mevol's picture
adding all relevant files for independent validation set
b5f5589
Structural O
insights O
and O
in B-experimental_method
vitro I-experimental_method
reconstitution I-experimental_method
of O
membrane O
targeting O
and O
activation O
of O
human B-species
PI4KB B-protein
by O
the O
ACBD3 B-protein
protein O
Phosphatidylinositol B-protein
4 I-protein
- I-protein
kinase I-protein
beta I-protein
( O
PI4KB B-protein
) O
is O
one O
of O
four O
human B-species
PI4K B-protein_type
enzymes O
that O
generate O
phosphatidylinositol B-chemical
4 I-chemical
- I-chemical
phosphate I-chemical
( O
PI4P B-chemical
), O
a O
minor O
but O
essential O
regulatory O
lipid O
found O
in O
all O
eukaryotic B-taxonomy_domain
cells O
. O
To O
convert O
their O
lipid O
substrates O
, O
PI4Ks B-protein_type
must O
be O
recruited O
to O
the O
correct O
membrane O
compartment O
. O
PI4KB B-protein
is O
critical O
for O
the O
maintenance O
of O
the O
Golgi O
and O
trans O
Golgi O
network O
( O
TGN O
) O
PI4P B-chemical
pools O
, O
however O
, O
the O
actual O
targeting O
mechanism O
of O
PI4KB B-protein
to O
the O
Golgi O
and O
TGN O
membranes O
is O
unknown O
. O
Here O
, O
we O
present O
an O
NMR B-experimental_method
structure B-evidence
of O
the O
complex O
of O
PI4KB B-protein
and O
its O
interacting O
partner O
, O
Golgi B-protein_type
adaptor I-protein_type
protein I-protein_type
acyl B-protein
- I-protein
coenzyme I-protein
A I-protein
binding I-protein
domain I-protein
containing I-protein
protein I-protein
3 I-protein
( O
ACBD3 B-protein
). O
We O
show O
that O
ACBD3 B-protein
is O
capable O
of O
recruiting O
PI4KB B-protein
to O
membranes O
both O
in O
vitro O
and O
in O
vivo O
, O
and O
that O
membrane O
recruitment O
of O
PI4KB B-protein
by O
ACBD3 B-protein
increases O
its O
enzymatic B-evidence
activity I-evidence
and O
that O
the O
ACBD3 B-complex_assembly
: I-complex_assembly
PI4KB I-complex_assembly
complex O
formation O
is O
essential O
for O
proper O
function O
of O
the O
Golgi O
. O
Phosphatidylinositol B-protein
4 I-protein
- I-protein
kinase I-protein
beta I-protein
( O
PI4KB B-protein
, O
also O
known O
as O
PI4K B-protein
IIIβ I-protein
) O
is O
a O
soluble O
cytosolic O
protein O
yet O
its O
function O
is O
to O
phosphorylate O
membrane O
lipids O
. O
It O
is O
one O
of O
four O
human B-species
PI4K B-protein_type
enzymes O
that O
phosphorylate O
phosphatidylinositol B-chemical
( O
PI B-chemical
) O
to O
generate O
phosphatidylinositol B-chemical
4 I-chemical
- I-chemical
phosphate I-chemical
( O
PI4P B-chemical
). O
PI4P B-chemical
is O
an O
essential O
lipid O
found O
in O
various O
membrane O
compartments O
including O
the O
Golgi O
and O
trans O
- O
Golgi O
network O
( O
TGN O
), O
the O
plasma O
membrane O
and O
the O
endocytic O
compartments O
. O
In O
these O
locations O
, O
PI4P B-chemical
plays O
an O
important O
role O
in O
cell O
signaling O
and O
lipid O
transport O
, O
and O
serves O
as O
a O
precursor O
for O
higher O
phosphoinositides B-chemical
or O
as O
a O
docking O
site O
for O
clathrin B-protein_type
adaptor O
or O
lipid O
transfer O
proteins O
. O
A O
wide O
range O
of O
positive B-taxonomy_domain
- I-taxonomy_domain
sense I-taxonomy_domain
single I-taxonomy_domain
- I-taxonomy_domain
stranded I-taxonomy_domain
RNA I-taxonomy_domain
viruses I-taxonomy_domain
(+ O
RNA B-taxonomy_domain
viruses I-taxonomy_domain
), O
including O
many O
that O
are O
important O
human B-species
pathogens O
, O
hijack O
human B-species
PI4KA B-protein
or O
PI4KB B-protein
enzymes O
to O
generate O
specific O
PI4P B-chemical
- O
enriched O
organelles O
called O
membranous O
webs O
or O
replication O
factories O
. O
These O
structures B-evidence
are O
essential O
for O
effective O
viral B-taxonomy_domain
replication O
. O
Recently O
, O
highly O
specific O
PI4KB B-protein
inhibitors O
were O
developed O
as O
potential O
antivirals O
. O
PI4K B-protein_type
kinases B-protein_type
must O
be O
recruited O
to O
the O
correct O
membrane O
type O
to O
fulfill O
their O
enzymatic O
functions O
. O
Type B-protein_type
II I-protein_type
PI4Ks I-protein_type
( O
PI4K2A B-protein
and O
PI4K2B B-protein
) O
are O
heavily B-protein_state
palmitoylated I-protein_state
and O
thus O
behave O
as O
membrane B-protein
proteins I-protein
. O
In O
contrast O
, O
type B-protein_type
III I-protein_type
PI4Ks I-protein_type
( O
PI4KA B-protein
and O
PI4KB B-protein
) O
are O
soluble O
cytosolic O
proteins O
that O
are O
recruited O
to O
appropriate O
membranes O
indirectly O
via O
protein O
- O
protein O
interactions O
. O
The O
recruitment O
of O
PI4KA B-protein
to O
the O
plasma O
membrane O
by O
EFR3 B-protein
and O
TTC7 B-protein
is O
relatively O
well O
understood O
even O
at O
the O
structural O
level O
, O
but O
, O
the O
actual O
molecular O
mechanism O
of O
PI4KB B-protein
recruitment O
to O
the O
Golgi O
is O
still O
poorly O
understood O
. O
Acyl B-protein
- I-protein
coenzyme I-protein
A I-protein
binding I-protein
domain I-protein
containing I-protein
protein I-protein
3 I-protein
( O
ACBD3 B-protein
, O
also O
known O
as O
GCP60 B-protein
and O
PAP7 B-protein
) O
is O
a O
Golgi O
resident O
protein O
. O
Its O
membrane O
localization O
is O
mediated O
by O
the O
interaction O
with O
the O
Golgi O
integral O
protein O
golgin B-protein
B1 I-protein
/ O
giantin B-protein
. O
ACBD3 B-protein
functions O
as O
an O
adaptor O
protein O
and O
signaling O
hub O
across O
cellular O
signaling O
pathways O
. O
ACBD3 B-protein
can O
interact O
with O
a O
number O
of O
proteins O
including O
golgin B-protein
A3 I-protein
/ O
golgin B-protein
- I-protein
160 I-protein
to O
regulate O
apoptosis O
, O
Numb B-protein_type
proteins I-protein_type
to O
control O
asymmetric O
cell O
division O
and O
neuronal O
differentiation O
, O
metal B-protein_type
transporter I-protein_type
DMT1 B-protein
and O
monomeric B-oligomeric_state
G B-protein_type
protein I-protein_type
Dexras1 B-protein
to O
maintain O
iron B-chemical
homeostasis O
, O
and O
the O
lipid B-protein_type
kinase I-protein_type
PI4KB B-protein
to O
regulate O
lipid O
homeostasis O
. O
ACBD3 B-protein
has O
been O
also O
implicated O
in O
the O
pathology O
of O
neurodegenerative O
diseases O
such O
as O
Huntington O
O
s O
disease O
due O
to O
its O
interactions O
with O
a O
polyglutamine B-structure_element
repeat I-structure_element
- O
containing O
mutant B-protein_state
huntingtin B-protein
and O
the O
striatal O
- O
selective O
monomeric B-oligomeric_state
G B-protein_type
protein I-protein_type
Rhes B-protein
/ O
Dexras2 B-protein
. O
ACBD3 B-protein
is O
a O
binding O
partner O
of O
viral B-taxonomy_domain
non B-protein_type
- I-protein_type
structural I-protein_type
3A I-protein_type
proteins I-protein_type
and O
a O
host O
factor O
of O
several O
picornaviruses B-taxonomy_domain
including O
poliovirus B-taxonomy_domain
, O
coxsackievirus B-taxonomy_domain
B3 I-taxonomy_domain
, O
and O
Aichi B-taxonomy_domain
virus I-taxonomy_domain
. O
We O
present O
a O
biochemical B-experimental_method
and I-experimental_method
structural I-experimental_method
characterization I-experimental_method
of O
the O
molecular O
complex O
composed O
of O
the O
ACBD3 B-protein
protein O
and O
the O
PI4KB B-protein
enzyme O
. O
We O
show O
that O
ACBD3 B-protein
can O
recruit O
PI4KB B-protein
to O
model O
membranes O
as O
well O
as O
redirect O
PI4KB B-protein
to O
cellular O
membranes O
where O
it O
is O
not O
naturally O
found O
. O
Our O
data O
also O
show O
that O
ACBD3 B-protein
regulates O
the O
enzymatic B-evidence
activity I-evidence
of O
PI4KB B-protein
kinase B-protein_type
through O
membrane O
recruitment O
rather O
than O
allostery O
. O
ACBD3 B-protein
and O
PI4KB B-protein
interact O
with O
1 O
: O
1 O
stoichiometry O
with O
submicromolar O
affinity O
In O
order O
to O
verify O
the O
interactions O
between O
ACBD3 B-protein
and O
PI4KB B-protein
we O
expressed B-experimental_method
and I-experimental_method
purified I-experimental_method
both O
proteins O
. O
To O
increase O
yields O
of O
bacterial B-experimental_method
expression I-experimental_method
the O
intrinsically B-structure_element
disordered I-structure_element
region I-structure_element
of O
PI4KB B-protein
( O
residues O
423 B-residue_range
I-residue_range
522 I-residue_range
) O
was O
removed B-experimental_method
( O
Fig O
. O
1A O
). O
This O
internal O
deletion B-experimental_method
does O
not O
significantly O
affect O
the O
kinase B-protein_type
activity O
( O
SI O
Fig O
. O
1A O
) O
or O
interaction O
with O
ACBD3 B-protein
( O
SI O
Fig O
. O
1B O
, O
C O
). O
In O
an O
in B-experimental_method
vitro I-experimental_method
binding I-experimental_method
assay I-experimental_method
, O
ACBD3 B-protein
co B-experimental_method
- I-experimental_method
purified I-experimental_method
with I-experimental_method
the I-experimental_method
NiNTA I-experimental_method
- I-experimental_method
immobilized I-experimental_method
N O
- O
terminal O
His6GB1 B-protein_state
- I-protein_state
tagged I-protein_state
PI4KB B-protein
( O
Fig O
. O
1B O
, O
left O
panel O
), O
suggesting O
a O
direct O
interaction O
. O
Using O
a O
mammalian B-experimental_method
two I-experimental_method
- I-experimental_method
hybrid I-experimental_method
assay I-experimental_method
Greninger O
and O
colleagues O
localized B-evidence
this O
interaction O
to O
the O
Q B-structure_element
domain I-structure_element
of O
ACBD3 B-protein
( O
named O
according O
to O
its O
high O
content O
of O
glutamine B-residue_name
residues O
) O
and O
the O
N B-structure_element
- I-structure_element
terminal I-structure_element
region I-structure_element
of O
PI4KB B-protein
preceding O
its O
helical B-structure_element
domain I-structure_element
. O
We O
expressed B-experimental_method
the O
Q B-structure_element
domain I-structure_element
of O
ACBD3 B-protein
( O
residues O
241 B-residue_range
I-residue_range
308 I-residue_range
) O
and O
the O
N B-structure_element
- I-structure_element
terminal I-structure_element
region I-structure_element
of O
PI4KB B-protein
( O
residues O
1 B-residue_range
I-residue_range
68 I-residue_range
) O
in O
E B-species
. I-species
coli I-species
and O
using O
purified O
recombinant O
proteins O
, O
we O
confirmed O
that O
these O
two O
domains O
are O
sufficient O
to O
maintain O
the O
interaction O
( O
Fig O
. O
1B O
, O
middle O
and O
right O
panel O
). O
Because O
it O
has O
been O
reported O
that O
ACBD3 B-protein
can O
dimerize B-oligomeric_state
in O
a O
mammalian B-experimental_method
two I-experimental_method
- I-experimental_method
hybrid I-experimental_method
assay I-experimental_method
, O
we O
were O
interested O
in O
determining O
the O
stoichiometry O
of O
the O
ACBD3 B-complex_assembly
: I-complex_assembly
PI4KB I-complex_assembly
protein O
complex O
. O
The O
sedimentation B-evidence
coefficients I-evidence
of O
ACBD3 B-protein
and O
PI4KB B-protein
alone B-protein_state
, O
or O
ACBD3 B-complex_assembly
: I-complex_assembly
PI4KB I-complex_assembly
complex O
were O
determined O
by O
analytical B-experimental_method
ultracentrifugation I-experimental_method
and O
found O
to O
be O
3 O
. O
1 O
S O
, O
4 O
. O
1 O
S O
, O
and O
5 O
. O
1 O
S O
. O
These O
values O
correspond O
to O
molecular B-evidence
weights I-evidence
of O
approximately O
55 O
kDa O
, O
80 O
kDa O
, O
and O
130 O
kDa O
, O
respectively O
. O
This O
result O
suggests O
that O
both O
proteins O
are O
monomeric B-oligomeric_state
and O
the O
stoichiometry O
of O
the O
ACBD3 B-complex_assembly
: I-complex_assembly
PI4KB I-complex_assembly
protein O
complex O
is O
1 O
: O
1 O
( O
Fig O
. O
1C O
, O
left O
panel O
). O
Similar O
results O
were O
obtained O
for O
the O
complex O
of O
the O
Q B-structure_element
domain I-structure_element
of O
ACBD3 B-protein
and O
the O
N B-structure_element
- I-structure_element
terminal I-structure_element
region I-structure_element
of O
PI4KB B-protein
( O
Fig O
. O
1C O
, O
right O
panel O
). O
We O
also O
determined O
the O
strength O
of O
the O
interaction O
between O
recombinant O
full B-protein_state
length I-protein_state
ACBD3 B-protein
and O
PI4KB B-protein
using O
surface B-experimental_method
plasmon I-experimental_method
resonance I-experimental_method
( O
SPR B-experimental_method
). O
SPR B-experimental_method
measurements O
revealed O
a O
strong O
interaction O
with O
a O
Kd B-evidence
value O
of O
320 O
+/O
130 O
nM O
( O
Fig O
. O
1D O
, O
SI O
Fig O
. O
1D O
). O
We O
concluded O
that O
ACBD3 B-protein
and O
PI4KB B-protein
interact O
directly O
through O
the O
Q B-structure_element
domain I-structure_element
of O
ACBD3 B-protein
and O
the O
N B-structure_element
- I-structure_element
terminal I-structure_element
region I-structure_element
of O
PI4KB B-protein
forming O
a O
1 O
: O
1 O
complex O
with O
a O
dissociation B-evidence
constant I-evidence
in O
the O
submicromolar O
range O
. O
Structural B-experimental_method
analysis I-experimental_method
of O
the O
ACBD3 B-complex_assembly
: I-complex_assembly
PI4KB I-complex_assembly
complex O
Full B-protein_state
length I-protein_state
ACBD3 B-protein
and O
PI4KB B-protein
both O
contain O
large O
intrinsically B-structure_element
disordered I-structure_element
regions I-structure_element
that O
impede O
crystallization O
. O
We O
used O
hydrogen B-experimental_method
- I-experimental_method
deuterium I-experimental_method
exchange I-experimental_method
mass I-experimental_method
spectrometry I-experimental_method
( O
HDX B-experimental_method
- I-experimental_method
MS I-experimental_method
) O
analysis O
of O
the O
complex O
to O
determine O
which O
parts O
of O
the O
complex O
are O
well B-protein_state
folded I-protein_state
( O
SI O
Fig O
. O
2 O
). O
However O
, O
we O
were O
unable O
to O
obtain O
crystals B-evidence
even O
when O
using O
significantly O
truncated B-protein_state
constructs O
that O
included O
only O
the O
ACBD3 B-protein
Q B-structure_element
domain I-structure_element
and O
the O
N B-structure_element
- I-structure_element
terminal I-structure_element
region I-structure_element
of O
PI4KB B-protein
. O
For O
this O
reason O
, O
we O
produced O
an O
isotopically B-protein_state
labeled I-protein_state
ACBD3 B-protein
Q B-structure_element
domain I-structure_element
and O
isotopically B-protein_state
labeled I-protein_state
ACBD3 B-protein
Q B-structure_element
domain I-structure_element
: O
PI4KB B-protein
N B-structure_element
- I-structure_element
terminal I-structure_element
region I-structure_element
protein O
complex O
and O
used O
NMR B-experimental_method
spectroscopy I-experimental_method
for O
structural O
characterization O
. O
As O
the O
N B-structure_element
- I-structure_element
terminal I-structure_element
region I-structure_element
protein O
complex O
was O
prepared O
by O
co B-experimental_method
- I-experimental_method
expression I-experimental_method
of O
both O
proteins O
, O
the O
samples O
consisted O
of O
an O
equimolar O
mixture O
of O
two O
uniformly O
15N B-chemical
/ O
13C B-chemical
labelled B-protein_state
molecules O
. O
Comprehensive O
backbone O
and O
side O
- O
chain O
resonance O
assignments O
for O
the O
free B-protein_state
ACBD3 B-protein
Q B-structure_element
domain I-structure_element
and O
the O
complex O
, O
as O
illustrated O
by O
the O
2D B-experimental_method
15N I-experimental_method
/ I-experimental_method
1H I-experimental_method
HSQC I-experimental_method
spectra B-evidence
( O
SI O
Figs O
3 O
and O
4 O
), O
were O
obtained O
using O
a O
standard O
combination O
of O
triple B-experimental_method
- I-experimental_method
resonance I-experimental_method
experiments I-experimental_method
, O
as O
described O
previously O
. O
Backbone O
amide O
signals O
( O
15N B-chemical
and O
1H B-chemical
) O
for O
the O
free B-protein_state
ACBD3 B-protein
Q B-structure_element
domain I-structure_element
were O
nearly O
completely O
assigned O
apart O
from O
the O
first O
four O
N O
- O
terminal O
residues O
( O
Met1 B-residue_range
- I-residue_range
Lys4 I-residue_range
) O
and O
Gln44 B-residue_name_number
. O
Over O
93 O
% O
of O
non O
- O
exchangeable O
side O
- O
chain O
signals O
were O
assigned O
for O
the O
free B-protein_state
ACBD3 B-protein
Q B-structure_element
domain I-structure_element
. O
Apart O
from O
the O
four O
N O
- O
terminal O
residues O
, O
the O
side O
- O
chain O
assignments O
were O
missing O
for O
Gln B-residue_name
( O
Hg3 O
), O
Gln B-residue_name
( O
Ha O
/ O
Hb O
/ O
Hg O
), O
Gln44 B-residue_name_number
( O
Ha O
/ O
Hb O
/ O
Hg O
) O
and O
Gln48 B-residue_name_number
( O
Hg O
) O
mainly O
due O
to O
extensive O
overlaps O
within O
the O
spectral O
regions O
populated O
by O
highly O
abundant O
glutamine B-residue_name
side O
- O
chain O
resonances O
. O
The O
protein O
complex O
yielded O
relatively O
well O
resolved O
spectra B-evidence
( O
SI O
Fig O
. O
4 O
) O
that O
resulted O
in O
assignment O
of O
backbone O
amide O
signals O
for O
all O
residues O
apart O
from O
Gln B-residue_name
( O
ACBD3 B-protein
) O
and O
Ala2 B-residue_name_number
( O
PI4KB B-protein
). O
The O
essentially O
complete O
15N B-chemical
, O
13C B-chemical
and O
1H B-chemical
resonance O
assignments O
allowed O
automated O
assignment O
of O
the O
NOEs B-evidence
identified O
in O
the O
3D B-experimental_method
15N I-experimental_method
/ I-experimental_method
1H I-experimental_method
NOESY I-experimental_method
- I-experimental_method
HSQC I-experimental_method
and O
13C B-experimental_method
/ I-experimental_method
1H I-experimental_method
HMQC I-experimental_method
- I-experimental_method
NOESY I-experimental_method
spectra B-evidence
that O
were O
subsequently O
used O
in O
structural B-experimental_method
calculation I-experimental_method
. O
Structural B-evidence
statistics I-evidence
for O
the O
final O
water O
- O
refined O
sets O
of O
structures B-evidence
are O
shown O
in O
SI O
Table O
1 O
. O
This O
structure B-evidence
revealed O
that O
the O
Q B-structure_element
domain I-structure_element
forms O
a O
two B-structure_element
helix I-structure_element
hairpin I-structure_element
. O
The O
first O
helix B-structure_element
bends O
sharply O
over O
the O
second O
helix B-structure_element
and O
creates O
a O
fold O
resembling O
a O
three B-structure_element
helix I-structure_element
bundle I-structure_element
that O
serves O
as O
a O
nest O
for O
one O
helix B-structure_element
of O
the O
PI4KB B-protein
N O
- O
terminus O
( O
residues O
44 B-residue_range
I-residue_range
64 I-residue_range
, O
from O
this O
point O
on O
referred O
to O
as O
the O
kinase B-structure_element
helix I-structure_element
) O
( O
Fig O
. O
2A O
). O
Preceding O
the O
kinase B-structure_element
helix I-structure_element
are O
three O
ordered O
residues O
( O
Val42 B-residue_name_number
, O
Ile43 B-residue_name_number
, O
and O
Asp44 B-residue_name_number
) O
that O
also O
contribute O
to O
the O
interaction O
( O
Fig O
. O
2B O
). O
The O
remaining O
part O
of O
the O
PI4KB B-protein
N O
- O
termini O
, O
however O
, O
is O
disordered O
( O
SI O
Fig O
. O
5 O
). O
Almost O
all O
of O
the O
PI4KB B-complex_assembly
: I-complex_assembly
ACBD3 I-complex_assembly
interactions B-bond_interaction
are I-bond_interaction
hydrophobic I-bond_interaction
with O
the O
exception O
of O
hydrogen B-bond_interaction
bonds I-bond_interaction
between O
the O
side O
chains O
of O
ACBD3 B-protein
Tyr261 B-residue_name_number
and O
PI4KB B-protein
His63 B-residue_name_number
, O
and O
between O
the O
sidechain O
of O
ACBD3 B-protein
Tyr288 B-residue_name_number
and O
the O
PI4KB B-protein
backbone O
( O
Asp44 B-residue_name_number
) O
( O
Fig O
. O
2B O
). O
Interestingly O
, O
we O
noted O
that O
the O
PI4KB B-protein
helix B-structure_element
is O
amphipathic B-protein_state
and O
its O
hydrophobic B-site
surface I-site
leans O
on O
the O
Q B-structure_element
domain I-structure_element
( O
Fig O
. O
2C O
). O
To O
corroborate O
the O
structural B-evidence
data I-evidence
, O
we O
introduced B-experimental_method
a O
number O
of O
point B-experimental_method
mutations I-experimental_method
and O
validated O
their O
effect O
on O
complex O
formation O
using O
an O
in B-experimental_method
vitro I-experimental_method
pull I-experimental_method
- I-experimental_method
down I-experimental_method
assay I-experimental_method
( O
Fig O
. O
2D O
). O
Wild B-protein_state
type I-protein_state
ACBD3 B-protein
protein O
co B-experimental_method
- I-experimental_method
purified I-experimental_method
together O
with O
the O
NiNTA O
- O
immobilized O
His6 B-protein_state
- I-protein_state
tagged I-protein_state
wild B-protein_state
type I-protein_state
PI4KB B-protein
as O
well O
as O
with O
the O
PI4KB B-protein
V42A B-mutant
and O
V47A B-mutant
mutants B-protein_state
, O
but O
not O
with O
mutants B-protein_state
within O
the O
imminent O
binding B-site
interface I-site
( O
I43A B-mutant
, O
V55A B-mutant
, O
L56A B-mutant
). O
As O
predicted O
, O
wild B-protein_state
type I-protein_state
PI4KB B-protein
interacted O
with O
the O
ACBD3 B-protein
Y266A B-mutant
mutant B-protein_state
and O
slightly O
with O
the O
Y285A B-mutant
mutant B-protein_state
, O
but O
not O
with O
the O
F258A B-mutant
, O
H284A B-mutant
, O
and O
Y288A B-mutant
mutants B-protein_state
( O
Fig O
. O
2D O
). O
ACBD3 B-protein
efficiently O
recruits O
the O
PI4KB B-protein
enzyme O
to O
membranes O
We O
next O
sought O
to O
determine O
if O
the O
ACBD3 B-complex_assembly
: I-complex_assembly
PI4KB I-complex_assembly
interaction O
drives O
membrane O
localization O
of O
the O
PI4KB B-protein
enzyme O
. O
To O
do O
this O
, O
we O
first O
established O
an O
in B-experimental_method
vitro I-experimental_method
membrane I-experimental_method
recruitment I-experimental_method
system I-experimental_method
using O
Giant B-experimental_method
Unilamellar I-experimental_method
Vesicles I-experimental_method
( O
GUVs B-experimental_method
) O
containing O
the O
PI4KB B-protein
substrate O
O
the O
PI B-chemical
lipid O
. O
We O
observed O
that O
PI4KB B-protein
kinase B-protein_type
was O
not O
membrane O
localized B-evidence
when O
added O
to O
the O
GUVs B-experimental_method
at O
600 O
nM O
concentration O
, O
whereas O
non O
- O
covalent O
tethering O
of O
ACBD3 B-protein
to O
the O
surface O
of O
the O
GUVs B-experimental_method
, O
using O
the O
His6 O
tag O
on O
ACBD3 B-protein
and O
the O
DGS B-chemical
- I-chemical
NTA I-chemical
( I-chemical
Ni I-chemical
) I-chemical
lipid I-chemical
, O
led O
to O
efficient O
PI4KB B-protein
membrane O
localization O
( O
Fig O
. O
3A O
). O
We O
hypothesized O
that O
if O
ACBD3 B-protein
is O
one O
of O
the O
main O
Golgi O
localization B-evidence
signals I-evidence
for O
PI4KB B-protein
, O
overexpression B-experimental_method
of O
the O
Q B-structure_element
domain I-structure_element
should O
decrease O
the O
amount O
of O
the O
endogenous O
kinase B-protein_type
on O
the O
Golgi O
. O
Indeed O
, O
we O
observed O
loss O
for O
endogenous O
PI4KB B-protein
signal O
on O
the O
Golgi O
in O
cells O
overexpressing B-experimental_method
the O
GFP B-experimental_method
O
Q B-structure_element
domain I-structure_element
construct O
( O
Fig O
. O
3B O
upper O
panel O
). O
We O
attribute O
the O
loss O
of O
signal B-evidence
to O
the O
immunostaining O
protocol O
- O
the O
kinase B-protein_type
that O
is O
not O
bound O
to O
Golgi O
is O
lost O
during O
the O
permeabilization O
step O
and O
hence O
the O
O
disappearance O
O
of O
the O
signal B-evidence
because O
overexpression B-experimental_method
of O
GFP B-experimental_method
alone O
or O
a O
non B-protein_state
- I-protein_state
binding I-protein_state
Q B-structure_element
domain I-structure_element
mutant B-protein_state
has O
no O
effect O
on O
the O
localization B-evidence
of O
the O
endogenous O
PI4KB B-protein
( O
Fig O
. O
3B O
). O
Given O
this O
result O
, O
overexpression B-experimental_method
of O
the O
Q B-structure_element
domain I-structure_element
should O
also O
interfere O
with O
the O
PI4KB B-protein
dependent O
Golgi O
functions O
. O
Ceramide B-chemical
transport O
and O
accumulation O
in O
Golgi O
is O
a O
well O
- O
known O
PI4KB B-protein
dependent O
process O
. O
We O
have O
used O
fluorescently B-protein_state
labeled I-protein_state
ceramide B-chemical
and O
analyzed O
its O
trafficking O
in O
non O
- O
transfected O
cells O
and O
cell O
overexpressing B-experimental_method
the O
Q B-structure_element
domain I-structure_element
. O
As O
expected O
, O
the O
Golgi O
accumulation O
of O
ceramide B-chemical
was O
not O
observed O
in O
cells O
expressing B-experimental_method
the O
wt B-protein_state
Q B-structure_element
domain I-structure_element
while O
cells O
expressing O
RFP B-experimental_method
or O
the O
mutant B-protein_state
Q B-structure_element
domain I-structure_element
accumulated O
ceramide B-chemical
normally O
( O
Fig O
. O
3C O
) O
suggesting O
that O
ACBD3 B-complex_assembly
: I-complex_assembly
PI4KB I-complex_assembly
complex O
formation O
is O
crucial O
for O
the O
normal O
function O
of O
Golgi O
. O
We O
further O
analyzed O
the O
function O
of O
ACBD3 B-complex_assembly
: I-complex_assembly
PI4KB I-complex_assembly
interaction O
in O
membrane O
recruitment O
of O
PI4KB B-protein
in O
living O
cells O
using O
fluorescently B-protein_state
tagged I-protein_state
proteins O
. O
We O
used O
the O
rapamycin B-chemical
- O
inducible O
heteromerization O
of O
FKBP12 B-protein
( O
FK506 B-protein
binding I-protein
protein I-protein
12 I-protein
) O
and O
FRB B-structure_element
( O
fragment B-structure_element
of O
mTOR B-protein
that O
binds O
rapamycin B-chemical
) O
system O
. O
We O
fused B-experimental_method
the O
FRB B-structure_element
to O
residues O
34 B-residue_range
I-residue_range
63 I-residue_range
of O
the O
mitochondrial B-structure_element
localization I-structure_element
signal I-structure_element
from O
mitochondrial B-protein
A I-protein
- I-protein
kinase I-protein
anchor I-protein
protein I-protein
1 I-protein
( O
AKAP1 B-protein
) O
and O
CFP B-experimental_method
. O
The O
ACBD3 B-protein
Q B-structure_element
domain I-structure_element
was O
then O
fused B-experimental_method
to I-experimental_method
FKBP12 B-protein
and O
mRFP B-experimental_method
( O
Fig O
. O
3D O
). O
We O
analyzed O
localization B-evidence
of O
the O
ACBD3 B-protein
Q B-structure_element
domain I-structure_element
and O
GFP B-experimental_method
O
PI4KB B-protein
before O
and O
after O
the O
addition O
of O
rapamycin B-chemical
. O
As O
a O
control O
we O
used O
H284A B-mutant
mutant B-protein_state
of O
the O
ACBD3 B-protein
Q B-structure_element
domain I-structure_element
that O
does O
not O
significantly O
bind O
PI4KB B-protein
kinase B-protein_type
. O
In O
every O
case O
the O
ACDB3 B-protein
Q B-structure_element
domain I-structure_element
was O
rapidly O
( O
within O
5 O
minutes O
) O
recruited O
to O
the O
mitochondrial O
membrane O
upon O
addition O
of O
rapamycin B-chemical
, O
but O
only O
the O
wild B-protein_state
- I-protein_state
type I-protein_state
protein O
effectively O
directed O
the O
kinase B-protein_type
to O
the O
mitochondria O
( O
Fig O
. O
3E O
, O
Movie O
1 O
and O
2 O
). O
Notably O
, O
we O
observed O
that O
when O
the O
GFP B-experimental_method
- O
PI4KB B-protein
kinase B-protein_type
is O
co B-experimental_method
- I-experimental_method
expressed I-experimental_method
with O
the O
wild B-protein_state
- I-protein_state
type I-protein_state
ACDB3 B-protein
Q B-structure_element
domain I-structure_element
it O
loses O
its O
typical O
Golgi O
localization B-evidence
( O
Fig O
. O
3E O
upper O
panel O
). O
However O
, O
PI4KB B-protein
retains O
it O
Golgi O
localization B-evidence
when O
co B-experimental_method
- I-experimental_method
expressed I-experimental_method
with O
the O
non B-protein_state
- I-protein_state
interacting I-protein_state
Q B-structure_element
domain I-structure_element
mutant B-protein_state
( O
Fig O
. O
3E O
lower O
panel O
). O
ACBD3 B-protein
increases O
PI4KB B-protein
enzymatic B-evidence
activity I-evidence
by O
recruiting O
PI4KB B-protein
to O
close O
vicinity O
of O
its O
substrate O
To O
test O
whether O
ACBD3 B-protein
can O
stimulate O
PI4KB B-protein
kinase B-protein_type
enzymatic B-evidence
activity I-evidence
we O
performed O
a O
standard O
luminescent B-experimental_method
kinase I-experimental_method
assay I-experimental_method
using O
PI B-chemical
- O
containing O
micelles O
as O
the O
substrate O
. O
We O
observed O
no O
effect O
on O
the O
kinase B-protein_type
activity O
of O
PI4KB B-protein
( O
Fig O
. O
4A O
) O
suggesting O
that O
ACBD3 B-protein
does O
not O
directly O
affect O
the O
enzyme O
( O
e O
. O
g O
. O
induction O
of O
a O
conformation O
change O
). O
However O
, O
in O
vivo O
ACBD3 B-protein
is O
located O
at O
the O
Golgi O
membranes O
, O
whereas O
in O
this O
experiment O
, O
ACBD3 B-protein
was O
located O
in O
the O
solution O
and O
PI B-chemical
is O
provided O
as O
micelles O
. O
For O
this O
, O
we O
again O
turned O
to O
the O
GUV B-experimental_method
system O
with O
ACBD3 B-protein
localized B-evidence
to O
the O
GUV B-experimental_method
membrane O
. O
The O
GUVs B-experimental_method
contained O
10 O
% O
PI B-chemical
to O
serve O
as O
a O
substrate O
for O
PI4KB B-protein
kinase B-protein_type
. O
The O
buffer O
also O
contained O
CFP B-experimental_method
- O
SidC B-protein
, O
which O
binds O
to O
PI4P B-chemical
with O
nanomolar O
affinity O
. O
This O
enabled O
visualization O
of O
the O
kinase B-protein_type
reaction O
using O
a O
confocal B-experimental_method
microscope I-experimental_method
. O
We O
compared O
the O
efficiency O
of O
the O
phosphorylation B-ptm
reaction O
of O
the O
kinase B-protein_type
alone B-protein_state
with O
that O
of O
kinase B-protein_type
recruited O
to O
the O
surface O
of O
the O
GUVs B-experimental_method
by O
ACBD3 B-protein
. O
Reaction O
was O
also O
performed O
in O
the O
absence B-protein_state
of I-protein_state
ATP B-chemical
as O
a O
negative O
control O
( O
Fig O
. O
4B O
). O
These O
experiments O
showed O
that O
PI4KB B-protein
enzymatic B-evidence
activity I-evidence
increases O
when O
ACBD3 B-protein
is O
membrane O
localized O
( O
Fig O
. O
4C O
, O
SI O
Fig O
. O
6 O
). O
Membrane O
recruitment O
of O
PI4KB B-protein
enzyme O
is O
crucial O
to O
ensure O
its O
proper O
function O
at O
the O
Golgi O
and O
TGN O
. O
However O
, O
the O
molecular O
mechanism O
and O
structural O
basis O
for O
PI4KB B-protein
interaction O
with O
the O
membrane O
is O
poorly O
understood O
. O
In O
principle O
, O
any O
of O
the O
binding O
partners O
of O
PI4KB B-protein
could O
play O
a O
role O
in O
membrane O
recruitment O
. O
To O
date O
, O
several O
PI4KB B-protein
interacting O
proteins O
have O
been O
reported O
, O
including O
the O
small B-protein_type
GTPases I-protein_type
Rab11 B-protein
and O
Arf1 B-protein
, O
the O
Golgi O
resident O
acyl B-protein
- I-protein
CoA I-protein
binding I-protein
domain I-protein
containing I-protein
3 I-protein
( O
ACBD3 B-protein
) O
protein O
, O
neuronal B-protein
calcium I-protein
sensor I-protein
- I-protein
1 I-protein
( O
NCS B-protein
- I-protein
1 I-protein
also O
known O
as O
frequenin B-protein
in O
yeast B-taxonomy_domain
) O
and O
the O
14 B-protein_type
- I-protein_type
3 I-protein_type
- I-protein_type
3 I-protein_type
proteins I-protein_type
. O
The O
monomeric B-oligomeric_state
G B-protein_type
protein I-protein_type
Rab11 B-protein
binds O
mammalian B-taxonomy_domain
PI4KB B-protein
through O
the O
helical B-structure_element
domain I-structure_element
of O
the O
kinase B-protein_type
. O
Although O
Rab11 B-protein
does O
not O
appear O
to O
be O
required O
for O
recruitment O
of O
PI4KB B-protein
to O
the O
Golgi O
, O
PI4KB B-protein
is O
required O
for O
Golgi O
recruitment O
of O
Rab11 B-protein
. O
Arf1 B-protein
, O
the O
other O
small B-protein_type
GTP I-protein_type
binding I-protein_type
protein I-protein_type
, O
is O
known O
to O
influence O
the O
activity O
and O
localization O
of O
PI4KB B-protein
, O
but O
it O
does O
not O
appear O
to O
interact O
directly O
with O
PI4KB B-protein
( O
our O
unpublished O
data O
). O
The O
yeast B-taxonomy_domain
homologue O
of O
NCS1 B-protein
called O
frequenin B-protein
has O
been O
shown O
to O
interact O
with O
Pik1p B-protein
, O
the O
yeast B-taxonomy_domain
orthologue O
of O
PI4KB B-protein
and O
regulate O
its O
activity O
and O
perhaps O
its O
membrane O
association O
, O
but O
the O
role O
of O
NCS B-protein
- I-protein
1 I-protein
in O
PI4KB B-protein
recruitment O
in O
mammalian B-taxonomy_domain
cells O
is O
unclear O
. O
NCS B-protein
- I-protein
1 I-protein
is O
an O
N O
- O
terminally O
myristoylated B-protein_state
protein O
that O
participates O
in O
exocytosis O
. O
It O
is O
expressed O
only O
in O
certain O
cell O
types O
, O
suggesting O
that O
if O
it O
contributes O
to O
PI4KB B-protein
membrane O
recruitment O
, O
it O
does O
so O
in O
a O
tissues O
specific O
manner O
. O
The O
interaction O
of O
PI4KB B-protein
with O
14 B-protein_type
- I-protein_type
3 I-protein_type
- I-protein_type
3 I-protein_type
proteins I-protein_type
, O
promoted O
by O
phosphorylation B-ptm
of O
PI4KB B-protein
by O
protein B-protein
kinase I-protein
D I-protein
, O
influences O
the O
activity O
of O
PI4KB B-protein
by O
stabilizing O
its O
active B-protein_state
conformation O
. O
However O
, O
14 B-protein_type
- I-protein_type
3 I-protein_type
- I-protein_type
3 I-protein_type
proteins I-protein_type
do O
not O
appear O
to O
interfere O
with O
membrane O
recruitment O
of O
this O
kinase B-protein_type
. O
ACBD3 B-protein
is O
a O
Golgi O
resident O
protein O
, O
conserved B-protein_state
among O
vertebrates B-taxonomy_domain
( O
SI O
Fig O
. O
7 O
), O
that O
interacts O
directly O
with O
PI4KB B-protein
( O
see O
also O
SI O
Fig O
. O
8 O
and O
SI O
Discussion O
), O
and O
whose O
genetic O
inactivation O
interferes O
with O
the O
Golgi O
localization O
of O
the O
kinase B-protein_type
. O
For O
these O
reasons O
we O
focused O
on O
the O
interaction O
of O
the O
PI4KB B-protein
enzyme O
with O
the O
Golgi O
resident O
ACBD3 B-protein
protein O
in O
this O
study O
. O
Here O
we O
present O
the O
mechanism O
for O
membrane O
recruitment O
of O
PI4KB B-protein
by O
the O
Golgi O
resident O
ACBD3 B-protein
protein O
. O
We O
show O
that O
these O
proteins O
interact O
directly O
with O
a O
Kd B-evidence
value O
in O
the O
submicromolar O
range O
. O
The O
interaction O
is O
sufficient O
to O
recruit O
PI4KB B-protein
to O
model O
membranes O
in O
vitro O
as O
well O
as O
to O
the O
mitochondria O
where O
PI4KB B-protein
is O
never O
naturally O
found O
. O
To O
understand O
this O
process O
at O
the O
atomic O
level O
we O
solved B-experimental_method
the O
solution B-evidence
structure I-evidence
of O
ACBD3 B-complex_assembly
: I-complex_assembly
PI4KB I-complex_assembly
sub O
complex O
( O
Fig O
. O
1A O
) O
and O
found O
that O
the O
PI4KB B-protein
N B-structure_element
- I-structure_element
terminal I-structure_element
region I-structure_element
contains O
a O
short B-structure_element
amphipatic I-structure_element
helix I-structure_element
( O
residues O
44 B-residue_range
I-residue_range
64 I-residue_range
) O
that O
binds O
the O
ACBD3 B-protein
Q B-structure_element
domain I-structure_element
. O
The O
Q B-structure_element
domain I-structure_element
adopts O
a O
helical B-structure_element
hairpin I-structure_element
fold I-structure_element
that O
is O
further O
stabilized O
upon O
binding O
the O
kinase B-structure_element
helix I-structure_element
( O
Fig O
. O
2A O
). O
Our O
data O
strongly O
suggest O
that O
formation O
of O
the O
complex O
does O
not O
directly O
influence O
the O
catalytic O
abilities O
of O
the O
kinase B-protein_type
but O
experiments O
with O
model O
membranes O
revealed O
that O
ACBD3 B-protein
enhances O
catalytic O
activity O
of O
the O
kinase B-protein_type
by O
a O
recruitment O
based O
mechanism O
; O
it O
recruits O
the O
kinase B-protein_type
to O
the O
membrane O
and O
thus O
increases O
the O
local O
concentration O
of O
the O
substrate O
in O
the O
vicinity O
of O
the O
kinase B-protein_type
. O
Based O
on O
our O
and O
previously O
published O
structures B-evidence
we O
built O
a O
pseudoatomic B-evidence
model I-evidence
of O
PI4KB B-protein
multi O
- O
protein O
assembly O
on O
the O
membrane O
( O
Fig O
. O
5 O
) O
that O
illustrates O
how O
the O
enzyme O
is O
recruited O
and O
positioned O
towards O
its O
lipidic O
substrate O
and O
how O
it O
in O
turn O
recruits O
Rab11 B-protein
. O
+ B-taxonomy_domain
RNA I-taxonomy_domain
viruses I-taxonomy_domain
replicate O
at O
specific O
PI4P B-chemical
- O
enriched O
membranous O
compartments O
. O
These O
are O
called O
replication O
factories O
( O
because O
they O
enhance O
viral B-taxonomy_domain
replication O
) O
or O
membranous O
webs O
( O
because O
of O
their O
appearance O
under O
the O
electron O
microscope O
). O
To O
generate O
replication O
factories O
, O
viruses B-taxonomy_domain
hijack O
several O
host O
factors O
including O
the O
PI4K B-protein_type
kinases B-protein_type
to O
secure O
high O
content O
of O
the O
PI4P B-chemical
lipid B-chemical
. O
Non B-protein_type
- I-protein_type
structural I-protein_type
3A I-protein_type
proteins I-protein_type
from O
many O
picornaviruses B-taxonomy_domain
from O
the O
Enterovirus B-taxonomy_domain
( O
e O
. O
g O
. O
poliovirus B-species
, O
coxsackievirus B-species
- I-species
B3 I-species
, O
rhinovirus B-species
- I-species
14 I-species
) O
and O
Kobuvirus B-taxonomy_domain
( O
e O
. O
g O
. O
Aichi B-species
virus I-species
- I-species
1 I-species
) O
genera O
directly O
interact O
with O
ACBD3 B-protein
. O
Our O
data O
suggest O
that O
they O
could O
do O
this O
via O
3A B-complex_assembly
: I-complex_assembly
ACBD3 I-complex_assembly
: I-complex_assembly
PI4KB I-complex_assembly
complex O
formation O
. O
The O
structure B-evidence
of O
the O
ACBD3 B-protein
Q B-structure_element
domain I-structure_element
and O
the O
kinase B-structure_element
helix I-structure_element
described O
here O
provides O
a O
novel O
opportunity O
for O
further O
research O
on O
the O
role O
of O
ACBD3 B-protein
, O
PI4KB B-protein
, O
and O
the O
ACBD3 B-complex_assembly
: I-complex_assembly
PI4KB I-complex_assembly
interaction O
in O
picornaviral B-taxonomy_domain
replication O
. O
This O
could O
eventually O
have O
implications O
for O
therapeutic O
intervention O
to O
combat O
picornaviruses B-taxonomy_domain
- O
mediated O
diseases O
ranging O
from O
polio O
to O
the O
common O
cold O
. O
Biochemical B-experimental_method
characterization I-experimental_method
of O
the O
ACBD3 B-complex_assembly
: I-complex_assembly
PI4KB I-complex_assembly
complex O
. O
( O
A O
) O
Schematic O
representation O
of O
the O
ACBD3 B-protein
and O
PI4KB B-protein
constructs O
used O
for O
the O
experiments O
. O
ACBD3 B-protein
contains O
the O
acyl B-structure_element
- I-structure_element
CoA I-structure_element
binding I-structure_element
domain I-structure_element
( O
ACBD B-structure_element
), O
charged B-structure_element
amino I-structure_element
acids I-structure_element
region I-structure_element
( O
CAR B-structure_element
), O
glutamine B-structure_element
rich I-structure_element
region I-structure_element
( O
Q B-structure_element
), O
and O
Golgi B-structure_element
dynamics I-structure_element
domain I-structure_element
( O
GOLD B-structure_element
). O
PI4KB B-protein
is O
composed O
of O
the O
N B-structure_element
- I-structure_element
terminal I-structure_element
region I-structure_element
, O
helical B-structure_element
domain I-structure_element
, O
and O
kinase B-structure_element
domain I-structure_element
which O
can O
be O
divided O
into O
N B-structure_element
- I-structure_element
and I-structure_element
C I-structure_element
- I-structure_element
terminal I-structure_element
lobes I-structure_element
. O
( O
B O
) O
In B-experimental_method
vitro I-experimental_method
pull I-experimental_method
- I-experimental_method
down I-experimental_method
assay I-experimental_method
. O
Pull B-experimental_method
- I-experimental_method
down I-experimental_method
assays I-experimental_method
were O
performed O
using O
NiNTA O
- O
immobilized O
N O
- O
terminal O
His6GB1 B-protein_state
- I-protein_state
tagged I-protein_state
proteins O
as O
indicated O
and O
untagged B-protein_state
full B-protein_state
- I-protein_state
length I-protein_state
PI4KB B-protein
or O
ACBD3 B-protein
. O
The O
inputs O
and O
bound O
proteins O
were O
analyzed O
on O
SDS B-experimental_method
gels I-experimental_method
stained O
with O
Coomassie O
Blue O
. O
Please O
, O
see O
SI O
Fig O
. O
9 O
for O
original O
full B-protein_state
- I-protein_state
length I-protein_state
gels O
. O
( O
C O
) O
Analytical B-experimental_method
Ultracentrifugation I-experimental_method
. O
AUC B-experimental_method
analysis O
of O
the O
ACBD3 B-complex_assembly
: I-complex_assembly
PI4KB I-complex_assembly
full B-protein_state
- I-protein_state
length I-protein_state
complex O
at O
the O
concentration O
of O
5 O
μM O
( O
both O
proteins O
, O
left O
panel O
) O
and O
ACBD3 B-complex_assembly
Q I-complex_assembly
domain I-complex_assembly
: I-complex_assembly
PI4KB I-complex_assembly
N I-complex_assembly
terminal I-complex_assembly
region I-complex_assembly
complex O
at O
the O
concentration O
of O
35 O
μM O
( O
both O
proteins O
, O
right O
panel O
). O
( O
D O
) O
Surface B-experimental_method
plasmon I-experimental_method
resonance I-experimental_method
. O
SPR B-experimental_method
analysis O
of O
the O
PI4KB B-protein
binding O
to O
immobilized O
ACBD3 B-protein
. O
Sensorgrams B-evidence
for O
four O
concentrations O
of O
PI4KB B-protein
are O
shown O
. O
Structural B-experimental_method
analysis I-experimental_method
of O
the O
ACBD3 B-complex_assembly
: I-complex_assembly
PI4KB I-complex_assembly
complex O
. O
( O
A O
) O
Overall O
structure B-evidence
of O
the O
ACBD3 B-protein
Q B-structure_element
domain I-structure_element
by O
itself O
and O
in B-protein_state
complex I-protein_state
with I-protein_state
the O
PI4KB B-protein
N B-structure_element
- I-structure_element
terminal I-structure_element
region I-structure_element
. O
Superposition B-experimental_method
of O
the O
30 O
converged O
structures B-evidence
obtained O
for O
the O
Q B-structure_element
domain I-structure_element
( O
top O
) O
and O
the O
45 O
converged O
structures B-evidence
obtained O
for O
the O
complex O
( O
bottom O
), O
with O
only O
the O
folded B-protein_state
part O
of O
PI4KB B-protein
shown O
( O
see O
SI O
Fig O
. O
2 O
for O
the O
complete O
view O
). O
( O
B O
) O
Detailed O
view O
of O
the O
complex O
. O
The O
interaction O
is O
facilitated O
by O
only O
two O
hydrogen B-bond_interaction
bonds I-bond_interaction
( O
ACBD3 B-protein
Tyr261 B-residue_name_number
: O
PI4KB B-protein
His63 B-residue_name_number
and O
ACBD3 B-protein
Tyr288 B-residue_name_number
: O
PI4KB B-protein
Asp44 B-residue_name_number
), O
while O
the O
hydrophobic B-site
surface I-site
of O
the O
kinase B-structure_element
helix I-structure_element
nests O
in O
the O
ACBD3 B-protein
Q B-structure_element
domain I-structure_element
. O
ACBD3 B-protein
is O
shown O
in O
magenta O
and O
PI4KB B-protein
in O
orange O
. O
( O
C O
) O
Top O
view O
of O
the O
kinase B-structure_element
helix I-structure_element
. O
The O
kinase B-structure_element
helix I-structure_element
is O
amphipathic B-protein_state
and O
its O
hydrophobic B-site
surface I-site
overlaps O
with O
the O
ACBD3 B-protein
binding B-site
surface I-site
( O
shown O
in O
magenta O
). O
Strong O
and O
weak O
hydrophobes O
are O
in O
green O
and O
cyan O
respectively O
, O
basic O
residues O
in O
blue O
, O
acidic O
residues O
in O
red O
and O
nonpolar O
hydrophilic O
residues O
in O
orange O
. O
( O
D O
) O
Pull B-experimental_method
- I-experimental_method
down I-experimental_method
assay I-experimental_method
with O
a O
NiNTA O
- O
immobilized O
N O
- O
terminally O
His6GB1 B-protein_state
- I-protein_state
tagged I-protein_state
PI4KB B-protein
kinase B-protein_type
and O
untagged B-protein_state
ACBD3 B-protein
protein O
. O
Wild B-protein_state
type I-protein_state
proteins O
and O
selected O
point O
mutants B-protein_state
of O
both O
PI4KB B-protein
and O
ACBD3 B-protein
were O
used O
. O
Please O
, O
see O
SI O
Fig O
. O
9 O
for O
original O
full B-protein_state
- I-protein_state
length I-protein_state
gels O
. O
ACBD3 B-protein
is O
sufficient O
to O
recruit O
the O
PI4KB B-protein
kinase B-protein_type
to O
membranes O
. O
( O
A O
) O
GUVs B-experimental_method
recruitment I-experimental_method
assay I-experimental_method
. O
Top O
O
Virtually O
no O
membrane O
bound O
kinase B-protein_type
was O
observed O
when O
600 O
nM O
PI4KB B-protein
was O
added O
to O
the O
GUVs B-experimental_method
. O
Bottom O
O
in O
the O
presence B-protein_state
of I-protein_state
600 O
nM O
GUV B-protein_state
tethered I-protein_state
ACBD3 B-protein
a O
significant O
signal O
of O
the O
kinase B-protein_type
is O
detected O
on O
the O
surface O
of O
GUVs B-experimental_method
. O
( O
B O
) O
Golgi B-experimental_method
displacement I-experimental_method
experiment I-experimental_method
. O
Upper O
panel O
: O
ACBD3 B-protein
Q B-structure_element
domain I-structure_element
fused O
to O
GFP B-experimental_method
was O
overexpressed B-experimental_method
and O
the O
endogenous O
PI4KB B-protein
was O
immunostained B-experimental_method
. O
Middle O
panel O
: O
The O
same O
experiment O
performed O
with O
GFP B-experimental_method
alone O
. O
Lower O
panel O
: O
The O
same O
experiment O
performed O
with O
mutant B-protein_state
Q B-structure_element
domain I-structure_element
( O
F258A B-mutant
, O
H284A B-mutant
, O
Y288A B-mutant
) O
that O
does O
not O
bind O
the O
PI4KB B-protein
. O
( O
C O
) O
ACBD3 B-protein
Q B-structure_element
domain I-structure_element
overexpression B-experimental_method
inhibits O
ceramide B-chemical
transport O
to O
Golgi O
O
COS O
- O
7 O
cells O
transfected O
with O
wild B-protein_state
- I-protein_state
type I-protein_state
ACBD3 B-protein
Q B-structure_element
domain I-structure_element
- O
FKBP B-protein
- O
mRFP B-experimental_method
were O
loaded O
with O
0 O
. O
05 O
μM O
Bodipy B-chemical
FL I-chemical
- I-chemical
Ceramide I-chemical
for O
20 O
min O
, O
then O
washed O
and O
depicted O
after O
20 O
min O
. O
Middle O
panel O
O
The O
same O
experiment O
performed O
with O
mRFP B-experimental_method
- O
FKBP B-protein
alone O
. O
Lower O
panel O
O
The O
same O
experiment O
performed O
with O
mutant B-protein_state
Q B-structure_element
domain I-structure_element
( O
F258A B-mutant
, O
H284A B-mutant
, O
Y288A B-mutant
) O
that O
does O
not O
bind O
the O
PI4KB B-protein
. O
( O
D O
) O
Scheme O
of O
the O
mitochondria B-experimental_method
recruitment I-experimental_method
experiment I-experimental_method
. O
O
The O
AKAP1 B-protein
- O
FRB B-structure_element
- O
CFP B-experimental_method
construct O
is O
localized B-evidence
at O
the O
outer O
mitochondrial O
membrane O
, O
while O
the O
GFP B-experimental_method
- O
PI4KB B-protein
and O
Q B-structure_element
domain I-structure_element
- O
FKBP B-protein
- O
mRFP B-experimental_method
constructs O
are O
localized B-evidence
in O
the O
cytoplasm O
where O
they O
can O
form O
a O
complex O
. O
Upon O
addition O
of O
rapamycin B-chemical
the O
Q B-structure_element
domain I-structure_element
- O
FKBP B-protein
- O
mRFP B-experimental_method
construct O
translocates O
to O
the O
mitochondria O
and O
takes O
GFP B-experimental_method
- O
PI4KB B-protein
with O
it O
. O
( O
E O
) O
Mitochondria B-experimental_method
recruitment I-experimental_method
experiment I-experimental_method
. O
Left O
O
cells O
transfected O
with O
AKAP1 B-protein
- O
FRB B-structure_element
- O
CFP B-experimental_method
, O
GFP B-experimental_method
- O
PI4KB B-protein
and O
wild B-protein_state
- I-protein_state
type I-protein_state
Q B-structure_element
domain I-structure_element
- O
FKBP B-protein
- O
mRFP B-experimental_method
constructs O
before O
and O
five O
minutes O
after O
addition O
of O
rapamycin B-chemical
. O
Right O
O
The O
same O
experiment O
performed O
using O
the O
H264A B-mutant
Q B-structure_element
domain I-structure_element
mutant B-protein_state
. O
ACBD3 B-protein
indirectly O
increases O
the O
activity O
of O
PI4KB B-protein
. O
( O
A O
) O
Micelles B-experimental_method
- I-experimental_method
based I-experimental_method
kinase I-experimental_method
assay I-experimental_method
O
PI B-chemical
in O
TX100 O
micelles O
was O
used O
in O
a O
luminescent B-experimental_method
kinase I-experimental_method
assay I-experimental_method
and O
the O
production O
of O
PI4P B-chemical
was O
measured O
. O
Bar O
graph O
presents O
the O
mean O
values O
of O
PI4P B-chemical
generated O
in O
the O
presence B-protein_state
of I-protein_state
the O
proteins O
as O
indicated O
, O
normalized O
to O
the O
amount O
of O
PI4P B-chemical
generated O
by O
PI4KB B-protein
alone O
. O
Error O
bars O
are O
standard B-evidence
errors I-evidence
of I-evidence
the I-evidence
mean I-evidence
( O
SEM B-evidence
) O
based O
on O
three O
independent O
experiments O
. O
( O
B O
) O
GUV B-experimental_method
- I-experimental_method
based I-experimental_method
phosphorylation I-experimental_method
assay I-experimental_method
O
GUVs B-experimental_method
containing O
10 O
% O
PI B-chemical
were O
used O
as O
a O
substrate O
and O
the O
production O
of O
PI4P B-chemical
was O
measured O
using O
the O
CFP B-experimental_method
- I-experimental_method
SidC I-experimental_method
biosensor I-experimental_method
. O
( O
C O
)O
Quantification O
of O
the O
GUV B-experimental_method
phosphorylation I-experimental_method
assay I-experimental_method
O
Mean B-evidence
membrane I-evidence
fluorescence I-evidence
intensity I-evidence
of O
the O
PI4P B-chemical
reporter O
( O
SidC B-protein
- O
label O
) O
under O
different O
protein O
/ O
ATP B-chemical
conditions O
. O
The O
mean B-evidence
membrane I-evidence
intensity I-evidence
value O
is O
relative O
to O
the O
background O
signal O
and O
the O
difference O
between O
the O
membrane O
and O
background O
signal O
in O
the O
reference O
system O
lacking O
ATP B-chemical
. O
The O
error O
bars O
stand O
for O
SEM B-evidence
based O
on O
three O
independent O
experiments O
( O
also O
SI O
Fig O
. O
6 O
). O
Pseudoatomic B-evidence
model I-evidence
of O
the O
PI4KB B-protein
multiprotein O
complex O
assembly O
. O
PI4KB B-protein
in O
orange O
, O
Rab11 B-protein
in O
purple O
, O
ACBD3 B-protein
in O
blue O
. O
The O
model O
is O
based O
on O
our O
NMR B-experimental_method
structure B-evidence
and O
a O
previously O
published O
crystal B-evidence
structure I-evidence
of O
PI4KB B-complex_assembly
: I-complex_assembly
Rab11 I-complex_assembly
complex O
( O
PDB O
code O
4D0L O
), O
ACBD B-structure_element
and O
GOLD B-structure_element
domain O
were O
homology B-experimental_method
modeled I-experimental_method
based O
on O
high O
sequence O
identity O
structures B-evidence
produced O
by O
the O
Phyre2 B-experimental_method
web O
server O
. O
The O
GOLD B-structure_element
domain O
is O
tethered O
to O
the O
membrane O
by O
GolginB1 B-protein
( O
also O
known O
as O
Giantin B-protein
) O
which O
is O
not O
shown O
for O
clarity O
. O
Intrinsically B-structure_element
disordered I-structure_element
linkers I-structure_element
are O
modeled O
in O
an O
arbitrary O
but O
physically O
plausible O
conformation O
. O