protein_state - I-protein_state bound I-protein_state structure B-evidence of O previous O investigation O on O a O γ B-protein_type - I-protein_type class I-protein_type N6 I-protein_type - I-protein_type adenine I-protein_type MTase I-protein_type revealed O that O the O target O adenine B-residue_name was O rotated O out O of O DNA B-chemical helix O , O details O of O the O methyl B-chemical transfer O process O were O still O unclear O . O Additionally O , O recent O studies O reported O the O importance O of O N6 B-ptm - I-ptm methyladenine I-ptm in O some O eukaryotic B-taxonomy_domain species O , O but O until O now O there O has O not O been O any O N6 B-protein_type - I-protein_type adenine I-protein_type MTases I-protein_type being O identified O in O eukaryotes B-taxonomy_domain . O Biochemical B-experimental_method and I-experimental_method structural I-experimental_method characterization I-experimental_method of O M1 B-protein . I-protein HpyAVI I-protein provides O a O new O model O for O uncovering O the O methyl B-chemical transfer O mechanism O and O for O investigating O the O N6 B-ptm - I-ptm methyladenine I-ptm in O eukaryotes B-taxonomy_domain . O Oligomeric O state O of O DNA B-protein_type MTases I-protein_type was O long O accepted O as O monomer B-oligomeric_state , O but O our O study O indicated O here O that O M1 B-protein . I-protein HpyAVI I-protein exists O as O a O dimer B-oligomeric_state both O in O crystal B-evidence and O solution O . O Interestingly O , O some O other O β B-protein_type - I-protein_type class I-protein_type DNA I-protein_type exocyclic I-protein_type MTases I-protein_type showed O similar O oligomeric O state O in O crystal B-evidence and O in O solution O , O indicating O that O dimer B-oligomeric_state may O be O the O functional O state O shared O by O a O subgroup O of O DNA B-protein_type MTases I-protein_type . O The O highly B-protein_state flexible I-protein_state region O ( O residues O 33 B-residue_range - I-residue_range 58 I-residue_range ) O and O TRD B-structure_element ( O residues O 133 B-residue_range - I-residue_range 163 I-residue_range ) O of O M1 B-protein . I-protein HpyAVI I-protein are O supposed O to O interact O with O DNA B-chemical at O minor B-structure_element and I-structure_element major I-structure_element grooves I-structure_element , O respectively O . O And O residue O P41 B-residue_name_number might O be O a O key O residue O partially O determining O the O substrate O spectrum O of O M1 B-protein . I-protein HpyAVI I-protein . O The O missing B-protein_state loop B-structure_element between O residues O 33 B-residue_range and I-residue_range 58 I-residue_range may O need O DNA B-chemical binding O so O as O to O form O a O stable B-protein_state conformation O , O which O is O similar O to O the O condition O of O M B-protein . I-protein TaqI I-protein . O Crystallization B-experimental_method of O M1 B-complex_assembly . I-complex_assembly HpyAVI I-complex_assembly - I-complex_assembly DNA I-complex_assembly complex O warrants O future O investigations O , O with O the O purpose O of O revealing O the O mechanism O behind O the O wider O substrate O specificity O of O this O enzyme O . O DNA B-ptm methylation I-ptm plays O an O important O role O in O bacterial B-taxonomy_domain pathogenicity O . O DNA B-ptm adenine I-ptm methylation I-ptm was O known O to O regulate O the O expression O of O some O virulence O genes O in O bacteria B-taxonomy_domain including O H B-species . I-species pylori I-species . O Inhibitors O of O DNA B-ptm adenine I-ptm methylation I-ptm may O have O a O broad O antimicrobial O action O by O targeting O DNA B-protein_type adenine I-protein_type methyltransferase I-protein_type . O As O an O important O biological O modification O , O DNA B-ptm methylation I-ptm directly O influences O bacterial B-taxonomy_domain survival O . O Knockout B-experimental_method of I-experimental_method M1 B-protein . I-protein HpyAVI I-protein largely O prevents O the O growth O of O H B-species . I-species pylori I-species . O Importantly O , O H B-species . I-species pylori I-species is O involved O in O 90 O % O of O all O gastric O malignancies O . O Appropriate O antibiotic O regimens O could O successfully O cure O gastric O diseases O caused O by O H B-species . I-species pylori I-species infection O . O However O , O eradication O of O H B-species . I-species pylori I-species infection O remains O a O big O challenge O for O the O significantly O increasing O prevalence O of O its O resistance O to O antibiotics O . O The O development O of O new O drugs O targeting O adenine B-protein_type MTases I-protein_type such O as O M1 B-protein . I-protein HpyAVI I-protein offers O a O new O opportunity O for O inhibition O of O H B-species . I-species pylori I-species infection O . O Residues O that O play O crucial O roles O for O catalytic O activity O like O D29 B-residue_name_number or O E216 B-residue_name_number may O influence O the O H B-species . I-species pylori I-species survival O . O Small O molecules O targeting O these O highly B-protein_state conserved I-protein_state residues O are O likely O to O emerge O less O drug O resistance O . O In O summary O , O the O structure B-evidence of O M1 B-protein . I-protein HpyAVI I-protein is O featured O with O a O disordered B-protein_state TRD B-structure_element and O a O key O residue O P41that B-residue_name_number located O in O the O putative O DNA B-site binding I-site region I-site that O may O associate O with O the O wider O substrate O specificity O . O Residues O D29 B-residue_name_number and O E216 B-residue_name_number were O identified O to O play O a O crucial O role O in O cofactor O binding O . O As O the O first O crystal B-evidence structure I-evidence of O N6 B-protein_type - I-protein_type adenine I-protein_type MTase I-protein_type in O H B-species . I-species pylori I-species , O this O model O may O shed O light O on O design O of O new O antibiotics O to O interfere O the O growth O and O pathogenesis O of O H B-species . I-species pylori I-species in O human B-species . O